
G205
Fundamentals of Computer
Engineering
CLASS 6, Mon. Sept. 27 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm

9/27/2004 2

MERGE SORT, 1

Follows the D&C approach
To sort A[p…r]:

Divide the elements of A into two subarrays
A[p…q] and A[q+1…r]
Conquer by recursively sorting the two subarrays
Combine by merging the two sorted subarrays to
produce the sorted A[p…r]

Recursion bottoms out when the subarray
has just one element

9/27/2004 3

MERGE SORT, 2

Merge-Sort(A, p, r)
if p < r check the base case

then q = int((p+r)/2) divide

Merge-Sort(A, p, q) conquer

Merge-Sort(A, q+1, r) conquer

Merge(A, p, q, r) combine

Initial Call: Merge-Sort(A,1,n)

9/27/2004 4

Analyzing D&C Algorithms

We use recurrence equations
Base case: problem size is small enough
(n≤c). Costs constant time Θ(1)
Recursive case:

Divide the problem into a subproblems each 1/b
the size of the original
Let D(n) be the time to divide a n-size problem
Each subproblem costs T(n/b) all cost aT(n/b)
Let C(n) be the time to combine solutions

9/27/2004 5

Recurrence for D&C

TD&C(n)=Θ(1) if n ≤ c

TD&C(n)=aTD&C(n/b)+D(n)+C(n)

otherwise

9/27/2004 6

Analyzing Merge-Sort

Base case: n=1 (p≥r) T(1) in Θ(1)
When n≥2:

Divide: Compute q as the average of p and
r D(n) in Θ(1)
Conquer: Recursively solve two n/2-size
subproblems 2T(n/2)
Combine: Merge on a n-element subarray
takes Θ(n) C(n) in Θ(n)

9/27/2004 7

Recurrence for Merge-Sort

TMS(n)=Θ(1) if n = 1

TMS(n)=2TMS(n/2)+ Θ(n) if n > 1

By the MASTER THEOREM:

TMS(n) is in Θ(nlogn)

Faster than IS and BS

9/27/2004 8

Merge-Sort Recurrence

Without the Master Theorem

Rewrite the recurrence:

TMS(n)=c if n = 1

TMS(n)=2TMS(n/2)+ c if n > 1

Recursion Tree = successive expansion

of the recurrence

9/27/2004 9

Merge-Sort Recursion Tree

Each level of the tree has cost cn
There are log n + 1 levels

Prove it by induction

Total cost is cn(log n +1)=cn log n + cn
TMS(n) is in Θ(nlogn) “<“ O(n2)
QUESTION:

HOW FAST CAN WE SORT?

9/27/2004 10

Lower Bounds for Sorting

Lower bound: A function or growth rate
below which solving a problem is
impossible
A measure of how much has to be
spent
Natural lower bound for sorting: All
elements must be read Ω(n)

9/27/2004 11

Comparison-based Sorting

The only operation that may be used to gain
order information about a sequence is
comparison of pairs of elements

All sorts seen so far are comparison sorts:
insertion sort, bubble sort, merge sort

Other famous sorting algorithms are too:
quicksort, heapsort, treesort

9/27/2004 12

Decision Tree, 1

Abstraction of any comparison sort
Represents comparisons made by

a specific sorting algorithm
on inputs of a given size

Abstracts away everything else: control
and data movement
We are counting only comparisons

9/27/2004 13

Decision Tree, 2

For any comparison-based sorting:
One tree for each n
The algorithm splits in two at each node, based on
the information it has up to that point
The tree models all possible execution traces

The length h of the longest root-leaf path:
Depends on the algorithm

Insertion sort: Θ(n2)
Merge sort: Θ(n log n)

9/27/2004 14

Decision Tree, 3

Lemma: Any binary tree of height h has l ≤
2h leaves (by induction)
Theorem: Any decision tree that sorts n
elements has height Ω(n log n)
Proof

Every decision tree has l ≥ n! leaves (every
permutation appears at least once)
By lemma, n! ≤ l ≤ 2h or 2h ≥ n! h ≥ log n!
Stirling approximation: n!≥(n/e)n h in Ω(nlogn)

9/27/2004 15

Lower Bound for Comparison-
based Sorting

The height of a decision tree indicates
how many comparison at least have to
be made to sort a sequence of n
elements lower bound for sorting
Comparison-based sorting is in
Ω(nlogn)
Merge-Sort is as good as it gets
(asymptotically optimal)

9/27/2004 16

Sorting in Linear Time

We cannot go faster than Ω(n)
Must be a non-comparison sorting
Works when assumptions on the number to
be sorted are made

Counting sort numbers in {0,1,…,k}
Radix sort numbers with a constant number of
digits
Bucket sort numbers drawn from a uniform
distribution

9/27/2004 17

Counting Sort, 1

Numbers are integers in {0,1,…,k}
INPUT: A[1…n], A[j]∈{0,1,…,k} for all
j=1,2,…,n. Array A and values n and k
are given as parameters
OUTPUT: B[1…n], sorted. B is assumed
to be already allocated and is given as a
parameter
Auxiliary storage: C[0…k]

9/27/2004 18

Counting Sort, 2

Counting-Sort(A,B,n,k)
for i=0 to k do C[i] = 0
for j=1 to n do C[A[j]]=C[A[j]]+1
for i=1 to k do C[i]=C[i]+C[i-1]
for j=n downto 1 do

B[C[A[j]]]=A[j]
C[A[j]]=C[A[j]]-1

9/27/2004 19

Counting Sort, Example

INPUT: A = 21, 51, 31, 01, 22, 32, 02, 33

OUTPUT: B = 01, 02, 21, 22, 31, 32, 33, 51

Counting-Sort is STABLE: keys with same
value appear in same order in output as they
did in input (because of how the last loop
works)

Analysis: Θ(n+k), which is Θ(n) if k is in O(n)

9/27/2004 20

Assignments

Textbook, pages 165—170

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

	G205Fundamentals of Computer Engineering
	MERGE SORT, 1
	MERGE SORT, 2
	Analyzing D&C Algorithms
	Recurrence for D&C
	Analyzing Merge-Sort
	Recurrence for Merge-Sort
	Merge-Sort Recurrence
	Merge-Sort Recursion Tree
	Lower Bounds for Sorting
	Comparison-based Sorting
	Decision Tree, 1
	Decision Tree, 2
	Decision Tree, 3
	Lower Bound for Comparison-based Sorting
	Sorting in Linear Time
	Counting Sort, 1
	Counting Sort, 2
	Counting Sort, Example
	Assignments

