MERGE SORT, 1

- Follows the D&C approach
- To sort $A[p...r]$:
 - Divide the elements of A into two subarrays $A[p...q]$ and $A[q+1...r]$
 - Conquer by recursively sorting the two subarrays
 - Combine by merging the two sorted subarrays to produce the sorted $A[p...r]$
- Recursion bottoms out when the subarray has just one element
MERGE SORT, 2

Merge-Sort(A, p, r)

if p < r

then q = \text{int}\left(\frac{p+r}{2}\right)

Merge-Sort(A, p, q)

Merge-Sort(A, q+1, r)

Merge(A, p, q, r)

\textbf{Initial Call: Merge-Sort(A,1,n)}
Analyzing D&C Algorithms

- We use recurrence equations
- Base case: problem size is small enough \((n \leq c)\). Costs constant time \(\Theta(1)\)
- Recursive case:
 - Divide the problem into a subproblems each \(1/b\) the size of the original
 - Let \(D(n)\) be the time to divide a \(n\)-size problem
 - Each subproblem costs \(T(n/b)\) \(\Rightarrow\) all cost \(aT(n/b)\)
 - Let \(C(n)\) be the time to combine solutions
Recurrence for D&C

\[T_{\text{D&C}}(n) = \Theta(1) \] if \(n \leq c \)

\[T_{\text{D&C}}(n) = aT_{\text{D&C}}(n/b) + D(n) + C(n) \] otherwise
Analyzing Merge-Sort

- **Base case:** $n=1 \ (p \geq r) \rightarrow T(1) \in \Theta(1)$
- **When** $n \geq 2$:
 - **Divide:** Compute q as the average of p and $r \rightarrow D(n) \in \Theta(1)$
 - **Conquer:** Recursively solve two $n/2$-size subproblems $\rightarrow 2T(n/2)$
 - **Combine:** Merge on a n-element subarray takes $\Theta(n) \rightarrow C(n) \in \Theta(n)$
Recurrence for Merge-Sort

\[T_{MS}(n) = \Theta(1) \quad \text{if } n = 1 \]

\[T_{MS}(n) = 2T_{MS}(n/2) + \Theta(n) \quad \text{if } n > 1 \]

\[\text{By the MASTER THEOREM:} \quad T_{MS}(n) \text{ is in } \Theta(n\log n) \]

\[\text{Faster than IS and BS} \]
Merge-Sort Recurrence

Without the Master Theorem

Rewrite the recurrence:

1. \(T_{MS}(n) = c \) if \(n = 1 \)
2. \(T_{MS}(n) = 2T_{MS}(n/2) + c \) if \(n > 1 \)

Recursion Tree = successive expansion of the recurrence
Merge-Sort Recursion Tree

- Each level of the tree has cost cn
- There are $\log n + 1$ levels
 - Prove it by induction
- Total cost is $cn(\log n + 1) = cn \log n + cn$
- $T_{MS}(n)$ is in $\Theta(n \log n)$ "$<" O($n^2$)

QUESTION:

HOW FAST CAN WE SORT?
Lower Bounds for Sorting

Lower bound: A function or growth rate below which solving a problem is impossible

A measure of how much has to be spent

Natural lower bound for sorting: All elements must be read $\Omega(n)$
Comparison-based Sorting

- The only operation that may be used to gain order information about a sequence is comparison of pairs of elements.
- All sorts seen so far are comparison sorts: insertion sort, bubble sort, merge sort.
- Other famous sorting algorithms are too: quicksort, heapsort, treesort.
Decision Tree, 1

- Abstraction of any comparison sort
- Represents comparisons made by
 - a specific sorting algorithm
 - on inputs of a given size
- Abstracts away everything else: control and data movement
- We are counting *only* comparisons
Decision Tree, 2

- For any comparison-based sorting:
 - One tree for each n
 - The algorithm splits in two at each node, based on the information it has up to that point
 - The tree models all possible execution traces
- The length h of the longest root-leaf path:
 - Depends on the algorithm
 - Insertion sort: $\Theta(n^2)$
 - Merge sort: $\Theta(n \log n)$
Decision Tree, 3

Lemma: Any binary tree of height h has $l \leq 2^h$ leaves (by induction)

Theorem: Any decision tree that sorts n elements has height $\Omega(n \log n)$

Proof

- Every decision tree has $l \geq n!$ leaves (every permutation appears at least once)
- By lemma, $n! \leq l \leq 2^h$ or $2^h \geq n! \rightarrow h \geq \log n!$
- Stirling approximation: $n! \geq (n/e)^n \rightarrow h \in \Omega(n \log n)$
Lower Bound for Comparison-based Sorting

- The height of a decision tree indicates how many comparison at least have to be made to sort a sequence of n elements → lower bound for sorting
- Comparison-based sorting is in $\Omega(n \log n)$
- Merge-Sort is as good as it gets (asymptotically optimal)
Sorting in Linear Time

- We cannot go faster than $\Omega(n)$
- Must be a non-comparison sorting
- Works when assumptions on the number to be sorted are made
 - Counting sort \rightarrow numbers in \{0,1,...,k\}
 - Radix sort \rightarrow numbers with a constant number of digits
 - Bucket sort \rightarrow numbers drawn from a uniform distribution
Counting Sort, 1

Numbers are integers in \{0,1,...,k\}

INPUT: A[1...n], A[j] ∈\{0,1,...,k\} for all j=1,2,...,n. Array A and values n and k are given as parameters

OUTPUT: B[1...n], sorted. B is assumed to be already allocated and is given as a parameter

Auxiliary storage: C[0...k]
Counting Sort, 2

Counting-Sort(A, B, n, k)
for i = 0 to k do C[i] = 0
for j = 1 to n do C[A[j]] = C[A[j]] + 1
for i = 1 to k do C[i] = C[i] + C[i - 1]
for j = n downto 1 do
 B[C[A[j]]] = A[j]
 C[A[j]] = C[A[j]] - 1
Counting Sort, Example

- **INPUT**: A = 2₁, 5₁, 3₁, 0₁, 2₂, 3₂, 0₂, 3₃
- **OUTPUT**: B = 0₁, 0₂, 2₁, 2₂, 3₁, 3₂, 3₃, 5₁

Counting-Sort is STABLE: keys with same value appear in same order in output as they did in input (because of how the last loop works)

- **Analysis**: \(\Theta(n+k) \), which is \(\Theta(n) \) if \(k \) is in \(O(n) \)
Assignments

- Textbook, pages 165—170
- Updated information on the class web page:
 www.ece.neu.edu/courses/eceg205/2004fa