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MERGE SORT, 1

Follows the D&C approach
To sort A[p…r]:

Divide the elements of A into two subarrays
A[p…q] and A[q+1…r]
Conquer by recursively sorting the two subarrays
Combine by merging the two sorted subarrays to 
produce the sorted A[p…r]

Recursion bottoms out when the subarray
has just one element
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MERGE SORT, 2

Merge-Sort(A, p, r)
if p < r check the base case

then q = int((p+r)/2) divide

Merge-Sort(A, p, q) conquer

Merge-Sort(A, q+1, r) conquer

Merge(A, p, q, r) combine

Initial Call: Merge-Sort(A,1,n)



9/27/2004 4

Analyzing D&C Algorithms

We use recurrence equations
Base case: problem size is small enough 
(n≤c). Costs constant time Θ(1)
Recursive case: 

Divide the problem into a subproblems each 1/b 
the size of the original
Let D(n) be the time to divide a n-size problem
Each subproblem costs T(n/b) all cost aT(n/b)
Let C(n) be the time to combine solutions
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Recurrence for D&C

TD&C(n)=Θ(1) if n ≤ c

TD&C(n)=aTD&C(n/b)+D(n)+C(n)  

otherwise
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Analyzing Merge-Sort

Base case: n=1 (p≥r) T(1) in Θ(1)
When n≥2:

Divide: Compute q as the average of p and 
r D(n) in Θ(1)
Conquer: Recursively solve two n/2-size 
subproblems 2T(n/2)
Combine: Merge on a n-element subarray
takes Θ(n) C(n) in Θ(n)
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Recurrence for Merge-Sort

TMS(n)=Θ(1) if n = 1

TMS(n)=2TMS(n/2)+ Θ(n) if n > 1

By the MASTER THEOREM:

TMS(n) is in Θ(nlogn)

Faster than IS and BS
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Merge-Sort Recurrence

Without the Master Theorem

Rewrite the recurrence:

TMS(n)=c if n = 1

TMS(n)=2TMS(n/2)+ c if n > 1

Recursion Tree = successive expansion 

of the recurrence
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Merge-Sort Recursion Tree

Each level of the tree has cost cn
There are log n + 1 levels

Prove it by induction

Total cost is cn(log n +1)=cn log n + cn
TMS(n) is in Θ(nlogn) “<“ O(n2)
QUESTION:

HOW FAST CAN WE SORT?
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Lower Bounds for Sorting

Lower bound: A function or growth rate 
below which solving a problem is 
impossible
A measure of how much has to be 
spent
Natural lower bound for sorting: All 
elements must be read Ω(n)
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Comparison-based Sorting

The only operation that may be used to gain 
order information about a sequence is 
comparison of pairs of elements

All sorts seen so far are comparison sorts: 
insertion sort, bubble sort, merge sort

Other famous sorting algorithms are too: 
quicksort, heapsort, treesort
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Decision Tree, 1

Abstraction of any comparison sort
Represents comparisons made by

a specific sorting algorithm
on inputs of a given size

Abstracts away everything else: control 
and data movement
We are counting only comparisons
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Decision Tree, 2

For any comparison-based sorting:
One tree for each n
The algorithm splits in two at each node, based on 
the information it has up to that point
The tree models all possible execution traces

The length h of the longest root-leaf path:
Depends on the algorithm

Insertion sort: Θ(n2)
Merge sort: Θ(n log n)
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Decision Tree, 3

Lemma: Any binary tree of height h has l ≤
2h leaves (by induction)
Theorem: Any decision tree that sorts n 
elements has height Ω(n log n)
Proof

Every decision tree has l ≥ n! leaves (every 
permutation appears at least once)
By lemma, n! ≤ l ≤ 2h or 2h ≥ n! h ≥ log n!
Stirling approximation: n!≥(n/e)n h in Ω(nlogn)
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Lower Bound for Comparison-
based Sorting 

The height of a decision tree indicates 
how many comparison at least have to 
be made to sort a sequence of n 
elements lower bound for sorting
Comparison-based sorting is in 
Ω(nlogn)
Merge-Sort is as good as it gets
(asymptotically optimal)
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Sorting in Linear Time

We cannot go faster than Ω(n)
Must be a non-comparison sorting
Works when assumptions on the number to 
be sorted are made

Counting sort numbers in {0,1,…,k}
Radix sort numbers with a constant number of 
digits
Bucket sort numbers drawn from a uniform 
distribution
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Counting Sort, 1

Numbers are integers in {0,1,…,k}
INPUT: A[1…n], A[j]∈{0,1,…,k} for all 
j=1,2,…,n. Array A and values n and k 
are given as parameters
OUTPUT: B[1…n], sorted. B is assumed 
to be already allocated and is given as a 
parameter
Auxiliary storage: C[0…k]
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Counting Sort, 2

Counting-Sort(A,B,n,k)
for i=0 to k do C[i] = 0
for j=1 to n do C[A[ j ]]=C[A[j]]+1
for i=1 to k do C[i]=C[i]+C[i-1]
for j=n downto 1 do 

B[C[A[j]]]=A[j]
C[A[j]]=C[A[j]]-1
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Counting Sort, Example

INPUT: A = 21, 51, 31, 01, 22, 32, 02, 33

OUTPUT: B = 01, 02, 21, 22, 31, 32, 33, 51

Counting-Sort is STABLE: keys with same 
value appear in same order in output as they 
did in input (because of how the last loop 
works)

Analysis: Θ(n+k), which is Θ(n) if k is in O(n)
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Assignments

Textbook, pages 165—170

Updated information on the class web 

page:

www.ece.neu.edu/courses/eceg205/2004fa
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