G205

'Fundamentals of Computer
Engineering

CLASS 21, Mon. Nov. 22 2004
Stefano Basagni

Fall 2004

M-W, 1:30pm-3:10pm

4

N

Greedy Algorithms, 1

Algorithms for Optimization Problems
» Sequence of steps

= Choices at each step

#\With Dynamic Programming finding the
best choice can be expensive

#Simpler, more efficient algorithms wiill
do

11/22/2004 2

'Greedy Algorithms, 2

#A Greedy Algorithm always makes the
choice that looks best at the moment

[t makes a locally optimal choice in the
hope that it will lead to a globally
optimal solution

#Optimal solutions are greedily achieved
by Gas for many problems (not for all)

11/22/2004 3

Greedy Properties

N

Properties an OP should exhibit to
admit a greedy solution

1. Greedy-choice property
¢ (Global solution via local greedy choices

2. Optimal substructure

¢+ Optimal solution is obtained from optimal
solutions to sub-problems

11/22/2004 4

N

Greedy-choice Property

#A globally optimal solutions can be
arrived at by making a locally optimal
greedy choice

a The choice that looks best is made

independently of results from sub-
problems

#Main difference from Dynamic
Programming

= Choices depends on results from sub-probs

11/22/2004 5

GA vs. DP

N

larger

#DP: Solutions proceed bottom-up
= Progressing from smaller sub-problems to

#GA: The best choice is made

m Proceed to solve the corresponding sub-

problem

s 2> A greedy strategy proceec
one greedy choice after anot
a problem instance to a smal

11/22/2004

s top-down,
ner, reducing

er one

N

Optimal Substructure

#A problem exhibits optimal substructure
if an optimal solution to the problem
contains optimal solutions to sub-

problems
#Common with DP

#(Cleverness is required to show that a
greedy choice at each step vyields a
globally optimal solution

11/22/2004 7

GA vs. DP: An example

N

#0ptimal substructure is common to GA
and DP

= Could lead to use DP when GA suffices or
to use GA when DP is needed
#Subtleties in the difference can be
illustrated by two variants of a classical
optimization problem: The Knapsack
Problem

11/22/2004 8

N

0-1 Knapsack

#Thief robbing n items from a store
s [tem i is worth v; $ and weights w; pounds
(v; and w; are integers)

#Thief can carry only up to W pounds in
his/her knapsack

#\Which items should the thief take to
maximize the load?

(0-1: Items either can be taken or left)

11/22/2004 9

Fractional Knapsack

#Thief robbing n items from a store

#®Thief can carry only up to W pounds in
his/her knapsack

#Thief can take fractions of items instead
of making binary choices (like in 0-1)

11/22/2004 10

Knapsack Optimal
Substructure

N

#\Variations have optimal substructure

= 0-1: Consider the most valuable load
weighting £ W and remove item j, the
remaining load must be the most valuable
load weighting < W - w; from n-1 items

= Fractional: If we remove a weight w of an
item j, the remaining load must be most
valuable load weighting < W - w from the
n-1 items plus w; —w from item j

11/22/2004 11

N

Solvability Issues

#0-1 Knapsack is not solvable by a GA
#Fractional is

= Compute value per pound: v, / w,

m Greedy strategy: Take the items with the
greatest value per pound first, till knapsack
is full

= S50, by sorting the item by v, / w; the whole
process requires O(n log n)

11/22/2004 12

Steps of the Gre

N

to a series of simple

one sub-problem to
2. Prove that there is a

edy Design

Greedy algorithms are designed according

steps

1. Describe the OP so that a choice leads to

ne solved
ways an optimal

solutions that makes the greedy choice

= The greedy choice is

safe

3. Demonstrate that greedy choice + optimal
solution to sub-problem = optimal solution

to the problem

11/22/2004

13

Examples: Dijkstra Algorithm
for Shortest Paths

#®INPUT:
= A directed graph G=(V,E)
= Source s
= A weight function w:E — R*
*w(u,v) 20, (uv)eE

#Maintain a set S €V whose final
shortest-path weights from s have been
determined

11/22/2004 14

N

Dijkstra Algorithm

Dijkstra(G,w,s)
Initialize-Single-Source(G,s)
S=0

Q=V

while Q # 0 do
u = Extract-Min(Q) // GREEDY CHOICE HERE
S =SU{u}
for each vertex v € Adj[u] do Relax(u,v,w)

11/22/2004 15

N

Building MSTs

We will build a set A of edges
Initially, A has no edges
As we add edges to A, maintain a loop

iInvariant:
Loop invariant: A is a subset of some MST
Add only edges that maintain the invariant

If A is a subset of some MST, an edge (u,v) is
safe for A if and only if AU{(u, v)} is also a
subset of some MST (add only safe edges)

11/22/2004 16

Generic MST algorithm

GENERIC-MST(G,w)
A=0
while A is not a spanning tree do
find an edge (u, v) that is safe for A
A=-A-U-{(u, v)}
return A

11/22/2004 17

Correctness

N

#\We use the loop invariant

#Initialization: The empty set trivially
satisfies the loop invariant

#Maintenance: Since we add only safe
edges, A remains a subset of some MST

#Termination: All edges added to A are
in an MST, so when we stop, A is a
spanning tree that is also an MST

11/22/2004 18

N

Finding a Safe Edge

A cut (5,V\S) of an undirected graph G is a
partition of V

An edge (u,v) crosses the cut (S,V\S) if one

of its endpoints is in S and the other in V\S

A cut respects a set of edges A if no edge in
A crosses the cut

An edge is a light edge crossing the cut if its
weight is the minimum among all those that
cross the cut

11/22/2004 19

Recognizing Safe Edges

#Theorem: Let G=(V,E) be a connected,
undirected graph, and w:E — R.

Let A € E included in some MST of G.
Let (S, V\S) any cut of G that respects A
and let (u,v) be a light edge crossing
(S, \\S).

Then edge (u,v) is safe for A

11/22/2004 20

N

Analysis of GENERIC-MST

A is a forest containing connected
components. Initially, each component is a
single vertex

Any safe edge merges two of these

components into one. Each component is a
tree.

Since an MST has exactly |[V|-1 edges, the
for loop iterates |V]|-1 times. Equivalently,
after adding |V|-1 safe edges, we are down
to just one component

11/22/2004 21

N

Prim’s Algorithm for MST

Builds one tree, so A is always a tree
Starts from an arbitrary “root” r

At each step, find a light edge crossing
cut (V,, V\V,), where V, = vertices
that A is incident on

Add this edge to A

11/22/2004 -

N

Selecting Edges Efficiently

#Use a priority queue Q:
= Each object is a vertex in V\V,
m Key of v is minimum weight of any edge

(u,v), whereu €V,

= The vertex returned by EXTRACT-MIN is v
such that there exists u €V, and (u,v) is a
light edge crossing (V,,V\V,)

s Key of v is oo if v is not adjacent to any
vertices in V,

11/22/2004 23

Prim’s MST

N

The edges of A will form a rooted tree with

root r:
= I iS given as an input to the algorithm, but it can
be any vertex

= Each vertex knows its parent in the tree by the
attribute n[v] = parent of v. n[v] = NILifv=ror
v has no parent

= As algorithm progresses, A = {(v, n[v]) : v €
VN{riQ}

s At termination, V, =V =Q =0,so MSTis A =
{(v, n[v]) : v € V\{r}}

11/22/2004 24

N

Prim, the Algorithm

PRIM(G,w,r)
for each u € V do key[u]=00; n[u]=NIL
key[r]=0; Q=V

while Q+#0 do
u=EXTRACT-MIN(Q) // GREEDY CHOICE!
for each v € Adj[u] do
iIf v e Qand w(u,v) < key[V]
then n[v]=u
key[v]=w(u, V)

11/22/2004 25

Huffman Codes

N

Effective technique for compressing data (20-
90% savings)

Data = sequence of characters

Uses a table of frequencies to build an

optimal way of representing the data as a
binary string

Design a binary character code where each
character is represented by a unique binary
string

= Fixed-length codes vs. variable length codes

11/22/2004 26

Prefix Codes

N

#Prefix codes are codes in which no
codeword is a prefix of some other
codeword

= No loss of generality

#Prefix codes simplify decoding

= The codeword that begins an encoded file
IS unambiguous

11/22/2004 27

N

Constructing a Huffman Code

#The Huffman Code is an optimal prefix
code

#Assumptions

a C is a set of n characters
= Every ¢ € C has a frequency f[c]

= The tree corresponding to the optimal
prefix code is built bottom-up

» Begins with |C| leaves and performs |C|-1
merging operations to create the tree

11/22/2004 28

Huffman, the Algorithm

Huffman(C)

Q=C

fori=1ton-1do
allocate a new node z
left[z] = x = Extract-Min(Q)
right[z] = y = Extract-Min(Q)
flz] = f[x] + fly]
insert(Q,z)

return Extract-Min(Q)

11/22/2004

29

N

Analysis

#Q is implemented as a binary min-heap
#Initialization of Q is O(n)

#The loop contributes O(n log n)
= Executed O(n) times
= Each time heap operations require O(log n)

#Total running time for n characters
O(n log n)

11/22/2004 30

Correctness

#Lemma 1: Let C be an alphabet where
each ¢ € C has frequency f[c]. Let x
and y € C be the characters with the
lowest frequencies. Then there exists
an optimal prefix code for C in which
the codewords for x and y have the
same length and differ only in one bit

11/22/2004 31

N

“Greediness”

L

#Lemma 1 = Merging the two characters
with the lowest frequency is greedy and
leads to an optimal tree

#1It is greedy: Of all possible mergers at
each step, Huffman chooses the one
with minimal cost

#There is a Lemma 2 for showing
optimal substructure

11/22/2004 32

Assignments

Textbook, Chapter 16, pages 370—392

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

11/22/2004 33

N
\J

Happy Thanksgiving!

HAPPF THANKSGIVING.
*:li_f.gf___

11/22/2004

34

	G205Fundamentals of Computer Engineering
	Greedy Algorithms, 1
	Greedy Algorithms, 2
	Greedy Properties
	Greedy-choice Property
	GA vs. DP
	Optimal Substructure
	GA vs. DP: An example
	0-1 Knapsack
	Fractional Knapsack
	Knapsack Optimal Substructure
	Solvability Issues
	Steps of the Greedy Design
	Examples: Dijkstra Algorithm for Shortest Paths
	Dijkstra Algorithm
	Building MSTs
	Generic MST algorithm
	Correctness
	Finding a Safe Edge
	Recognizing Safe Edges
	Analysis of GENERIC-MST
	Prim’s Algorithm for MST
	Selecting Edges Efficiently
	Prim’s MST
	Prim, the Algorithm
	Huffman Codes
	Prefix Codes
	Constructing a Huffman Code
	Huffman, the Algorithm
	Analysis
	Correctness
	“Greediness”
	Assignments
	Happy Thanksgiving!

