
G205
Fundamentals of Computer
Engineering
CLASS 21, Mon. Nov. 22 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm

11/22/2004 2

Greedy Algorithms, 1

Algorithms for Optimization Problems
Sequence of steps
Choices at each step

With Dynamic Programming finding the
best choice can be expensive
Simpler, more efficient algorithms will
do

11/22/2004 3

Greedy Algorithms, 2

A Greedy Algorithm always makes the
choice that looks best at the moment
It makes a locally optimal choice in the
hope that it will lead to a globally
optimal solution
Optimal solutions are greedily achieved
by Gas for many problems (not for all)

11/22/2004 4

Greedy Properties

Properties an OP should exhibit to
admit a greedy solution

1. Greedy-choice property
Global solution via local greedy choices

2. Optimal substructure
Optimal solution is obtained from optimal
solutions to sub-problems

11/22/2004 5

Greedy-choice Property

A globally optimal solutions can be
arrived at by making a locally optimal
greedy choice

The choice that looks best is made
independently of results from sub-
problems

Main difference from Dynamic
Programming

Choices depends on results from sub-probs

11/22/2004 6

GA vs. DP

DP: Solutions proceed bottom-up
Progressing from smaller sub-problems to
larger

GA: The best choice is made
Proceed to solve the corresponding sub-
problem

A greedy strategy proceeds top-down,
one greedy choice after another, reducing
a problem instance to a smaller one

11/22/2004 7

Optimal Substructure

A problem exhibits optimal substructure
if an optimal solution to the problem
contains optimal solutions to sub-
problems
Common with DP
Cleverness is required to show that a
greedy choice at each step yields a
globally optimal solution

11/22/2004 8

GA vs. DP: An example

Optimal substructure is common to GA
and DP

Could lead to use DP when GA suffices or
to use GA when DP is needed

Subtleties in the difference can be
illustrated by two variants of a classical
optimization problem: The Knapsack
Problem

11/22/2004 9

0-1 Knapsack

Thief robbing n items from a store
Item i is worth vi $ and weights wi pounds
(vi and wi are integers)

Thief can carry only up to W pounds in
his/her knapsack
Which items should the thief take to
maximize the load?
(0-1: Items either can be taken or left)

11/22/2004 10

Fractional Knapsack

Thief robbing n items from a store

Thief can carry only up to W pounds in

his/her knapsack

Thief can take fractions of items instead

of making binary choices (like in 0-1)

11/22/2004 11

Knapsack Optimal
Substructure

Variations have optimal substructure
0-1: Consider the most valuable load
weighting ≤ W and remove item j, the
remaining load must be the most valuable
load weighting ≤ W - wj from n-1 items
Fractional: If we remove a weight w of an
item j, the remaining load must be most
valuable load weighting ≤ W - w from the
n-1 items plus wj – w from item j

11/22/2004 12

Solvability Issues

0-1 Knapsack is not solvable by a GA
Fractional is

Compute value per pound: vi / wi

Greedy strategy: Take the items with the
greatest value per pound first, till knapsack
is full
So, by sorting the item by vi / wi the whole
process requires O(n log n)

11/22/2004 13

Steps of the Greedy Design

Greedy algorithms are designed according
to a series of simple steps

1. Describe the OP so that a choice leads to
one sub-problem to be solved

2. Prove that there is always an optimal
solutions that makes the greedy choice

The greedy choice is safe
3. Demonstrate that greedy choice + optimal

solution to sub-problem = optimal solution
to the problem

11/22/2004 14

Examples: Dijkstra Algorithm
for Shortest Paths

INPUT:
A directed graph G=(V,E)
Source s
A weight function w:E → R+

w(u,v) ≥ 0, (u,v) ∊ E

Maintain a set S ⊆V whose final
shortest-path weights from s have been
determined

11/22/2004 15

Dijkstra Algorithm

Dijkstra(G,w,s)
Initialize-Single-Source(G,s)
S = 0
Q = V
while Q ≠ 0 do
u = Extract-Min(Q) // GREEDY CHOICE HERE
S = S ⋃ {u}
for each vertex v ∊ Adj[u] do Relax(u,v,w)

11/22/2004 16

Building MSTs

We will build a set A of edges
Initially, A has no edges
As we add edges to A, maintain a loop
invariant:
Loop invariant: A is a subset of some MST
Add only edges that maintain the invariant
If A is a subset of some MST, an edge (u,v) is
safe for A if and only if A∪{(u, v)} is also a
subset of some MST (add only safe edges)

11/22/2004 17

Generic MST algorithm

GENERIC-MST(G,w)
A = 0
while A is not a spanning tree do

find an edge (u, v) that is safe for A
A = A ∪ {(u, v)}

return A

11/22/2004 18

Correctness

We use the loop invariant
Initialization: The empty set trivially
satisfies the loop invariant
Maintenance: Since we add only safe
edges, A remains a subset of some MST
Termination: All edges added to A are
in an MST, so when we stop, A is a
spanning tree that is also an MST

11/22/2004 19

Finding a Safe Edge

A cut (S,V∖S) of an undirected graph G is a
partition of V
An edge (u,v) crosses the cut (S,V∖S) if one
of its endpoints is in S and the other in V∖S
A cut respects a set of edges A if no edge in
A crosses the cut
An edge is a light edge crossing the cut if its
weight is the minimum among all those that
cross the cut

11/22/2004 20

Recognizing Safe Edges

Theorem: Let G=(V,E) be a connected,
undirected graph, and w:E → R.
Let A ⊆E included in some MST of G.
Let (S, V∖S) any cut of G that respects A
and let (u,v) be a light edge crossing
(S, V∖S).
Then edge (u,v) is safe for A

11/22/2004 21

Analysis of GENERIC-MST

A is a forest containing connected
components. Initially, each component is a
single vertex
Any safe edge merges two of these
components into one. Each component is a
tree.
Since an MST has exactly |V|-1 edges, the
for loop iterates |V|-1 times. Equivalently,
after adding |V|-1 safe edges, we are down
to just one component

11/22/2004 22

Prim’s Algorithm for MST

Builds one tree, so A is always a tree

Starts from an arbitrary “root” r

At each step, find a light edge crossing
cut (VA, V∖VA), where VA = vertices
that A is incident on

Add this edge to A

11/22/2004 23

Selecting Edges Efficiently

Use a priority queue Q:
Each object is a vertex in V∖VA

Key of v is minimum weight of any edge
(u,v), where u ∈VA

The vertex returned by EXTRACT-MIN is v
such that there exists u ∈VA and (u,v) is a
light edge crossing (VA,V∖VA)
Key of v is ∞ if v is not adjacent to any
vertices in VA

11/22/2004 24

Prim’s MST

The edges of A will form a rooted tree with
root r:

r is given as an input to the algorithm, but it can
be any vertex
Each vertex knows its parent in the tree by the
attribute π[v] = parent of v. π[v] = NIL if v = r or
v has no parent
As algorithm progresses, A = {(v, π[v]) : v ∈
V∖{r}∖Q}
At termination, VA = V ⇒ Q = 0, so MST is A =
{(v, π[v]) : v ∈ V∖{r}}

11/22/2004 25

Prim, the Algorithm

PRIM(G,w,r)
for each u ∈ V do key[u]=∞; π[u]=NIL
key[r]=0; Q=V
while Q≠0 do
u=EXTRACT-MIN(Q) // GREEDY CHOICE!
for each v ∈ Adj[u] do

if v ∈ Q and w(u,v) < key[v]
then π[v]=u

key[v]=w(u, v)

11/22/2004 26

Huffman Codes

Effective technique for compressing data (20-
90% savings)
Data = sequence of characters
Uses a table of frequencies to build an
optimal way of representing the data as a
binary string
Design a binary character code where each
character is represented by a unique binary
string

Fixed-length codes vs. variable length codes

11/22/2004 27

Prefix Codes

Prefix codes are codes in which no
codeword is a prefix of some other
codeword

No loss of generality

Prefix codes simplify decoding
The codeword that begins an encoded file
is unambiguous

11/22/2004 28

Constructing a Huffman Code

The Huffman Code is an optimal prefix
code
Assumptions

C is a set of n characters
Every c ∈ C has a frequency f[c]
The tree corresponding to the optimal
prefix code is built bottom-up

Begins with |C| leaves and performs |C|-1
merging operations to create the tree

11/22/2004 29

Huffman, the Algorithm

Huffman(C)
Q = C
for i = 1 to n-1 do
allocate a new node z
left[z] = x = Extract-Min(Q)
right[z] = y = Extract-Min(Q)
f[z] = f[x] + f[y]
insert(Q,z)

return Extract-Min(Q)

11/22/2004 30

Analysis

Q is implemented as a binary min-heap
Initialization of Q is O(n)
The loop contributes O(n log n)

Executed O(n) times
Each time heap operations require O(log n)

Total running time for n characters
O(n log n)

11/22/2004 31

Correctness

Lemma 1: Let C be an alphabet where
each c ∈ C has frequency f[c]. Let x
and y ∈ C be the characters with the
lowest frequencies. Then there exists
an optimal prefix code for C in which
the codewords for x and y have the
same length and differ only in one bit

11/22/2004 32

“Greediness”

Lemma 1 Merging the two characters
with the lowest frequency is greedy and
leads to an optimal tree
It is greedy: Of all possible mergers at
each step, Huffman chooses the one
with minimal cost
There is a Lemma 2 for showing
optimal substructure

11/22/2004 33

Assignments

Textbook, Chapter 16, pages 370—392

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

11/22/2004 34

Happy Thanksgiving!

	G205Fundamentals of Computer Engineering
	Greedy Algorithms, 1
	Greedy Algorithms, 2
	Greedy Properties
	Greedy-choice Property
	GA vs. DP
	Optimal Substructure
	GA vs. DP: An example
	0-1 Knapsack
	Fractional Knapsack
	Knapsack Optimal Substructure
	Solvability Issues
	Steps of the Greedy Design
	Examples: Dijkstra Algorithm for Shortest Paths
	Dijkstra Algorithm
	Building MSTs
	Generic MST algorithm
	Correctness
	Finding a Safe Edge
	Recognizing Safe Edges
	Analysis of GENERIC-MST
	Prim’s Algorithm for MST
	Selecting Edges Efficiently
	Prim’s MST
	Prim, the Algorithm
	Huffman Codes
	Prefix Codes
	Constructing a Huffman Code
	Huffman, the Algorithm
	Analysis
	Correctness
	“Greediness”
	Assignments
	Happy Thanksgiving!

