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Greedy Algorithms, 1

Algorithms for Optimization Problems
Sequence of steps
Choices at each step

With Dynamic Programming finding the 
best choice can be expensive
Simpler, more efficient algorithms will 
do
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Greedy Algorithms, 2

A Greedy Algorithm always makes the 
choice that looks best at the moment
It makes a locally optimal choice in the 
hope that it will lead to a globally 
optimal solution
Optimal solutions are greedily achieved 
by Gas for many problems (not for all)
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Greedy Properties

Properties an OP should exhibit to 
admit a greedy solution

1. Greedy-choice property
Global solution via local greedy choices

2. Optimal substructure
Optimal solution is obtained from optimal 
solutions to sub-problems
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Greedy-choice Property

A globally optimal solutions can be 
arrived at by making a locally optimal 
greedy choice

The choice that looks best is made 
independently of results from sub-
problems

Main difference from Dynamic 
Programming

Choices depends on results from sub-probs
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GA vs. DP

DP: Solutions proceed bottom-up
Progressing from smaller sub-problems to 
larger

GA: The best choice is made
Proceed to solve the corresponding sub-
problem

A greedy strategy proceeds top-down, 
one greedy choice after another, reducing 
a problem instance to a smaller one
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Optimal Substructure

A problem exhibits optimal substructure 
if an optimal solution to the problem 
contains optimal solutions to sub-
problems
Common with DP
Cleverness is required to show that a 
greedy choice at each step yields a 
globally optimal solution
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GA vs. DP: An example

Optimal substructure is common to GA 
and DP

Could lead to use DP when GA suffices or 
to use GA when DP is needed

Subtleties in the difference can be 
illustrated by two variants of a classical 
optimization problem: The Knapsack 
Problem 
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0-1 Knapsack

Thief robbing n items from a store
Item i is worth vi $ and weights wi pounds 
(vi and wi are integers)

Thief can carry only up to W pounds in 
his/her knapsack
Which items should the thief take to 
maximize the load?
(0-1: Items either can be taken or left)
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Fractional Knapsack

Thief robbing n items from a store

Thief can carry only up to W pounds in 

his/her knapsack

Thief can take fractions of items instead 

of making binary choices (like in 0-1)
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Knapsack Optimal 
Substructure

Variations have optimal substructure
0-1: Consider the most valuable load 
weighting ≤ W and remove item j, the 
remaining load must be the most valuable 
load weighting ≤ W - wj from n-1 items
Fractional: If we remove a weight w of an 
item j, the remaining load must be most 
valuable load weighting ≤ W - w from the 
n-1 items plus wj – w from item j
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Solvability Issues

0-1 Knapsack is not solvable by a GA
Fractional is

Compute value per pound: vi / wi

Greedy strategy: Take the items with the 
greatest value per pound first, till knapsack 
is full
So, by sorting the item by vi / wi the whole 
process requires O(n log n)
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Steps of the Greedy Design

Greedy algorithms are designed according 
to a series of simple steps

1. Describe the OP so that a choice leads to 
one sub-problem to be solved

2. Prove that there is always an optimal 
solutions that makes the greedy choice

The greedy choice is safe
3. Demonstrate that greedy choice + optimal 

solution to sub-problem = optimal solution 
to the problem
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Examples: Dijkstra Algorithm 
for Shortest Paths

INPUT:
A directed graph G=(V,E)
Source s
A weight function w:E → R+

w(u,v) ≥ 0, (u,v) ∊ E

Maintain a set S ⊆V whose final 
shortest-path weights from s have been 
determined 
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Dijkstra Algorithm

Dijkstra(G,w,s)
Initialize-Single-Source(G,s)
S = 0
Q = V
while Q ≠ 0 do
u = Extract-Min(Q) // GREEDY CHOICE HERE
S = S ⋃ {u}
for each vertex v ∊ Adj[u] do Relax(u,v,w)
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Building MSTs

We will build a set A of edges
Initially, A has no edges
As we add edges to A, maintain a loop 
invariant:
Loop invariant: A is a subset of some MST
Add only edges that maintain the invariant 
If A is a subset of some MST, an edge (u,v) is 
safe for A if and only if A∪{(u, v)} is also a 
subset of some MST (add only safe edges)
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Generic MST algorithm

GENERIC-MST(G,w)
A = 0 
while A is not a spanning tree do 

find an edge (u, v) that is safe for A
A = A ∪ {(u, v)} 

return A
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Correctness

We use the loop invariant
Initialization: The empty set trivially 
satisfies the loop invariant
Maintenance: Since we add only safe 
edges, A remains a subset of some MST
Termination: All edges added to A are 
in an MST, so when we stop, A is a 
spanning tree that is also an MST
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Finding a Safe Edge

A cut (S,V∖S) of an undirected graph G is a 
partition of V
An edge (u,v) crosses the cut (S,V∖S) if one 
of its endpoints is in S and the other in V∖S
A cut respects a set of edges A if no edge in 
A crosses the cut
An edge is a light edge crossing the cut if its 
weight is the minimum among all those that 
cross the cut



11/22/2004 20

Recognizing Safe Edges

Theorem: Let G=(V,E) be a connected, 
undirected graph, and w:E → R.
Let A ⊆E included in some MST of G. 
Let (S, V∖S) any cut of G that respects A 
and let (u,v) be a light edge crossing 
(S, V∖S).
Then edge (u,v) is safe for A
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Analysis of GENERIC-MST 

A is a forest containing connected 
components. Initially, each component is a 
single vertex
Any safe edge merges two of these 
components into one. Each component is a 
tree.
Since an MST has exactly |V|-1 edges, the 
for loop iterates |V|-1 times. Equivalently, 
after adding |V|-1 safe edges, we are down 
to just one component
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Prim’s Algorithm for MST

Builds one tree, so A is always a tree

Starts from an arbitrary “root” r

At each step, find a light edge crossing 
cut (VA, V∖VA), where VA = vertices 
that A is incident on

Add this edge to A
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Selecting Edges Efficiently

Use a priority queue Q:
Each object is a vertex in V∖VA

Key of v is minimum weight of any edge 
(u,v), where u ∈VA

The vertex returned by EXTRACT-MIN is v 
such that there exists u ∈VA and (u,v) is a 
light edge crossing (VA,V∖VA)
Key of v is ∞ if v is not adjacent to any 
vertices in VA
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Prim’s MST

The edges of A will form a rooted tree with 
root r:

r is given as an input to the algorithm, but it can 
be any vertex
Each vertex knows its parent in the tree by the 
attribute π[v] = parent of v. π[v] = NIL if v = r or 
v has no parent
As algorithm progresses, A = {(v, π[v]) : v ∈ 
V∖{r}∖Q}
At termination, VA = V ⇒ Q = 0, so MST is A = 
{(v, π[v]) : v ∈ V∖{r}}



11/22/2004 25

Prim, the Algorithm

PRIM(G,w,r)
for each u ∈ V do key[u]=∞; π[u]=NIL
key[r]=0; Q=V
while Q≠0 do
u=EXTRACT-MIN(Q) // GREEDY CHOICE!
for each v ∈ Adj[u] do 

if v ∈ Q and w(u,v) < key[v]
then π[v]=u

key[v]=w(u, v)
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Huffman Codes

Effective technique for compressing data (20-
90% savings)
Data = sequence of characters
Uses a table of frequencies to build an 
optimal way of representing the data as a 
binary string
Design a binary character code where each 
character is represented by a unique binary 
string

Fixed-length codes vs. variable length codes
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Prefix Codes

Prefix codes are codes in which no 
codeword is a prefix of some other 
codeword

No loss of generality

Prefix codes simplify decoding
The codeword that begins an encoded file 
is unambiguous
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Constructing a Huffman Code

The Huffman Code is an optimal prefix 
code
Assumptions

C is a set of n characters
Every c ∈ C has a frequency f[c]
The tree corresponding to the optimal 
prefix code is built bottom-up

Begins with |C| leaves and performs |C|-1 
merging operations to create the tree 
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Huffman, the Algorithm

Huffman(C)
Q = C
for i = 1 to n-1 do
allocate a new node z
left[z] = x = Extract-Min(Q)
right[z] = y = Extract-Min(Q)
f[z] = f[x] + f[y]
insert(Q,z)

return Extract-Min(Q)
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Analysis

Q is implemented as a binary min-heap
Initialization of Q is O(n)
The loop contributes O(n log n)

Executed O(n) times
Each time heap operations require O(log n)

Total running time for n characters
O(n log n)
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Correctness

Lemma 1: Let C be an alphabet where 
each c ∈ C has frequency f[c]. Let x 
and y ∈ C be the characters with the 
lowest frequencies. Then there exists 
an optimal prefix code for C in which 
the codewords for x and y  have the 
same length and differ only in one bit
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“Greediness”

Lemma 1 Merging the two characters 
with the lowest frequency is greedy and 
leads to an optimal tree
It is greedy: Of all possible mergers at 
each step, Huffman chooses the one 
with minimal cost
There is a Lemma 2 for showing 
optimal substructure
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Assignments

Textbook, Chapter 16, pages 370—392

Updated information on the class web 

page:

www.ece.neu.edu/courses/eceg205/2004fa
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Happy Thanksgiving!
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