G205
Fundamentals of Computer Engineering
CLASSES 18, Wed. Nov. 10 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm
All-Pairs Shortest Paths

Finding shortest path between all pairs of vertices in a graph

Input:
- \(G=(V,E) \)
- \(w:E \rightarrow R \)

Output: For each pair of vertices \(u \) and \(v \) in \(V \) we want the least weight path from \(u \) to \(v \)
Representation of Input

For APSP graph represents by an adjacency matrix \(W = (w_{ij}) \)

- \(w_{ij} = 0 \) if \(i = j \)
- \(w_{ij} = w(i,j) \) if \(i \neq j \) and \((i,j) \in E\)
- \(w_{ij} = \infty \) if \(i \neq j \) and \((i,j) \notin E\)

Negative-weight edges \(\rightarrow \) OK
Negative-weight cycles \(\rightarrow \) not OK
Representation of Output

- n x n matrix \(D = (d_{ij}) \)
 - \(d_{ij} \) = shortest path weight from \(i \) to \(j \)
 - At termination: \(d_{ij} = d(i,j) \)

- Actual shortest paths: Predecessor matrix \(\Pi = (\pi_{ij}) \)
 - \(\pi_{ij} \) = NIL if \(i=j \) or there is no path from \(i \) to \(j \)
 - \(\pi_{ij} \) = predecessor of \(j \) on some path from \(i \) to \(j \) otherwise
Predecessor Subgraph

- The subgraph induced by the i-th row of the matrix Π is a shortest path tree with root i.

- For each vertex $i \in V$ we define the predecessor subgraph $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$:
 - $V_{\pi,i} = \{ j \in V : \pi_{ij} \neq \text{NIL} \} \cup \{i\}$
 - $E_{\pi,i} = \{ (\pi_{ij}, j) : j \in V_{\pi,i} \backslash \{i\} \}$
Printing APSPs

\textbf{Print-APSP}(\Pi,i,j)\
if i = j then print i\
else if \(\pi_{ij} = \text{NIL}\)\
then print no i-j path\
else Print-APSP(\Pi,i,\pi_{ij})\
print j
Some Notation

- Graph G has $|V|=n$ vertices
- Matrix are denoted in uppercase D,W,L
- Matrix elements: d_{ij}, w_{ij}, l_{ij}
- Iterates of matrices: $D^{(m)} = (d_{ij}^{(m)})$
Shortest Paths and Matrix Multiplication

Dynamic Programming approach:

- Characterize the structure of an optimal solution
- Define its value recursively
- Compute a solution in a bottom-up fashion
- Constructing an optimal solution
Structure of a Shortest Path

- All subpaths of a shortest path are shortest paths.
- Graph represented by adjacency matrix $W = (w_{ij})$.
- Let p be a shortest path with at most m edges.
- If $i = j$ then p has no edges and weight 0.
- If $i \neq j$ then $p = i \sim k \sim j$ with $i \sim k$ with at most $m - 1$ edges and $d(i, j) = d(i, k) + w_{kj}$.
Recursive Solution

$\ell^{(m)}_{ij}$ is the minimum weight of any path from i to j with at most m edges

When $m=0$

- $\ell^{(0)}_{ij} = 0$ if $i = j$
- $\ell^{(0)}_{ij} = \infty$ if $i \neq j$

When $m \geq 1$

- $\ell^{(m)}_{ij} = \min(\ell^{(m-1)}_{ij}, \min_{1 \leq k \leq n} \{\ell^{(m-1)}_{ik} + w_{ki}\}) = \min_{1 \leq k \leq n} \{\ell^{(m-1)}_{ik} + w_{ki}\}$ (since $w_{jj} = 0$ for each j)
The Shortest Path Weight

- No negative-weight cycles \rightarrow shortest paths have at most $n-1$ edges
- A path from i to j for which $d(i,j) < \infty$ is simple and with $\leq n-1$ edges or otherwise it cannot have weight $\leq d(i,j)$
- Actual shortest path weight:
 $$d(i,j) = l^{(n-1)}_{ij} = l^{(n)}_{ij} = l^{(m+1)}_{ij} = \ldots$$
Computing weights bottom-up

- **Input:** $W = (w_{ij})$
- **We compute:** $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$ with $L^{(m)} = (l^{(m)}_{ij}), m=1,2,\ldots,n-1$
- $L^{(n-1)}$ contains the shortest-path weights
- **By definition of $L^{(m)}$ is** $L^{(1)} = W$
- **Basic step:** Extending shortest paths edge by edge: Given $L^{(m-1)}$ and W we obtain $L^{(m)}$
Extending Shortest Paths

Extend-Shortest-Paths(L,W)

for i = 1 to n do
 for j = 1 to n do
 \(l'_{ij} = \infty \)
 for k = 1 to n do
 \(l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj}) \)
 return \(L' \)
Matrix Multiplication Analogy

- Extend-Shortest-Paths costs $O(n^3)$
- It is like multiplying $n \times n$ matrices:
 - $C = A \times B \rightarrow c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$
- Here:
 - $l^{(m-1)} = a$
 - $w = b$
 - $l^{(m)} = c$
 - $\min = +$
 - $+ = \ast$
 - $\infty = 0$
Computing Shortest-Paths Weights

- We extend shortest paths edge by edge
- We compute the sequence:
 - \(L^{(1)} = L^{(0)} \times W = W \)
 - \(L^{(2)} = L^{(1)} \times W = W^2 \)
 - \(L^{(2)} = L^{(2)} \times W = W^3 \)
 - ...
 - \(L^{(n-1)} = L^{(n-2)} \times W = W^{n-1} \)
A Slow APSP algorithm

Slow-APSP(W)

\[L^{(1)} = W \]

for \(m = 2 \) to \(n - 1 \) do

\[L^{(m)} = \text{Extend-Shortest-Paths}(L^{(m-1)}, W) \]

return \(L^{(n-1)} \)

Since \(\text{Extend-Shortest-Paths} \) is \(O(n^3) \)

Slow-APSP(W) is \(O(n^4) \)
Improving the Running Time

Goal: Compute \(L^{(n-1)} \) and not the whole sequence \(L^{(1)}, L^{(2)}, \ldots, L^{(n-1)} \)

Recall: \(L^{(m)} = L^{(n-1)} \) for each \(m \geq n - 1 \)

Repeated Squaring:

- \(L^{(1)} = L^{(0)} \times W = W \)
- \(L^{(2)} = W^2 = W \times W \)
- \(L^{(4)} = W^4 = W^2 \times W^2 \)
- \(\ldots \)
- \(L^{(2\log(n-1))} = W^{2\log(n-1)} = W^{(2\log(n-1)-1)} \times W^{(2\log(n-1)-1)} = L^{(n-1)} \)
A Faster APSP Algorithm

Faster-APSP(W)

$L^{(1)} = W$

$m = 1$

while $m \leq n-1$ do

$L^{(2m)} = \text{Extend-Shortest-Paths}(L^{(m)}, L^{(m)})$

$m = 2m$

return $L^{(m)}$

\textbf{Faster-APSP(W) is } $O(n^3 \log n)$
The Floyd-Warshall Algorithm

Another dynamic programming formulation for All-Pairs Shortest Path

- The structure of a shortest path
 - Uses intermediate vertices of a shortest path
- Recursive solution to the ASPS problem
- Computing the shortest path weights bottom up
Structure of a Shortest Path, 1

- An intermediate vertex of a simple path $p = \langle v_1, v_2, \ldots, v_l \rangle$ is any vertex of p in $\{v_2, \ldots, v_{l-1}\}$

- Consider $G = (V, E)$ with $V = \{1, \ldots, n\}$

- Consider $K = \{1, \ldots, k\}$, for some k

- For each $i, j \in V$ consider paths with vertices only from K

- Let p be a shortest paths among them
Structure of a Shortest Path, 2

Relationship of p and the $i \sim j$ shortest path with vertices from $K-1=\{1, \ldots, k-1\}$

- k is not intermediate in p \rightarrow the int. vertices of p are in $K-1$ \rightarrow shortest path $i \sim j$ with vertices in $K-1$ has also vertices in K
- If k is an intermediate vertex in p then:
 $p=p_1p_2$ where $p_1=i \sim k$ and $p_2=k \sim j$ where p_1 and p_2 have int. vertices in $K-1$
Recursive Solution to ASPS

Let $d^{(k)}_{ij}$ the weight of a $i \sim j$ shortest path with all int. vertices in K

- $k = 0 \rightarrow d^{(0)}_{ij} = w_{ij}$
- $k \geq 1 \rightarrow \min\{d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\}$

Since for any path all intermediate vertices are in V the matrix $D^{(n)} = (d^{(n)}_{ij})$ is such that $d^{(n)}_{ij} = d(i,j)$, for each $i, j \in V$
Computing the Shortest-Paths Weights Bottom Up

Floyd-Warshall(W)

\[D^{(0)} = W \]

for \(k = 1 \) to \(n \) do

for \(i = 1 \) to \(n \) do

for \(j = 1 \) to \(n \) do

\[d^{(k)}_{ij} = \min\{d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\} \]

return \(D^{(n)} \)
Running Time and Space

- The running time is clearly $\Theta(n^3)$ since the min operation and the sum takes $O(1)$ time.
- Space needed is $\Theta(n^3)$: Each of the n $D^{(k)}$ needs $\Theta(n^2)$ space.
- Dropping all superscript leads to a solution that works in $\Theta(n^2)$ space.
C++ implementation of Floyd-Warshall

```cpp
void FW( int n, matrix< int > &fw ) {
    matrix< int > t( n, n ) = fw;
    for( int k = 0; k < n; k++ ) {
        for( int i = 0; i < n; i++ )
            for( int j = 0; j < n; j++ )
                fw[ i ][ j ] = min( t[ i ][ j ],
                                    t[ i ][ k ] + t[ k ][ j ] );
        t = fw;
    }
}
```
Assignments

♦ Textbook, Chapter 25, pages 620—640

♦ Updated information on the class web page:

www.ece.neu.edu/courses/eceg205/2004fa