G205 Fundamentals of Computer Engineering

CLASSES 18, Wed. Nov. 10 2004

Stefano Basagni

Fall 2004

M-W, 1:30pm-3:10pm

All-Pairs Shortest Paths

- Finding shortest path between all pairs of vertices in a graph
- Input:
 - G=(V,E)
 - W:E→ R
- Output: For each pair of vertices u and v in V we want the least weight path from u to v

Representation of Input

◆For APSP graph represents by an adjacency matrix W = (w_{ii})

$$w_{ii} = 0$$

$$if i = j$$

$$\mathbf{w}_{ij} = \mathbf{w}(i,j)$$

if
$$i \neq j$$
 and $(i,j) \in E$

$$\mathbf{w}_{ij} = \infty$$

if
$$i \neq j$$
 and $(i,j) \notin E$

- ♦ Negative-weight edges → OK
- ♦ Negative-weight cycles → not OK

Representation of Output

- \bullet n x n matrix D = (d_{ij})
 - d_{ij} = shortest path weight from i to j
 - At termination: d_{ij} = d(i,j)
- Actual shortest paths: Predecessor matrix Π = (π_{ij})
 - π_{ij} = NIL if i=j or there is no path from i to j
 - π_{ij} = predecessor of j on some path from i to j otherwise

Predecessor Subgraph

- ◆The subgraph induced by the i-th row of the matrix ∏ is a shortest path tree with root i
- For each vertex $i \in V$ we define the predecessor subgraph $G_{\pi,i}=(V_{\pi,i},E_{\pi,i})$:
 - $V_{\pi,i} = \{j \in V : \pi_{ij} \neq NIL \} \cup \{i\}$
 - $E_{\pi,i} = \{(\pi_{ij},j): j \in V_{\pi,i} \setminus \{i\}\}$

Printing APSPs

```
Print-APSP(\Pi,i,j)

if i = j then print i

else if \pi_{ij} = NIL

then print no i-j path

else Print-APSP(\Pi,i, \pi_{ij})

print j
```

Some Notation

- Graph G has |V|=n vertices
- Matrix are denoted in uppercase D,W,L
- Matrix elements: d_{ij}, w_{ij}, l_{ij}
- ◆Iterates of matrices: D^(m) = (d^(m)_{ij})

Shortest Paths and Matrix Multiplication

- Dynamic Programming approach:
 - Characterize the structure of an optimal solution
 - Define its value recursively
 - Compute a solution in a bottom-up fashion
 - Constructing an optimal solution

Structure of a Shortest Path

- All subpaths of a shortest paths are shortest paths
- Graph represented by adjacency matrix W = (w_{ij})
- Let p be a shortest path with at most m edges
- ◆ If i=j then p has no edges and weight 0
- ♦ If $i \neq j$ then $p = i \sim k \rightarrow j$ with $i \sim k$ with at most m-1 edges and $d(i,j) = d(i,k) + w_{kj}$

Recursive Solution

- I^(m)_{ij} is the minimum weight of any path from i to j with at most m edges
- ♦ When m=0
 - $I^{(0)}_{ii} = 0$ if i = j
- ♦ When m≥1
 - $I^{(m)}_{ij} = \min(I^{(m-1)}_{ij}, \min_{1 \le k \le n} \{I^{(m-1)}_{ik} + w_{ki}\}) = \min_{1 \le k \le n} \{I^{(m-1)}_{ik} + w_{ki}\}$ (since $w_{ij} = 0$ for each j)

The Shortest Path Weight

- No negative-weight cycles → shortest paths have at most n-1 edges
- ♦ A path from i to j for which $d(i,j) < \infty$ is simple and with $\leq n-1$ edges or otherwise it cannot have weight $\leq d(i,j)$
- Actual shortest path weight:

$$d(i,j) = I^{(n-1)}_{ij} = I^{(n)}_{ij} = I^{(m+1)}_{ij} = ...$$

Computing weights bottom-up

- \bullet Input: W = (W_{ij})
- We compute: $L^{(1)}$, $L^{(2)}$, ..., $L^{(n-1)}$ with $L^{(m)}=(I^{(m)}_{ij})$, m=1,2,...,n-1
- ◆L⁽ⁿ⁻¹⁾ contains the shortest-path weights
- ♦ By definition of $L^{(m)}$ is $L^{(1)} = W$
- ◆Basic step: Extending shortest paths edge by edge: Given L^(m-1) and W we obtain L^(m)

Extending Shortest Paths

```
Extend-Shortest-Paths(L,W)
 for i = 1 to n do
   for j = 1 to n do
     I'_{ii} = \infty
     for k = 1 to n do
       I'_{ij} = \min(I'_{ij}, I_{ik} + w_{kj})
 return L'
```

Matrix Multiplication Analogy

- Extend-Shortest-Paths costs O(n³)
- It is like multiplying n x n matrices:
- \bullet C=A x B \rightarrow c_{ij} = SUM_(k=1,n) $a_{ik} b_{kj}$
- Here:
 - | (m-1) = a
 - w = b
 - | (m) = C
 - min = +
 - + = *
 - $\infty = 0$

Computing Shortest-Paths Weights

- We extend shortest paths edge by edge
- We compute the sequence:
 - $L^{(1)} = L^{(0)} \times W = W$
 - $L^{(2)} = L^{(1)} \times W = W^2$
 - $L^{(2)} = L^{(2)} \times W = W^3$
 - ---
 - $L^{(n-1)} = L^{(n-2)} \times W = W^{n-1}$

A Slow APSP algorithm

```
Slow-APSP(W)
L^{(1)} = W
for m = 2 to n - 1 do
L^{(m)} = Extend-Shortest-Paths(L^{(m-1)},W)
return \ L^{(n-1)}
```

◆Since Extend-Shortest-Paths is O(n³) Slow-APSP(W) is O(n⁴)

Improving the Running Time

- ◆ Goal: Compute L⁽ⁿ⁻¹⁾ and not the whole sequence L⁽¹⁾, L⁽²⁾, ..., L⁽ⁿ⁻¹⁾
- ♦ Recall: $L^{(m)} = L^{(n-1)}$ for each $m \ge n-1$
- Repeated Squaring:
 - $L^{(1)} = L^{(0)} \times W = W$
 - $L^{(2)} = W^2 = W \times W$
 - $L^{(4)} = W^4 = W^2 \times W^2$
 - _ ···

A Faster APSP Algorithm

```
Faster-APSP(W)
  L^{(1)} = W
 m = 1
 while m \le n-1 do
    L<sup>(2m)</sup> = Extend-Shortest-Paths(L<sup>(m)</sup>, L<sup>(m)</sup>)
   m = 2m
  return L<sup>(m)</sup>
◆ Faster-APSP(W) is O(n³ log n)
```

The Floyd-Warshall Algorithm

- Another dynamic programming formulation for All-Pairs Shortest Path
 - The structure of a shortest path
 - Uses intermediate vertices of a shortest path
 - Recursive solution to the ASPS problem
 - Computing the shortest path weights bottom up

Structure of a Shortest Path, 1

- An intermediate vertex of a simple path $p = \langle v_1, v_2, ..., v_l \rangle$ is any vertex of p in $\{v_2, ..., v_{l-1}\}$
- \bullet Consider G=(V,E) with V={1,...,n}
- ◆Consider K={1,...,k}, for some k
- ◆For each i, j ∈ V consider paths with vertices only from K
- Let p be a shortest paths among them

Structure of a Shortest Path, 2

- Relationship of p and the i~j shortest path with vertices from K-1={1,...,k-1}
 - k is not intermediate in p → the int.
 vertices of p are in K-1 → shortest path i~j
 with vertices in K-1 has also vertices in K
 - If k is an intermediate vertex in p then: $p=p_1p_2$ where $p_1=i \sim k$ and $p_2=k \sim j$ where p_1 and p_2 have int. vertices in K-1

Recursive Solution to ASPS

- Let d^(k)_{ij} the weight of a i[¬]j shortest path with all int. vertices in K
 - $k=0 \rightarrow d^{(0)}_{ij} = W_{ij}$
 - $k \ge 1 \rightarrow \min\{d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\}$
- Since for any path all intermediate vertices are in V the matrix $D^{(n)}=(d^{(n)}_{ij})$ is such that $d^{(n)}_{ij}=d(i,j)$, for each $i,j\in V$

Computing the Shortest-Paths Weights Bottom Up

```
Floyd-Warshall(W)
  D^{(0)} = W
 for k = 1 to n do
   for i = 1 to n do
     for j = 1 to n do
        d^{(k)}_{ii} = \min\{d^{(k-1)}_{ii}, d^{(k-1)}_{ik} + d^{(k-1)}_{ki}\}
  return D<sup>(n)</sup>
```

Running Time and Space

- The running time is clearly ⊕(n³) since the min operation and the sum takes O(1) time
- Space needed is $\Theta(n^3)$: Each of the n $D^{(k)}$ needs $\Theta(n^2)$ space
- \bullet Dropping all superscript leads to a solution that works in $\Theta(n^2)$ space

11/10/2004 24

C++ implementation of Floyd-Warshall

```
void FW( int n, matrix< int > &fw ) {
 matrix < int > t(n, n) = fw;
 for( int k = 0; k < n; k++ ) {
  for( int i = 0; i < n; i++)
    for( int j = 0; j < n; j++)
     fw[i][j] = min(t[i][j],
                       t[i][k]+t[k][j]);
  t = fw;
```

Assignments

- Textbook, Chapter 25, pages 620—640
- Updated information on the class web page:

www.ece.neu.edu/courses/eceg205/2004fa