G205

Fundamentals of Computer

 EngineeringCLASSES 18, Wed. Nov. 102004 Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm

All-Pairs Shortest Paths

-Finding shortest path between all pairs of vertices in a graph
-Input:

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- w: E \rightarrow R
*Output: For each pair of vertices u and v in V we want the least weight path from u to v

Representation of Input

-For APSP graph represents by an adjacency matrix $\mathrm{W}=\left(\mathrm{w}_{\mathrm{ij}}\right)$ - $\mathrm{w}_{\mathrm{ij}}=0$ if $\mathrm{i}=\mathrm{j}$

- $\mathrm{w}_{\mathrm{ij}}=\mathrm{w}(\mathrm{i}, \mathrm{j})$
if $i \neq j$ and $(i, j) \in E$
- $\mathrm{w}_{\mathrm{ij}}=\infty$
if $\mathrm{i} \neq \mathrm{j}$ and $(\mathrm{i}, \mathrm{j}) \notin \mathrm{E}$
Negative-weight edges \rightarrow OK
\diamond Negative-weight cycles \rightarrow not OK

Representation of Output

- $n \times n$ matrix $D=\left(d_{i j}\right)$
- $\mathrm{d}_{\mathrm{ij}}=$ shortest path weight from i to j
- At termination: $\mathrm{d}_{\mathrm{ij}}=\mathrm{d}(\mathrm{i}, \mathrm{j})$

Actual shortest paths: Predecessor matrix Π
$=\left(\pi_{\mathrm{ij}}\right)$

- $\pi_{\mathrm{ij}}=$ NIL if $\mathrm{i}=\mathrm{j}$ or there is no path from i to j
- $\pi_{\mathrm{ij}}=$ predecessor of j on some path from i to j otherwise

Predecessor Subgraph

-The subgraph induced by the i-th row of the matrix Π is a shortest path tree with root i
\diamond For each vertex $i \in V$ we define the predecessor subgraph $\mathrm{G}_{\pi, \mathrm{i}}=\left(\mathrm{V}_{\pi, \mathrm{i}} \mathrm{E}_{\pi, \mathrm{j}}\right)$:

- $\mathrm{V}_{\pi, \mathrm{i}}=\left\{\mathrm{j} \in \mathrm{V}: \pi_{\mathrm{ij}} \neq \mathrm{NIL}\right\} \cup\{i\}$
- $\mathrm{E}_{\pi, \mathrm{i}}=\left\{\left(\pi_{\mathrm{ij}, \mathrm{j}}\right): \mathrm{j} \in \mathrm{V}_{\pi, \mathrm{i}} \backslash\{i\}\right\}$

Printing APSPs

Print-APSP($\Pi, i, j)$
if $\mathrm{i}=\mathrm{j}$ then print i
else if $\pi_{i j}=$ NIL
then print no i-j path
else Print-APSP $\left(\Pi, \mathrm{i}, \pi_{\mathrm{ij}}\right)$
print j

Some Notation

*Graph G has $|\mathrm{V}|=\mathrm{n}$ vertices
*Matrix are denoted in uppercase D,W,L
Matrix elements: $\mathrm{d}_{\mathrm{ij},} \mathrm{w}_{\mathrm{ij},} \mathrm{l}_{\mathrm{ij}}$

- Iterates of matrices: $\mathrm{D}^{(\mathrm{m})}=\left(\mathrm{d}(\mathrm{m})_{\mathrm{ij}}\right)$

Shortest Paths and Matrix Multiplication

Dynamic Programming approach:

- Characterize the structure of an optimal solution
- Define its value recursively
- Compute a solution in a bottom-up fashion
- Constructing an optimal solution

Structure of a Shortest Path

\diamond All subpaths of a shortest paths are shortest paths

* Graph represented by adjacency matrix W = $\left(W_{i j}\right)$
\diamond Let p be a shortest path with at most m edges
- If $\mathrm{i}=\mathrm{j}$ then p has no edges and weight 0
\diamond If $\mathrm{i} \neq \mathrm{j}$ then $\mathrm{p}=\mathrm{i} \sim \mathrm{k} \rightarrow \mathrm{j}$ with $\mathrm{i} \sim \mathrm{k}$ with at most m 1 edges and $d(i, j)=d(i, k)+w_{k j}$

Recursive Solution

$\mid(m)_{\mathrm{ij}}$ is the minimum weight of any path from i to j with at most m edges
When $\mathrm{m}=0$

- $\left({ }^{(0)}\right)_{i \mathrm{j}}=0 \quad$ if $\mathrm{i}=\mathrm{j}$
- $\left.{ }^{(0)}\right)_{\mathrm{ij}}=\infty \quad$ if $\mathrm{i} \neq \mathrm{j}$
- When $\mathrm{m} \geq 1$
- $\left.I^{(m)_{i j}}=\min \left(I(m-1)_{\mathrm{ij}} \min _{1 \leq \mathrm{k} \leq n}\left\{I^{(m-1}\right)_{\mathrm{ik}}+\mathrm{w}_{\mathrm{ki}}\right\}\right)=$ $\left.\left.\min _{1 \leq \mathrm{k} \leq n}\left\{\left.\right|^{(m-1}\right)_{\mathrm{ik}}+\mathrm{w}_{\mathrm{ki}}\right\}\right)$ (since $\mathrm{w}_{\mathrm{jj}}=0$ for each j)

The Shortest Path Weight

*No negative-weight cycles \rightarrow shortest paths have at most $n-1$ edges
A path from i to j for which $\mathrm{d}(\mathrm{i}, \mathrm{j})<\infty$ is simple and with $\leq n-1$ edges or otherwise it cannot have weight $\leq d(\mathrm{i}, \mathrm{j})$
*Actual shortest path weight:

$$
\left.d(i, j)=l^{(n-1}\right)_{i j}=\left.\right|^{(n)_{i j}}=\mid(m+1)_{i j}=\ldots
$$

Computing weights bottom-up

Input: W = $\left(\mathrm{w}_{\mathrm{ij}}\right)$
\diamond We compute: $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$ with $L^{(m)}=\left(I(m)_{i j}\right), m=1,2, \ldots, n-1$

* ${ }^{(n-1)}$ contains the shortest-path weights

By definition of $L^{(m)}$ is $L^{(1)}=W$
-Basic step: Extending shortest paths edge by edge: Given $L^{(m-1)}$ and W we obtain L(m)

Extending Shortest Paths

Extend-Shortest-Paths(L,W)

for $\mathrm{i}=1$ to n do

$$
\text { for } j=1 \text { to } n \text { do }
$$

$$
I_{i j}^{\prime}=\infty
$$

$$
\text { for } k=1 \text { to } n \text { do }
$$

$$
I_{i j}^{\prime}=\min \left(I_{i j}^{\prime} l_{\mathrm{ik}}+\mathrm{w}_{\mathrm{kj}}\right)
$$

return L'

Matrix Multiplication Analogy

\diamond Extend-Shortest-Paths costs $\mathrm{O}\left(\mathrm{n}^{3}\right)$
\diamond It is like multiplying $n \times n$ matrices:
$\diamond C=A \times B \rightarrow c_{i j}=\operatorname{SUM}_{(k=1, n)} a_{i k} b_{k j}$
\& Here:

- ${ }^{(m-1)}=a$
- $w=b$
- ${ }^{(m)}=\mathrm{c}$
- min $=+$
$\square+=*$
- $\infty=0$

Computing Shortest-Paths Weights

\diamond We extend shortest paths edge by edge -We compute the sequence:

- $L^{(1)}=L^{(0)} \times W=W$
- $L^{(2)}=L^{(1)} \times W=W^{2}$
- $L^{(2)}=L^{(2)} \times W=W^{3}$
- $L^{(n-1)}=L^{(n-2)} \times W=W^{n-1}$

A Slow APSP algorithm

Slow-APSP(W)
$L^{(1)}=W$
for $m=2$ to $n-1$ do
$\mathrm{L}^{(\mathrm{m})}=$ Extend-Shortest-Paths $\left(\mathrm{L}^{(\mathrm{m}-1)}, \mathrm{W}\right)$
return $\mathrm{L}^{(n-1)}$

- Since Extend-Shortest-Paths is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ Slow-APSP (W) is $\mathrm{O}\left(\mathrm{n}^{4}\right)$

Improving the Running Time

\diamond Goal: Compute $L^{(n-1)}$ and not the whole sequence $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$
\diamond Recall: $L^{(m)}=L^{(n-1)}$ for each $m \geq n-1$
\diamond Repeated Squaring:

- $L^{(1)}=L^{(0)} \times W=W$
- $\mathrm{L}^{(2)}=\mathrm{W}^{2}=\mathrm{W} \times \mathrm{W}$
- $L^{(4)}=W^{4}=W^{2} \times W^{2}$
- $\mathrm{L}^{(2 \log (n-1))}=\mathrm{W}^{(2 \log (n-1))}=\mathrm{W}^{\left(2^{\log (n-1)-1}\right)} \times \mathrm{W}^{(2 \log (n-1)-1)}=\mathrm{L}^{(n-1)}$

A Faster APSP Algorithm

Faster-APSP(W)

$$
\begin{aligned}
& \mathrm{L}^{(1)}=\mathrm{W} \\
& \mathrm{~m}=1
\end{aligned}
$$

while $m \leq n-1$ do
$L^{(2 m)}=$ Extend-Shortest-Paths $\left(L^{(m)}, L^{(m)}\right)$
$m=2 m$
return $L^{(m)}$
\diamond Faster-APSP(W) is $O\left(n^{3} \log n\right)$

The Floyd-Warshall Algorithm

Another dynamic programming formulation for All-Pairs Shortest Path

- The structure of a shortest path
- Uses intermediate vertices of a shortest path
- Recursive solution to the ASPS problem
- Computing the shortest path weights bottom up

Structure of a Shortest Path, 1

*An intermediate vertex of a simple path $\mathrm{p}=\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{1}\right\rangle$ is any vertex of p in $\left\{\mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{l}-1}\right\}$

- Consider $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with $\mathrm{V}=\{1, \ldots, \mathrm{n}\}$
- Consider $\mathrm{K}=\{1, \ldots, \mathrm{k}\}$, for some k
\Rightarrow For each $\mathrm{i}, \mathrm{j} \in \mathrm{V}$ consider paths with vertices only from K
Let p be a shortest paths among them

Structure of a Shortest Path, 2

\diamond Relationship of p and the $i \sim j$ shortest path with vertices from $K-1=\{1, \ldots, k-1\}$

- k is not intermediate in $p \rightarrow$ the int. vertices of p are in $\mathrm{K}-1 \rightarrow$ shortest path $\mathrm{i} \sim j$ with vertices in K -1 has also vertices in K
- If k is an intermediate vertex in p then:

$$
p=p_{1} p_{2} \text { where } p_{1}=i \sim k \text { and } p_{2}=k \sim j
$$

where p_{1} and p_{2} have int. vertices in $K-1$

Recursive Solution to ASPS

Let $\mathrm{d}^{(\mathrm{k}} \mathrm{ij}_{\mathrm{ij}}$ the weight of a $\mathrm{i} \sim \mathrm{j}$ shortest path with all int. vertices in K

- $\mathrm{k}=0 \rightarrow \mathrm{~d}\left(0_{\mathrm{ij}}=\mathrm{w}_{\mathrm{ij}}\right.$
- $\left.k \geq 1 \rightarrow \min \left\{d^{(k-1)}\right)_{\mathrm{ij}} \mathrm{d}^{(k-1)_{i k}}+\mathrm{d}^{(k-1)}{ }_{\mathrm{kj}}\right\}$
-Since for any path all intermediate vertices are in V the matrix $D^{(n)}=\left(d^{(n)}{ }_{i j}\right)$ is such that $d^{(n)}{ }_{i j}=d(i, j)$, for each $i, j \in V$

Computing the Shortest-Paths Weights Bottom Up

Floyd-Warshall(W)
$D^{(0)}=W$
for $\mathrm{k}=1$ to n do
for $\mathrm{i}=1$ to n do
for $\mathrm{j}=1$ to n do $d^{(k)}{ }_{i j}=\min \left\{d^{(k-1)_{i j}} d^{(k-1)}{ }_{i \mathrm{ik}}+d^{(k-1)}{ }_{\mathrm{kj}}\right\}$ return $D^{(n)}$

Running Time and Space

The running time is clearly $\Theta\left(n^{3}\right)$ since the min operation and the sum takes O(1) time
Space needed is $\Theta\left(n^{3}\right)$: Each of the n $D^{(k)}$ needs $\Theta\left(n^{2}\right)$ space
Dropping all superscript leads to a solution that works in $\Theta\left(\mathrm{n}^{2}\right)$ space

C++ implementation of FloydWarshall

void FW(int n, matrix < int > \&fw) \{
matrix < int $>\mathrm{t}(\mathrm{n}, \mathrm{n})=\mathrm{fw}$;
for (int $k=0 ; k<n ; k++$) \{
for (int i $=0 ; i<n ; i++$)
for (int j = 0; j < n; j++) $\mathrm{fw}[\mathrm{i}][\mathrm{j}]=\min (\mathrm{t}[\mathrm{i}][\mathrm{j}]$,
$\mathrm{t}[\mathrm{i}][\mathrm{k}]+\mathrm{t}[\mathrm{k}][\mathrm{j}]) ;$
$t=f w ;$
\}
$\}$

Assignments

- Textbook, Chapter 25, pages 620-640
- Updated information on the class web
page:
www.ece.neu.edu/courses/eceg205/2004fa

