G205
Fundamentals of Computer Engineering
CLASS 17, Mon. Nov. 8 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm
Shortest Paths

How to find the shortest route between two points in a map

INPUT:

- A directed graph $G=(V,E)$
- A weight function $w:E \rightarrow \mathbb{R}$

Weight of path $p=<v_0, v_1, \ldots, v_k>$ is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
Weight of a Shortest Path

- Shortest-path weight from u to v
 - \(d(u,v) = \min \{ w(p) : p = u \rightarrow v \} \)
 if there is a path from u to v
 - \(d(u,v) = \infty \) otherwise

- Shortest-path from u to v
 - Any path \(p = u \rightarrow v \) with weight
 \(w(p) = d(u,v) \)
Single-Source Shortest Paths

Output

\[\text{For } v \in V \text{ the output is } d[v] = d(s,v) \]

- Initially \(d[v] = \infty \)
- Reduces as algorithm progresses, but always \(d[v] \geq d(s,v) \)
- Call \(d[v] \) a \textbf{shortest path estimate}

\[\pi[v] = \text{the predecessor of } v \text{ in a path to } s \]

- If no predecessor, \(\pi[v] = \text{NIL} \)
- \(\pi \) induces a tree—\textbf{Shortest-path tree}
Initialization

All shortest-paths algorithms start with

```
Init-Single-Source(V, s)
for each v ∈ V do
    d[v] = ∞
    π[v] = NIL
    d[s] = 0
```
Relaxation

Can we improve the shortest-path estimate for v going through u and taking (u,v)?

```
Relax(u,v,w)
if d[v] > d[u] + w(u,v)
    then d[v] = d[u] + w(u,v)
    π[v] = u
```
Scheme for Single-Source Shortest-Paths Algorithms

- Start by calling `Init-Single-Source`
- Relax edges
- Different algorithms differ on
 - Number of relaxations
 - Order of relaxations
- `Bellman-Ford`
- `Dijkstra`
The Bellman-Ford Algorithm

- Allows negative-weight edges
- Computes $d[v]$ and $\pi[v]$ for each $v \in V$
- Returns \textbf{true} if no negative-weight cycle are reachable from s, \textbf{false} otherwise
The Algorithm

Bellman-Ford(V,E,w,s)
Init-Single-Source(V,s)
for i=1 to |V|-1 do
 for each edge (u,v)∈E do Relax(u,v,w)
for each edge (u,v)∈E do
 if d[v]>d[u]+w(u,v) then return false
return true
The Analysis

- **Straightforward**
 - Init-Single-Source takes $\Theta(V)$
 - Relax takes constant time
 - First two nested for take $O(VE)$
 - Second for take $O(V)$

- **Bellman-Ford** takes $O(VE)$ to produce all the shortest paths from a given source to all other nodes
BF Correctness, 1

- No negative cycles
- Lemma: After the $|V|-1$ iterations of the first for of Bellman-Ford, for each v reachable from s is $d[v] = d(s, v)$.

Proof: Via the path-relaxation property.

Let $p = <v_0, v_1, ..., v_k>$ be any acyclic shortest path from $s = v_0$ to $v = v_k$. Path p has at most $|V|-1$ edges: $k \leq |V|-1$.
BF Correctness, 2

Each of the $|V|-1$ iterations of the first for of Bellman-Ford relaxed all $|E|$ edges. Among the edges relaxed in the i-th iteration, $i=1,2,...,k$, (v_{i-1},v_i). By the path-relaxation property is then $d[v]=d[v_k]=d(s,v_k)=d(s,v)$.
Corollary: For each \(v \in V \) there is a path from \(s \) to \(v \) if and only if \(d[v] < \infty \).

Proof: \(\Rightarrow \) Previous lemma.
\(\Leftarrow \) Let \(d[v] < \infty \) and let us assume that \(v \) is not reachable from \(s \). In this case is \(d(s,v) = \infty \). But then \(d[v] = \infty \) (no-path property) which contradicts \(d[v] < \infty \).
BF Correctness, 4

Theorem: Let Bellman-Ford run on a weighted, connected, directed graph $G=(V,E)$ with weight function $w:E \rightarrow \mathbb{R}$ and source s. If G contains no negative-weight cycles reachable from s, then the algorithm returns true, $d[v] = d(s,v)$ for all $v \in V$ and the predecessor subgraph G_π is a shortest-paths tree rooted at s. If G contains a negative-weight cycle reachable from s then the algorithm returns false.
Shortest Paths on Directed Acyclic Graphs (DAGs)

- A DAG is a direct graph with no cycles.
- DAGs can be topologically sorted:
 - Linear ordering of DAG vertices so that if \((u,v) \in E\) then \(u\) appears before \(v\) in the ordering.
- Application of DFS.
DAG Topological Sort

Topological-Sort(G)
call DFS(G) \rightarrow finish times f[v]
insert finished v at the front of a list
return the linked list of vertices

Clearly $\Theta(V+E)$
Finding Shortest Paths

Dag-Shortest-Paths(G,w,s)
Topological-Sort(G)
Initialize-Single-Source(G,s)
for each u taken in topologically sorted order
do
 for each v \in Adj[u] do
 Relax(u,v,w)
DAG Shortest Paths, Analysis

- Topological-Sort is $\Theta(V+E)$
- Initialize-Single-Source is $\Theta(V)$
- Total of $|E|$ iterations for the inner for
- Total time for finding d and π is thus $\Theta(V+E)$
- Linear in the size of the adjacency list representation of the graph
Assignments

- Textbook, Chapter 24, pages 588—595
- Updated information on the class web page:
 www.ece.neu.edu/courses/eceg205/2004fa