
G205
Fundamentals of Computer
Engineering
CLASS 15, Mon. Nov. 1 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm

11/01/2004 2

A Problem on Graphs

A town has a set of houses and a set of
roads
A road connects 2 and only 2 houses
A road connecting houses u and v has a
repair cost w(u,v)
Goal: Repair enough (and no more) roads
such that

1. everyone stays connected: can reach every
house from all other houses, and

2. total repair cost is minimum

11/01/2004 3

Model as a Graph

Undirected graph G = (V, E)
Weight w(u,v) on each edge (u,v) ∈ E
Find T ⊆ E such that

1. T connects all vertices (T is a spanning tree)

2. w(T) = SUM((u,v)∈T)w(u,v) is minimized

A spanning whose weight is minimum over
all spanning trees is called a minimum(-
weight) spanning tree, or MST

11/01/2004 4

Growing a MST

Some properties of a MST

It has |V| - 1 = n – 1 edges

It has no cycle

It might not be unique

11/01/2004 5

Building Up a Solution

We will build a set A of edges
Initially, A has no edges
As we add edges to A, maintain a loop
invariant:
Loop invariant: A is a subset of some MST
Add only edges that maintain the invariant
If A is a subset of some MST, an edge (u,v) is
safe for A if and only if A∪{(u, v)} is also a
subset of some MST (add only safe edges)

11/01/2004 6

Generic MST algorithm

GENERIC-MST(G,w)
A = 0
while A is not a spanning tree do

find an edge (u, v) that is safe for A
A = A ∪ {(u, v)}

return A

11/01/2004 7

Correctness

We use the loop invariant
Initialization: The empty set trivially
satisfies the loop invariant
Maintenance: Since we add only safe
edges, A remains a subset of some MST
Termination: All edges added to A are
in an MST, so when we stop, A is a
spanning tree that is also an MST

11/01/2004 8

Finding a Safe Edge

A cut (S,V∖S) of an undirected graph G is a
partition of V
An edge (u,v) crosses the cut (S,V∖S) if one
of its endpoints is in S and the other in V∖S
A cut respects a set of edges A if no edge in
A crosses the cut
An edge is a light edge crossing the cut if its
weight is the minimum among all those that
cross the cut

11/01/2004 9

Recognizing Safe Edges

Theorem: Let G=(V,E) be a connected,
undirected graph, and w:E → R.
Let A ⊆E included in some MST of G.
Let (S, V∖S) any cut of G that respects A
and let (u,v) be a light edge crossing
(S, V∖S).
Then edge (u,v) is safe for A

11/01/2004 10

Analysis of GENERIC-MST

A is a forest containing connected
components. Initially, each component is a
single vertex
Any safe edge merges two of these
components into one. Each component is a
tree.
Since an MST has exactly |V|-1 edges, the
for loop iterates |V|-1 times. Equivalently,
after adding |V|-1 safe edges, we are down
to just one component

11/01/2004 11

Kruskal’s Algorithm for MST

G = (V, E) is a connected, undirected,
weighted graph. w : E → R

Starts with each vertex being its own component
Repeatedly merges two components into one by
choosing the light edge that connects them (i.e.,
the light edge crossing the cut between them)
Scans the set of edges in monotonically increasing
order by weight
Uses a disjoint-set data structure to determine
whether an edge connects vertices in different
components

11/01/2004 12

The Algorithm

KRUSKAL(V,E,w)
A=0
for each vertex v ∈ V do MAKE-SET(v)
sort E into non-decreasing order by weight w
for each (u,v) taken from the sorted list do

if FIND-SET(u) ≠ FIND-SET(v)
then A=A∪{(u, v)}

UNION(u,v)
return A

11/01/2004 13

Analysis of Kruscal, 1

Running time of Kruskal depends on
implementation of disjoint-set data
structure
Main operations:

Initialize A: O(1)
First for loop: |V| MAKE-SETs
Sort E: O(E log E)
Second for loop: O(E) FIND-SETs and
UNIONs

11/01/2004 14

Analysis of Kruskal, 2

The |V| MAKE-SETs and the
FIND/UNIONs takes O(V+E α(V))
α(V) grows very slowly
G connected |E|≥|V|-1 disjoint-
set operations take O(E α(V))
α(|V|)=O(log V)=O(log E) Kruskal is
in O(E log E) which is O(E log V)

11/01/2004 15

Prim’s Algorithm for MST

Builds one tree, so A is always a tree

Starts from an arbitrary “root” r

At each step, find a light edge crossing
cut (VA, V∖VA), where VA = vertices
that A is incident on

Add this edge to A

11/01/2004 16

Selecting Edges Efficiently

Use a priority queue Q:
Each object is a vertex in V∖VA

Key of v is minimum weight of any edge
(u,v), where u ∈VA

The vertex returned by EXTRACT-MIN is v
such that there exists u ∈VA and (u,v) is a
light edge crossing (VA,V∖VA)
Key of v is ∞ if v is not adjacent to any
vertices in VA

11/01/2004 17

Prim’s MST

The edges of A will form a rooted tree with
root r:

r is given as an input to the algorithm, but it can
be any vertex
Each vertex knows its parent in the tree by the
attribute π[v] = parent of v. π[v] = NIL if v = r or
v has no parent
As algorithm progresses, A = {(v, π[v]) : v ∈
V∖{r}∖Q}
At termination, VA = V ⇒ Q = 0, so MST is A =
{(v, π[v]) : v ∈ V∖{r}}

11/01/2004 18

Prim, the Algorithm

PRIM(G,w,r)
for each u ∈ V do key[u]=∞; π[u]=NIL
key[r]=0; Q=V
while Q≠0 do
u=EXTRACT-MIN(Q)
for each v ∈ Adj[u] do

if v ∈ Q and w(u,v) < key[v]
then π[v]=u

key[v]=w(u, v)

11/01/2004 19

Assignments

Textbook, Chapter 23, pages 561—574

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

	G205Fundamentals of Computer Engineering
	A Problem on Graphs
	Model as a Graph
	Growing a MST
	Building Up a Solution
	Generic MST algorithm
	Correctness
	Finding a Safe Edge
	Recognizing Safe Edges
	Analysis of GENERIC-MST
	Kruskal’s Algorithm for MST
	The Algorithm
	Analysis of Kruscal, 1
	Analysis of Kruskal, 2
	Prim’s Algorithm for MST
	Selecting Edges Efficiently
	Prim’s MST
	Prim, the Algorithm
	Assignments

