
G205
Fundamentals of Computer 
Engineering
CLASS 15, Mon. Nov. 1 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm



11/01/2004 2

A Problem on Graphs

A town has a set of houses and a set of 
roads
A road connects 2 and only 2 houses
A road connecting houses u and v has a 
repair cost w(u,v)
Goal: Repair enough (and no more) roads 
such that

1. everyone stays connected: can reach every 
house from all other houses, and

2. total repair cost is minimum
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Model as a Graph

Undirected graph G = (V, E)
Weight w(u,v) on each edge (u,v) ∈ E
Find T ⊆ E such that

1. T connects all vertices (T is a spanning tree)

2. w(T) = SUM((u,v)∈T)w(u,v) is minimized

A spanning  whose weight is minimum over 
all spanning trees is called a minimum(-
weight) spanning tree, or MST
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Growing a MST

Some properties of a MST

It has |V| - 1 = n – 1 edges

It has no cycle

It might not be unique
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Building Up a Solution

We will build a set A of edges
Initially, A has no edges
As we add edges to A, maintain a loop 
invariant:
Loop invariant: A is a subset of some MST
Add only edges that maintain the invariant 
If A is a subset of some MST, an edge (u,v) is 
safe for A if and only if A∪{(u, v)} is also a 
subset of some MST (add only safe edges)
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Generic MST algorithm

GENERIC-MST(G,w)
A = 0 
while A is not a spanning tree do 

find an edge (u, v) that is safe for A
A = A ∪ {(u, v)} 

return A
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Correctness

We use the loop invariant
Initialization: The empty set trivially 
satisfies the loop invariant
Maintenance: Since we add only safe 
edges, A remains a subset of some MST
Termination: All edges added to A are 
in an MST, so when we stop, A is a 
spanning tree that is also an MST
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Finding a Safe Edge

A cut (S,V∖S) of an undirected graph G is a 
partition of V
An edge (u,v) crosses the cut (S,V∖S) if one 
of its endpoints is in S and the other in V∖S
A cut respects a set of edges A if no edge in 
A crosses the cut
An edge is a light edge crossing the cut if its 
weight is the minimum among all those that 
cross the cut
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Recognizing Safe Edges

Theorem: Let G=(V,E) be a connected, 
undirected graph, and w:E → R.
Let A ⊆E included in some MST of G. 
Let (S, V∖S) any cut of G that respects A 
and let (u,v) be a light edge crossing 
(S, V∖S).
Then edge (u,v) is safe for A
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Analysis of GENERIC-MST 

A is a forest containing connected 
components. Initially, each component is a 
single vertex
Any safe edge merges two of these 
components into one. Each component is a 
tree.
Since an MST has exactly |V|-1 edges, the 
for loop iterates |V|-1 times. Equivalently, 
after adding |V|-1 safe edges, we are down 
to just one component
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Kruskal’s Algorithm for MST

G = (V, E) is a connected, undirected, 
weighted graph. w : E → R

Starts with each vertex being its own component
Repeatedly merges two components into one by 
choosing the light edge that connects them (i.e., 
the light edge crossing the cut between them)
Scans the set of edges in monotonically increasing 
order by weight
Uses a disjoint-set data structure to determine 
whether an edge connects vertices in different 
components
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The Algorithm

KRUSKAL(V,E,w)
A=0 
for each vertex v ∈ V do MAKE-SET(v)
sort E into non-decreasing order by weight w
for each (u,v) taken from the sorted list do 

if FIND-SET(u) ≠ FIND-SET(v)
then A=A∪{(u, v)} 

UNION(u,v)
return A



11/01/2004 13

Analysis of Kruscal, 1

Running time of Kruskal depends on 
implementation of disjoint-set data 
structure
Main operations:

Initialize A: O(1)
First for loop: |V| MAKE-SETs
Sort E: O(E log E)
Second for loop: O(E) FIND-SETs and
UNIONs
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Analysis of Kruskal, 2

The |V| MAKE-SETs and the 
FIND/UNIONs takes O(V+E α(V))
α(V) grows very slowly 
G connected |E|≥|V|-1 disjoint-
set operations take O(E α(V))
α(|V|)=O(log V)=O(log E) Kruskal is 
in O(E log E) which is O(E log V)
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Prim’s Algorithm for MST

Builds one tree, so A is always a tree

Starts from an arbitrary “root” r

At each step, find a light edge crossing 
cut (VA, V∖VA), where VA = vertices 
that A is incident on

Add this edge to A
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Selecting Edges Efficiently

Use a priority queue Q:
Each object is a vertex in V∖VA

Key of v is minimum weight of any edge 
(u,v), where u ∈VA

The vertex returned by EXTRACT-MIN is v 
such that there exists u ∈VA and (u,v) is a 
light edge crossing (VA,V∖VA)
Key of v is ∞ if v is not adjacent to any 
vertices in VA



11/01/2004 17

Prim’s MST

The edges of A will form a rooted tree with 
root r:

r is given as an input to the algorithm, but it can 
be any vertex
Each vertex knows its parent in the tree by the 
attribute π[v] = parent of v. π[v] = NIL if v = r or 
v has no parent
As algorithm progresses, A = {(v, π[v]) : v ∈ 
V∖{r}∖Q}
At termination, VA = V ⇒ Q = 0, so MST is A = 
{(v, π[v]) : v ∈ V∖{r}}
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Prim, the Algorithm

PRIM(G,w,r)
for each u ∈ V do key[u]=∞; π[u]=NIL
key[r]=0; Q=V
while Q≠0 do
u=EXTRACT-MIN(Q)
for each v ∈ Adj[u] do 

if v ∈ Q and w(u,v) < key[v]
then π[v]=u

key[v]=w(u, v)
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Assignments

Textbook, Chapter 23, pages 561—574

Updated information on the class web 

page:

www.ece.neu.edu/courses/eceg205/2004fa
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