Shortest Paths

How to find the shortest route between two points in a map

INPUT:
- A directed graph G=(V,E)
- A weight function w:E → R

Weight of path p=<v_0, v_1, ..., v_k> is
w(p)=\sum_{i=1}^{k} w(v_{i-1}, v_i)
Weight of a Shortest Path

Shortest-path weight from u to v
- \(d(u,v) = \min \{ w(p) : p = u \rightarrow v \} \)
 if there is a path from u to v
- \(d(u,v) = \infty \) otherwise

Shortest-path from u to v
- Any path \(p = u \rightarrow v \) with weight
 \(w(p) = d(u,v) \)
The Weight Function

- Can think of weights as something that:
 - Accumulate linearly along the path
 - We want to minimize

- Examples:
 - Times, costs, penalties, losses ...

- Generalization of Breadth-First Search to weighted graphs
Variants, 1

- **Single-Source Shortest Paths**
 - Find a shortest path from a given source vertex s to every other vertices v

- **Single-Destination Shortest Paths**
 - Find a shortest path to a given destination vertex t from every other vertices v
Variants, 2

- **Single-Pair Shortest Paths**
 - Find a shortest path from a given vertex u and a given vertex v

- **All-Pair Shortest-Paths**
 - Find a shortest path from vertex u to vertex v for every pair of vertices u and v
Negative-weight Edges

- Ok, as long as no negative cycles are reachable from the source.

- Negative cycle → we keep going around it obtaining $w(s \rightarrow v) = -\infty$ for each v in the cycle.

- Some algorithm do not tolerate negative-weight edges at all.
Optimal Substructure

Lemma: Every sub-path of a shortest path is a shortest path

Proof: Assume \(p = u \rightarrow v \) is a shortest path such that \(p = u \rightarrow x \rightarrow y \rightarrow v \) and \(w(p) = w(u \rightarrow x) + w(x \rightarrow y) + w(y \rightarrow v) \).

Now suppose that \(x \rightarrow y \) is a path shorter than \(x \rightarrow y \). Hence, \(w(x \rightarrow y) < w(x \rightarrow y) \). But then \(p' = u \rightarrow x \rightarrow y \rightarrow v \) is shorter than \(p \). A contradiction.
Cycles

- Shortest paths cannot contain cycles
 - Negative-weight cycles are already ruled out
 - Positive-weight \Rightarrow we can obtain a shortest path by omitting the cycle
 - Zero-weight. No reason to use them (this we will assume)
For $v \in V$ the output is $d[v] = d(s,v)$
- Initially $d[v] = \infty$
- Reduces as algorithm progresses, but always $d[v] \geq d(s,v)$
- Call $d[v]$ a **shortest path estimate**

$p[v] =$ the predecessor of v in a path to s
- If no predecessor, $p[v] = \text{NIL}$
- p induces a tree—**Shortest-path tree**
Initialization

All shortest-paths algorithms start with

Init-Single-Source(V,s)
for each $v \in V$ do
 $d[v] = \infty$
 $\pi[v] = \text{NIL}$
 $d[s] = 0$
Relaxation

Can we improve the shortest-path estimated for v going through u and taking (u,v)?

\[\text{Relax}(u,v,w) \]
if \(d[v] > d[u] + w(u,v) \)
then \(d[v] = d[u] + w(u,v) \)
\(\pi[v] = u \)
Scheme for Single-Source Shortest-Paths Algorithms

- Start by calling Init-Single-Source
- Relax edges
- Different algorithms differ on
 - Number of relaxations
 - Order of relaxations
- Bellman-Ford
- Dijkstra
Shortest-Path Properties

Based on calling Init-Single-Source once and Relax zero or more times

Lemma: Triangle inequality

For all \((u,v) \in E\): \(d(s,v) \leq d(s,u) + w(u,v)\)

Proof: Weight of shortest path \(s \rightarrow v\) is \(\leq\) weight of any path \(s \rightarrow v\). Path \(s \rightarrow u \rightarrow v\) is a path from \(s\) to \(v\), and if \(s \rightarrow u\) is a shortest path its weigh is \(d(s,u) + w(u,v)\)
Upper-bound Property

Lemma: Always have $d[v] \geq \delta(s,v)$ for all v. When $d[v] = \delta(s,v)$ it never changes.

Proof: Initially true. Suppose v such that $d[v] < \delta(s,v)$, and wlog v is the first vertex for which this happens. Let u the vertex that updates $d[v]$ to $d[u] + w(u,v)$. So ...
Upper-bound Property, 2

\[d[v] < d(s,v) \]
\[\leq d(s,u) + w(u,v) \text{ (triangle inequality)} \]
\[\leq d[u] + w(u,v) \text{ (v is first violation)} \]
\[\Rightarrow d[v] < d[u] + w(u,v) \text{ which contradicts } d[v] = d[u] + w(u,v). \]

Once \(d[v] \) reaches \(d(s,v) \), it never goes lower. It never goes up, since relaxations only lower estimates.
Other properties

- **No-path property**
 - If $d(s,v) = \infty$ then $d[v] = \infty$ always

- **Convergence property**
 - If $s \rightarrow u \rightarrow v$ is a shortest path, $d[u] = d'(s,u)$ and we call Relax(u,v,w) then $d[v] = d(s,v)$ afterward

- **Path-relaxation property**
 - Let $p = <v_0, v_1, ... v_k>$ be a shortest path from $s=v_0$ to $v=v_k$. If we relax in order $(v_0,v_1), (v_1,v_2), ..., (v_{k-1},v_k)$ then $d[v_k] = d(s,v)$
Assignments

- Textbook, Chapter 24, pages 580—592
- Updated information on the class web page:

 www.ece.neu.edu/courses/eceg205/2004fa