Aims of the Class

- Basics of data structures and algorithms
- Resource (e.g., time, space) analysis
- Algorithm correctness
- Implementation issues (C++)
 (This is not a C++ class!)
Algorithms

An ALGORITHM is a well defined computational procedure

- INPUT VALUE \rightarrow OUTPUT VALUES
- Set of COMPUTATIONAL STEPS to transform the INPUT into the OUTPUT
- Tool for solving a COMPUTATIONAL PROBLEM
Computational Problems

A Computational Problem (CP) is a:

- General term description of an INPUT/OUTPUT relationship
- The way from INPUT to OUTPUT (algorithm) is NOT described
Example: SORTING, 1

As a computational problem:

- **INPUT:** a sequence of \(n \) numbers \(<a_1, a_2, \ldots, a_n>\)
- **OUTPUT:** A permutation (reordering) \(<a'_1, a'_2, \ldots, a'_n>\) on the input sequence such that:
 \[a'_1 \leq a'_2 \leq \ldots \leq a'_n \]
EXAMPLE: Sorting, 2

- Input sequence: <31, 41, 59, 26, 41, 58>
- Output sequence: <26, 31, 41, 41, 58, 59>
- The input sequence is called an INSTANCE of the sorting problem
- One CP \rightarrow many (sorting) algorithms
 - NEXT QUESTION ...
The BEST algorithm for a CP

 Depends on:

- Size of the instance (how many numbers to be sorted?)
- “Format” of the instance (are the numbers sorted already?)
- Restriction on the input values
- Where are the values stored
- The metrics of interest (best wrt to what?)
Algorithm EFFICIENCY, 1

- How FAST is an algorithm? How much SPACE does it need?

- Complexity of an algorithm, as a function of the SIZE OF THE INPUT
 - Time complexity often more important of space complexity
 - Other complexity metrics (messages)
Algorithm EFFICIENCY, 2

Grossly speaking: An algorithm is EFFICIENT when its time complexity is at most "polynomial"
- \(t(n): \log^k n, \sqrt{n}, n, n^k, n^k \log^k n \)

Exponential time complexities are considered "bad"
- \(t(n): a^{k(n)}, n^n, n! \)
Algorithm Correctness

- An algorithm is said to be CORRECT if for every input it HALTS with the expected, correct output
 - → Termination
 - → Correctness of output
- A correct algorithm is said to solve a computational problem
Data Structures

- Facilitate access and modifications
- Way to store and organize data, i.e., input, output and intermediate values
- Impact on algorithm \textit{efficiency}
From Algorithms to Programs

- Pseudo-code highlights algorithms' properties/requirements
- One algorithm, many programming languages
- C++, object orientation + Standard Template library = very close to pseudo-code
- Executable and understandable
A Working Example: Sorting n Numbers

- **INPUT**: a sequence of n numbers
 \[<a_1, a_2, \ldots, a_n>\]

- **OUTPUT**: A permutation (reordering)
 \[<a'_1, a'_2, \ldots, a'_n>\] on the input sequence such that:
 \[a'_1 \leq a'_2 \leq \ldots \leq a'_n\]

- Data structure for the input: ARRAY A with n elements

- Sorting is said to be IN PLACE if numbers are rearranged in A
Insertion Sort, 1

- Efficient for small numbers of values
- Sort a hand of playing cards
- Input is an array $A[1...n]$
- Sorting in place
Insertion Sort, 2

Insertion-Sort(A,n)
 for j = 2 to n do
 key = A[j]
 i = j - 1
 while (i > 0) and (A[i] > key) do
 A[i + 1] = A[i]
 i = i - 1
 A[i + 1] = key
Insertion Sort, 3

a) \([5,2,4,6,1,3]\)
b) \([2,5,4,6,1,3]\)
c) \([2,4,5,6,1,3]\)
d) \([2,4,5,6,1,3]\)
e) \([1,2,4,5,6,3]\)
f) \([1,2,3,4,5,6]\)
Insertion Sort: Correctness, 1

Via loop invariants

(*) At the start of each iteration of the for loop, the sub-array $A[1 \ldots j-1]$ is sorted

We have to show three things:

Initialization: (*) is true before the loop

Maintenance: If (*) is true before an iteration of the loop, it is true before the next one

Termination: (*) at the end helps to show the algorithm correctness
Insertion Sort: Correctness, 2

- **Init:** $j = 2$, $A[1] = 5$ is sorted!
- **Maint:** The outer loop seeks a position for $A[j]$ in $A[1...j-1]$ and inserts it in the right position. If $A[1...j-1]$ is sorted, $A[1...j]$ is sorted too (cmp. induction)
- **Termin:** The loop terminates when $j = n+1$. In this case $A[1...n]$ is sorted and hence the algorithm is correct
Analysis of Algorithms, 1

- Analyzing = predicting the resources (here time) that the algorithm require
- Model of computation: one-processor RAM = Random Access Machine
 - Instruction are executed serially
 - No concurrent operations
- Usual constant time operations: arithmetic, data movements and control
Analysis of Algorithms, 2

RUNNING TIME as a function of the SIZE OF THE INPUT

- Input size:
 - Number of items in the input (e.g., sorting)
 - Total number of bits needed to represent the input in the model (e.g., primality)

- Running time: number of primitive operations or “steps” executed
Insertion Sort: Analysis

Insertion-Sort(A,n)

<table>
<thead>
<tr>
<th></th>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>for j = 2 to n do</td>
<td>c1</td>
<td>n</td>
</tr>
<tr>
<td>key = A[j]</td>
<td>c2</td>
<td>n-1</td>
</tr>
<tr>
<td>i = j-1</td>
<td>c3</td>
<td>n-1</td>
</tr>
<tr>
<td>while (i>0) and (A[i]>key) do</td>
<td>c4</td>
<td>(a)</td>
</tr>
<tr>
<td>A[i+1] = A[i]</td>
<td>c5</td>
<td>(b)</td>
</tr>
<tr>
<td>i = i–1</td>
<td>c6</td>
<td>(c)</td>
</tr>
<tr>
<td>A[i + 1] = key</td>
<td>c7</td>
<td>n-1</td>
</tr>
</tbody>
</table>
Insertion Sort: Running time,1

- $t_j =$ number of times the while is executed in the j-th for loop
- $(a) =$ SUM($j=2,n$) t_j
- $(b) =$ $(c) =$ SUM($j=2,n$) (t_j-1)
- $T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4(a) + c_5(b) + c_6(c) + c_7(n-1)$
Insertion Sort: Running time,2

- Dependency on the while = dependency on the input
 - BEST CASE: while never executed = array is already sorted (tj=1)
 - $T(n) = Cn + D$, LINEAR FUNCTION OF n
 - WORST CASE: while always executed = arrays sorted reverse
 - $T(n) = Cn^2 + D$, QUADRATIC FUNCTION OF n
Order of Growth

- Actual cost of single operations can be ignored since it depends on the specific computer, on the language, etc.
- Another abstraction: Order of growth. We consider the leading term of a formula, with no constants
- Expressed by the “theta notation”
Analysis, again

- Worst case analysis
 - Time complexity in the worst case = longest running time for any input of size n
 - It is an UPPER BOUND on the running time for any input
 - INSERTION SORT is $O(n^2)$, i.e., quadratic

- Average case analysis
 - A distribution of the input is considered
Assignments

- Textbook, till page 27
- Homework 1: Due in class 9/15/2004
- Updated information on the class web page:

 www.ece.neu.edu/courses/eceg205/2004fa