
G205
Fundamentals of Computer
Engineering
CLASS 1, Wed. Sept. 8 2004
Stefano Basagni
Fall 2004
M-W, 1:30pm-3:10pm

9/8/2004 2

Aims of the Class

Basics of data structures and algorithms

Resource (e.g., time, space) analysis

Algorithm correctness

Implementation issues (C++)
(This is not a C++ class!)

9/8/2004 3

Algorithms

An ALGORITHM is a well defined
computational procedure

INPUT VALUE OUTPUT VALUES

Set of COMPUTATIONAL STEPS to
transform the INPUT into the OUTPUT

Tool for solving a COMPUTATIONAL
PROBLEM

9/8/2004 4

Computational Problems

A Computational Problem (CP) is a:
General term description of an
INPUT/OUTPUT relationship

The way from INPUT to OUTPUT
(algorithm) is NOT described

9/8/2004 5

Example: SORTING, 1

As a computational problem:
INPUT: a sequence of n numbers
<a1, a2, …, an>
OUTPUT: A permutation (reordering)
<a’1, a’2, …, a’n> on the input sequence such

that:
a’1 <= a’2 <= … <= a’n

9/8/2004 6

EXAMPLE: Sorting, 2

Input sequence: <31,41,59,26,41,58>
Output sequence: <26,31,41,41,58,59>
The input sequence is called an
INSTANCE of the sorting problem

One CP many (sorting) algorithms
NEXT QUESTION …

9/8/2004 7

The BEST algorithm for a CP

Depends on:
Size of the instance (how many numbers to
be sorted?)
“Format” of the instance (are the numbers
sorted already?)
Restriction on the input values
Where are the values stored
The metrics of interest (best wrt to what?)

9/8/2004 8

Algorithm EFFICIENCY, 1

How FAST is an algorithm? How much
SPACE does it need?
Complexity of an algorithm, as a
function of the SIZE OF THE IPUT

Time complexity often more important of
space complexity
Other complexity metrics (messages)

9/8/2004 9

Algorithm EFFICIENCY, 2

Grossly speaking: An algorithm is EFFICIENT
when its time complexity is at most
“polynomial”

t(n): logk n, sqrt(n), n, nk, nk logk n

Exponential time complexities are considered
“bad”

t(n): ak(n), nn, n!

9/8/2004 10

Algorithm Correctness

An algorithm is said to be CORRECT if
for every input it HALTS with the
expected, correct output

Termination
Correctness of output

A correct algorithm it is said to SOLVE
a computational problem

9/8/2004 11

Data Structures

Facilitate access and modifications

Way to store and organize data, i.e.,

input, output and intermediate values

Impact on algorithm efficiency

9/8/2004 12

From Algorithms to Programs

Pseudo-code highlights algorithms
properties/requirements
One algorithm, many programming

languages
C++, object orientation + Standard

Template library = very close to
pseudo-code
Executable and understandable

9/8/2004 13

A Working Example:
Sorting n Numbers

INPUT: a sequence of n numbers
<a1, a2, …, an>

OUTPUT: A permutation (reordering)
<a’1, a’2, …, a’n> on the input sequence such

that: a’1 <= a’2 <= … <= a’n

Data structure for the input: ARRAY A
with n elements
Sorting is said to be IN PLACE if

numbers are rearranged in A

9/8/2004 14

Insertion Sort, 1

Efficient for small numbers of values

Sort a hand of playing cards

Input is an array A[1…n]

Sorting in place

9/8/2004 15

Insertion Sort, 2

Insertion-Sort(A,n)
for j = 2 to n do

key = A[j]
i = j – 1
while (i > 0) and (A[i] > key) do

A[i + 1] = A[i]
i = i – 1

A[i + 1] = key

9/8/2004 16

Insertion Sort, 3

a) [5,2,4,6,1,3]
b) [2,5,4,6,1,3]
c) [2,4,5,6,1,3]
d) [2,4,5,6,1,3]
e) [1,2,4,5,6,3]
f) [1,2,3,4,5,6]

9/8/2004 17

Insertion Sort: Correctness, 1

Via loop invariants
(*) At the start of each iteration of the for loop,
the sub-array A[1 … j-1] is sorted

We have to show three things:
Initialization: (*) is true before the loop
Maintenance: If (*) is true before an iteration of
the loop, it is true before the next one
Termination: (*) at the end helps to show the
algorithm correctness

9/8/2004 18

Insertion Sort: Correctness, 2

Init: j = 2, A[1] = 5 is sorted!
Maint: The outer loop seek a position

for A[j] in A[1…j-1] and insert it in the
right position. If A[1…j-1] is sorted,
A[1…j] is sorted too (cmp. induction)
Termin: The loop terminates when

j=n+1. In this case A[1…n] is sorted
and hence the algorithm is correct

9/8/2004 19

Analysis of Algorithms, 1

Analyzing = predicting the resources
(here time) that the algorithm require
Model of computation: one-processor

RAM = Random Access Machine
Instruction are executed serially
No concurrent operations

Usual constant time operations:
arithmetic, data movements and control

9/8/2004 20

Analysis of Algorithms, 2

RUNNING TIME as a function of the
SIZE OF THE INPUT

Input size:
Number of items in the input (e.g., sorting)
Total number of bits needed to represent the
input in the model (e.g., primality)

Running time: number of primitive
operations or “steps” executed

9/8/2004 21

Insertion Sort: Analysis

Insertion-Sort(A,n) cost times
for j = 2 to n do c1 n
key = A[j] c2 n-1
i = j–1 c3 n-1

while (i>0) and (A[i]>key) do c4 (a)
A[i+1] = A[i] c5 (b)
i = i–1 c6 (c)

A[i + 1] = key c7 n-1

9/8/2004 22

Insertion Sort: Running time,1

tj = number of times the while is
executed in the j-th for loop

(a) = SUM(j=2,n) tj

(b) = (c) = SUM(j=2,n) (tj–1)

T(n) = c1*n+c2*(n-1)+c3*(n-1)+
c4*(a)+c5*(b)+c6*(c)+c7*(n-1)

9/8/2004 23

Insertion Sort: Running time,2

Dependency on the while =
dependency on the input

BEST CASE: while never executed = array
is already sorted (tj=1)

T(n) = Cn+D, LINEAR FUNCTION OF n

WORST CASE: while always executed =
arrays sorted reverse

T(n)= Cn2+D, QUADRATIC FUNCTION OF n

9/8/2004 24

Order of Growth

Actual cost of single operations can be
ignored since it depends on the specific
computer, on the language, etc.
Another abstraction: Order of growth.

We consider the leading term of a
formula, with no constants
Expressed by the “theta notation”

9/8/2004 25

Analysis, again

Worst case analysis
Time complexity in the worst case =
longest running time for any input of size n
It is an UPPER BOUND on the running time
for any input
INSERTION SORT is O(n2), i.e., quadratic

Average case analysis
A distribution of the input is considered

9/8/2004 26

Assignments

Textbook, till page 27

Homework 1: Due in class 9/15/2004

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

	G205Fundamentals of Computer Engineering
	Aims of the Class
	Algorithms
	Computational Problems
	Example: SORTING, 1
	EXAMPLE: Sorting, 2
	The BEST algorithm for a CP
	Algorithm EFFICIENCY, 1
	Algorithm EFFICIENCY, 2
	Algorithm Correctness
	Data Structures
	From Algorithms to Programs
	A Working Example:Sorting n Numbers
	Insertion Sort, 1
	Insertion Sort, 2
	Insertion Sort, 3
	Insertion Sort: Correctness, 1
	Insertion Sort: Correctness, 2
	Analysis of Algorithms, 1
	Analysis of Algorithms, 2
	Insertion Sort: Analysis
	Insertion Sort: Running time,1
	Insertion Sort: Running time,2
	Order of Growth
	Analysis, again
	Assignments

