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Aims of the Class

Basics of data structures and algorithms

Resource (e.g., time, space) analysis

Algorithm correctness

Implementation issues (C++)
(This is not a C++ class!)
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Algorithms

An ALGORITHM is a well defined 
computational procedure

INPUT VALUE OUTPUT VALUES

Set of COMPUTATIONAL STEPS to 
transform the INPUT into the OUTPUT

Tool for solving a COMPUTATIONAL 
PROBLEM
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Computational Problems

A Computational Problem (CP) is a:
General term description of an 
INPUT/OUTPUT relationship

The way from INPUT to OUTPUT 
(algorithm) is NOT described



9/8/2004 5

Example: SORTING, 1

As a computational problem:
INPUT: a sequence of n numbers        
<a1, a2, …, an>
OUTPUT: A permutation (reordering)
<a’1, a’2, …, a’n> on the input sequence such 

that:
a’1 <= a’2 <= … <= a’n
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EXAMPLE: Sorting, 2

Input sequence: <31,41,59,26,41,58>
Output sequence: <26,31,41,41,58,59>
The input sequence is called an 
INSTANCE of the sorting problem

One CP many (sorting) algorithms
NEXT QUESTION …
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The BEST algorithm for a CP

Depends on: 
Size of the instance (how many numbers to 
be sorted?)
“Format” of the instance (are the numbers 
sorted already?)
Restriction on the input values
Where are the values stored
The metrics of interest (best wrt to what?)
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Algorithm EFFICIENCY, 1

How FAST is an algorithm? How much 
SPACE does it need?
Complexity of an algorithm, as a 
function of the SIZE OF THE IPUT

Time complexity often more important of 
space complexity 
Other complexity metrics (messages)
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Algorithm EFFICIENCY, 2

Grossly speaking: An algorithm is EFFICIENT 
when its time complexity is at most 
“polynomial”

t(n): logk n, sqrt(n), n, nk, nk logk n

Exponential time complexities are considered 
“bad”

t(n): ak(n), nn, n!
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Algorithm Correctness

An algorithm is said to be CORRECT if 
for every input it HALTS with the 
expected, correct output

Termination 
Correctness of output

A correct algorithm it is said to SOLVE 
a computational problem
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Data Structures

Facilitate access and modifications

Way to store and organize data, i.e., 

input, output and intermediate values

Impact on algorithm efficiency
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From Algorithms to Programs

Pseudo-code highlights algorithms 
properties/requirements
One algorithm, many programming 

languages 
C++, object orientation + Standard 

Template library = very close to 
pseudo-code
Executable and understandable 
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A Working Example:
Sorting n Numbers

INPUT: a sequence of n numbers 
<a1, a2, …, an>

OUTPUT: A permutation (reordering)
<a’1, a’2, …, a’n> on the input sequence such 

that: a’1 <= a’2 <= … <= a’n

Data structure for the input: ARRAY A 
with n elements
Sorting is said to be IN PLACE if 

numbers are rearranged in A  
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Insertion Sort, 1

Efficient for small numbers of values

Sort a hand of playing cards

Input is an array A[1…n]

Sorting in place
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Insertion Sort, 2

Insertion-Sort(A,n)
for j = 2 to n do

key = A[j]
i = j – 1
while ( i > 0 ) and ( A[i] > key ) do

A[ i + 1 ] = A[ i ]
i = i – 1

A[ i + 1 ] = key
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Insertion Sort, 3

a) [5,2,4,6,1,3]
b) [2,5,4,6,1,3]
c) [2,4,5,6,1,3]
d) [2,4,5,6,1,3]
e) [1,2,4,5,6,3]
f) [1,2,3,4,5,6]
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Insertion Sort: Correctness, 1

Via loop invariants
(*) At the start of each iteration of the for loop, 
the sub-array A[1 … j-1] is sorted

We have to show three things:
Initialization: (*) is true before the loop
Maintenance: If (*) is true before an iteration of 
the loop, it is true before the next one
Termination: (*) at the end helps to show the 
algorithm correctness
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Insertion Sort: Correctness, 2

Init: j = 2, A[1] = 5 is sorted!
Maint: The outer loop seek a position 

for A[j] in A[1…j-1] and insert it in the 
right position. If A[1…j-1] is sorted, 
A[1…j] is sorted too (cmp. induction)
Termin: The loop terminates when 

j=n+1. In this case A[1…n] is sorted 
and hence the algorithm is correct
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Analysis of Algorithms, 1

Analyzing = predicting the resources 
(here time) that the algorithm require
Model of computation: one-processor 

RAM = Random Access Machine
Instruction are executed serially
No concurrent operations

Usual constant time operations: 
arithmetic, data movements and control 
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Analysis of Algorithms, 2

RUNNING TIME as a function of the 
SIZE OF THE INPUT

Input size:
Number of items in the input (e.g., sorting)
Total number of bits needed to represent the 
input in the model (e.g., primality)

Running time: number of primitive 
operations or “steps” executed
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Insertion Sort: Analysis

Insertion-Sort(A,n)                     cost       times
for j = 2 to n do c1            n
key = A[j] c2          n-1
i = j–1 c3          n-1

while (i>0) and (A[i]>key) do c4          (a)
A[i+1] = A[i] c5          (b)
i = i–1 c6          (c)

A[ i + 1 ] = key c7         n-1
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Insertion Sort: Running time,1

tj = number of times the while is 
executed in the j-th for loop

(a) = SUM(j=2,n) tj

(b) = (c) = SUM(j=2,n) (tj–1)

T(n) = c1*n+c2*(n-1)+c3*(n-1)+ 
c4*(a)+c5*(b)+c6*(c)+c7*(n-1)
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Insertion Sort: Running time,2

Dependency on the while = 
dependency on the input

BEST CASE: while never executed = array 
is already sorted (tj=1)

T(n) = Cn+D, LINEAR FUNCTION OF n

WORST CASE: while always executed = 
arrays sorted reverse 

T(n)= Cn2+D, QUADRATIC FUNCTION OF n
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Order of Growth

Actual cost of single operations can be 
ignored since it depends on the specific 
computer, on the language, etc.
Another abstraction: Order of growth. 

We consider the leading term of a 
formula, with no constants
Expressed by the “theta notation”
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Analysis, again

Worst case analysis
Time complexity in the worst case = 
longest running time for any input of size n
It is an UPPER BOUND on the running time 
for any input
INSERTION SORT is O(n2), i.e., quadratic

Average case analysis
A distribution of the input is considered
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Assignments

Textbook, till page 27

Homework 1: Due in class 9/15/2004

Updated information on the class web 

page:

www.ece.neu.edu/courses/eceg205/2004fa
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