G205

'Fundamentals of Computer
Engineering

CLASS 1, Wed. Sept. 8 2004
Stefano Basagni

Fall 2004

M-W, 1:30pm-3:10pm

4

Aims of the Class

N

#Basics of data structures and algorithms

#Resource (e.g., time, space) analysis

#Algorithm correctness

#Implementation issues (C++)
(This is not a C++ class!)

9/8/2004 2

Algorithms

N

#An ALGORITHM is a well defined
computational procedure

= INPUT VALUE-> OUTPUT VALUES

a Set of COMPUTATIONAL STEPS to
transform the INPUT into the OUTPUT

= T0ol for solving a COMPUTATIONAL
PROBLEM

9/8/2004

N

Computational Problems

®A Computational Problem (CP) is a:
= General term description of an

INPUT/OUTPUT relationship

= The way from INPUT to OUTPUT
(algorithm) is NOT described

9/8/2004

N

Example: SORTING, 1

#As a computational problem:

= INPUT: a sequence of n numbers
<al, al ... an>

s OUTPUT: A permutation (reordering)

<a’l, a2, ..., an>on the input sequence such
that:

gl <=ag2<=..<=an

9/8/2004

EXAMPLE: Sorting, 2

#Input sequence: <31,41,59,26,41,58>
#Qutput sequence: <26,31,41,41,58, 59>

#The input sequence is called an
INSTANCE of the sorting problem

#0ne CP - many (sorting) algorithms
s NEXT QUESTION ...

9/8/2004 6

N

The BEST algorithm for a CP

#Depends on:

= Size of the instance (how many numbers to
be sorted?)

= "Format” of the instance (are the numbers
sorted already?)

m Restriction on the input values
= Where are the values stored
= The metrics of interest (best wrt to what?)

9/8/2004 7

N

Algorithm EFFICIENCY, 1

#How FAST is an algorithm? How much
SPACE does it need?

#® Complexity of an algorithm, as a
function of the SIZE OF THE IPUT

= Time complexity often more important of
space complexity

s Other complexity metrics (messages)

9/8/2004

N

Algorithm EFFICIENCY, 2

#® Grossly speaking: An algorithm is EFFICIENT
when its time complexity is at most
“polynomial”

n {(n): logc n, sgrt(n), n, %, N logc n

Exponential time complexities are considered

\\badn
n i(n): 3", n, n!

9/8/2004 9

N

Algorithm Correctness

An algorithm is said to be CORRECT if
for every input it HALTS with the
expected, correct output

s 2 Termination
s 2 Correctness of output

A correct algorithm it is said to SOLVE
a computational problem

9/8/2004 10

Data Structures

N

Facilitate access and modifications

Way to store and organize data, i.e.,

input, output and intermediate values

Impact on algorithm efficiency

9/8/2004 11

From Algorithms to Programs

Pseudo-code highlights algorithms
properties/requirements

One algorithm, many programming
languages

C++, object orientation + Standard
Template library = very close to
pseudo-code

Executable and understandable

9/8/2004 12

N

A Working Example:
Sorting 7 Numbers

= INPUT: a sequence of 7 numbers
<al, a’, ..., an>

= OUTPUT: A permutation (reordering)

<a’l, a2 ..., an>on the input sequence such
that: a7 <=a22 <=.. <=an

Data structure for the input: ARRAY A
with 17 elements

Sorting is said to be IN PLACE if
numbers are rearranged in A

9/8/2004 13

Insertion Sort, 1

Efficient for small numbers of values

Sort a hand of playing cards
@ Input is an array A[1...1]

Sorting in place

9/8/2004 14

Insertion Sort, 2

Insertion-Sort(A,n)
forj=2tondo

key = A[j]

i=j—1

while (i > 0) and (A[i] > key) do
Ali+1]=Ali]
i=i—-1

A[i+ 1] =key

9/8/2004 15

Insertion Sort, 3

a) [5,2,4,6,1,3
b) [2,5,4,6,1,3]
c) [2,4,5,6,1,3]
d) [2,4,5,6,1,3
e} [1,2,4,5,6,3
f) [1,2,3,4,5,6

9/8/2004

16

Insertion Sort: Correctness, 1

N

Via loop invariants
n (*) At the start of each iteration of the for loop,
the sub-array Al 1 ... j-1] is sorted
We have to show three things:
» Initialization. (*) is true before the loop

s Maintenance: If (*) is true before an iteration of
the loop, it is true before the next one

s /ermination: (*) at the end helps to show the
algorithm correctness

9/8/2004 17

Insertion Sort: Correctness, 2

@ Init: j = 2, A[1] = 5 is sorted!

Maint: The outer loop seek a position
for A[j] in A[1...j-1] and insert it in the
right position. If A[1...j-1] is sorted,
A[1...j] is sorted too (cmp. induction)

Termin: The loop terminates when

j=n+1. In this case A[1...n] is sorted
and hence the algorithm is correct

9/8/2004 18

N

Analysis of Algorithms, 1

Analyzing = predicting the resources
(here time) that the algorithm require

Model of computation: one-processor

RAM = Random Access Machine
m Instruction are executed serially
= No concurrent operations

Usual constant time operations:
arithmetic, data movements and control

9/8/2004 19

N

Analysis of Algorithms, 2

RUNNING TIME as a function of the
SIZE OF THE INPUT

= Input size:
* Number of items in the input (e.q., sorting)

» Total number of bits needed to represent the
input in the model (e.qg., primality)

= Running time: number of primitive
operations or “steps” executed

9/8/2004 20

Insertion Sort: Analysis

Insertion-Sort(A,n) cost times
forj=2tondo cl N
key = A[j] c2 n-1
| =j—1 C3 n-1
while (i>0) and (A[i]>key) do c4 (a)
Ali+1] = A[i] c5 (b)
| = -1 c6 (C)

Ali+ 1] =key c/ n-1

9/8/2004 21

Insertion Sort: Running time, 1

tj = number of times the while is
executed in the j-th for loop

(a) = SUM(j=2,n) 4

#-(b) =(¢).=SUM{=2n)-(H—1)

T(n) = c1*n+c2*(n-1)+c3*(n-1)+
c4*(a)+c5*(b)+c6*(c)+c7*(n-1)

9/8/2004

22

Insertion Sort: Running time, 2

N

Dependency on the while =
dependency on the input
s BEST CASE: while never executed = array

is already sorted (tj=1)
» T(n) = Cn+D, LINEAR FUNCTION OF n

s WORST CASE: while always executed =
arrays sorted reverse
+ T(n)= Cn2+D, QUADRATIC FUNCTION OF n

9/8/2004 23

Order of Growth

N

Actual cost of single operations can be
ignored since it depends on the specific
computer, on the language, etc.

Another abstraction: Order of growth.
We consider the leading term of a
formula, with no constants

@ Expressed by the “theta notation”

9/8/2004 24

N

Analysis, again

Worst case analysis

= [ime complexity in the worst case =
longest running time for any input of size n

= It is an UPPER BOUND on the running time
for any input

= INSERTION SORT is O(n2), i.e., quadratic

Average case analysis
m A distribution of the input is considered

9/8/2004 25

Assignments

#®Textbook, till page 27

#Homework 1: Due in class 9/15/2004

#Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2004fa

9/8/2004 26

	G205Fundamentals of Computer Engineering
	Aims of the Class
	Algorithms
	Computational Problems
	Example: SORTING, 1
	EXAMPLE: Sorting, 2
	The BEST algorithm for a CP
	Algorithm EFFICIENCY, 1
	Algorithm EFFICIENCY, 2
	Algorithm Correctness
	Data Structures
	From Algorithms to Programs
	A Working Example:Sorting n Numbers
	Insertion Sort, 1
	Insertion Sort, 2
	Insertion Sort, 3
	Insertion Sort: Correctness, 1
	Insertion Sort: Correctness, 2
	Analysis of Algorithms, 1
	Analysis of Algorithms, 2
	Insertion Sort: Analysis
	Insertion Sort: Running time,1
	Insertion Sort: Running time,2
	Order of Growth
	Analysis, again
	Assignments

