
ECE G205 Fundamentals of Computer Engineering
Fall 2003

Exercises in Preparation to the Midterm

The following problems can be solved by either providing thepseudo-codes of the required algorithms or
the C++ code for the corresponding functions.

� Problem # 1. Write two functionssummaandsummaRec, one iterative and one recursive, that given
as input an array ofN integer numbers returns the sum of the “even elements” of thearray (i.e., the
elements whose position is even, such as the 0th element of the array, the 2nd, the 4th and so on).

Possible solutions are given by the following function:

int summa( int E[], int N ) {
int sum = E[ 0 ];
for( int i = 2; i < N; i += 2 )

sum += E[ i ];
return sum;

}

int summaRec( int E[], int i ) {
if ( i == 0 )

return E[ i ];
else

return E[ i ] + summaRec( E, i - 2 );
}

In the case of the recursive version the call frommain should be eithersummaRec( A, n - 1 ) (n
odd) orsummaRec( A, n - 2 ) (n even), where A is the given array andn its size.



� Problem # 2. Write an iterative and a recursive function for computing the nth elementFn of the
Fibonaccisequence. The Fibonacci sequence is a sequence of integers so defined:F0

� 0, F1
� 1, and

Fn
� Fn�1

�
Fn�2. Discuss the worst case time complexity of the two solutions.

Possible solution are given by the following functions:

int fibo( int N ) {
if ( N == 0 ) || ( N == 1 )

return N;
else

return fibo( N - 1 ) + fibo( N - 2 );
}

int fibIter( int N ) {
if ( N == 0 ) || ( N == 1 )

return N;
int fN2 = 0, fN1 = 1, fN;
while ( N > 1 ) {

fN = fN1 + fN2;
fN2 = fN1;
fN1 = fN;
N--;

}
return fN;

}

The time complexityT �n� of the recursive function is expressed by the following recursive equation:

T �n� � T �n� 1� � T �n� 2� �

The solution to this equation is quite involved. Let us try toguess it. SinceT �n� nearly doubles, one
can think that the solution could be 2n. However, this is not the case, since 2n �� 2n�1 �

2n�2. Let
us try with a generican. To determine if such ana exists, we notice that the solution must work for
everyn, i.e., also forn � 2. So, such ana should be such thata2 � a

�
1. This equation has the

two (famous!) solutionsa1
� 1�	 
5�

2 (theGolden Ratio) anda2
� 1�	 
5�

2 . Hence, the algorithm is
exponential!

The time complexity of the iterative function depends on thewhile loop. SinceN is decremented by
one at every iteration of the loop, after at mostN � 1 iterations the loop is exited. Therefore, the time
complexity of the function isO�N�.
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� Problem # 3. Prove that the following recursive algorithm for the multiplication of natural numbers
is correct:

MULTIPLY(y,z)
if z = 0

then return 0
else if z is odd

then return MULTIPLY( 2y, int(z/2) ) + y
else return MULTIPLY( 2y, int(z/2) )

The correctness proof is by induction onz. We claim thatMULTIPLY(y,z) return the productyz. The
claim holds true whenz� 0 sinceMULTIPLY(y,0) returns 0 independently ofy. Now, suppose that
for z � 0 MULTIPLY(y,z) returnsyz. We must prove thatMULTIPLY(y,z+1) returnsy�z� 1�. There
are two cases to be considered, depending on whetherz

�
1 is odd or even.

By inspection, ifz
�

1 is odd, thenMULTIPLY(y,z+1) returnsMULTIPLY(2y,int((z+1)/2))+y �
2y� 
z�1�

2 � � y (by the induction hypothesis)� 2yz
2
�

y (sincez is even)� y�z� 1�.
By inspection, ifz

�
1 is even, thenMULTIPLY(y,z+1) returnsMULTIPLY(2y,int((z+1)/2)) �

2y� 
z�1�
2 � (by the induction hypothesis)� 2y 
z�1�

2 (sincez is odd)� y�z� 1�.
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� Problem # 4. Consider the following, fundamental question: “Given a numbern � 1, isn prime, i.e.,
is n divisible only by 1 and itself?”

The question is answered by the following function (where the C++ operator% is the modulus operator,
which returns the remainder of the integer division betweenits operands):

bool prime( int n ) {
int j = 2;
while ( j < n )

if ( n % j == 0 )
return false;

else
j++;

return true;
}

Functionprime attempts to dividen by every numberj in the range 2� � � � �n� 1 and returnstrueonly
if no number j that dividesn has been found.

Is this function time complexity polynomial in thesize of the input? Justify your answer.

The body of the while loop is executedn� 2 times, and therefore the time complexity of the function
is O�n�. However, this complexity isnot polynomial in the size of the input. Each integern is
represented in the computer “concisely” as a sequence ofd � logn

�
1 bits. Hence the size of the input

(also called thedimension of the problem) is d. The complexity of the functionprime is therefore
O�n� � O�2d�, i.e.,exponentialin the size of the input.

The problem of determining whether a number is prime orcompositehas been interesting human
beings for millennia. The best minds of each generations, from Eratosthenes (born circa 275 BC) and
up, have been trying to develop efficient (i.e., non-exponential) algorithms for this problems. The
first algorithm that produces (deterministically) an answer in polynomial time has been introduced on
August 6 2002.
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� Problem # 5. Write a recursive function that given as input an arrayA of n integers, returns the
maximum element. Prove its correctness and determine its worst-case time complexity.

A possible solution is given by the following function:

int maxR( int j, int A[] ) {
if ( j == 0 )

return A[ 0 ];
else

return max( A[ j ], maxR( j - 1, A ) );
}

The correctness can be proved by induction on the number of recursive calls. Whenj equals 0 the
function terminates and returnA

�
0�. Assume that for a genericj � 0 the functionmaxR( j - 1,

A ) terminates and correctly returns the maximum inA
�
0 � � � j � 1�. Then, by inspection, since the

library functionmax terminates and correctly returns the maximum between two numbers, the generic
recursive callmaxR( j, A ) also terminates and return the maximum inA

�
0 � � � j �. When j � n� 1

(initial call) the function correctly terminates returning the maximum element of the array.

The complexity of the function is expressed by the followingrecurrence relation:

T �n� �
��
�

c if n � 0

T �n� 1� � c if n � 0.

which can be solved by substitution to yieldT �n� � O�n�.
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� Problem # 6. Consider the following 2�2 matrix:

A �
�

0 1
1 1 �

(a) Write a function toefficientlycompute thenth power ofA, namely:

An � A �A � � �A� �� �
n times

�

One solution is obtained by multiplying the matrixA by itself for n � 1 times, yieldingAn. The
corresponding code is the following (n is required as input).

int main() {
int n;
cout << "Insert a number n (> 0): ";
cin >> n;
cout << endl;
int A[ 2 ][ 2 ] = { { 0, 1 }, { 1, 1 } };
int B[ 2 ][ 2 ], C[ 2 ][2 ];
copyMat( B, A );
for( int a = 0; a < n - 1; a++ ) {

mulMat( A, B, C );
copyMat( A, C );

}
return 0;

}
// Multiply X by Y and return the result in Z
void mulMat( int X[][ 2 ], int Y[][ 2 ], int Z[][ 2 ] ) {

Z[ 0 ][ 0 ] = X[ 0 ][ 0 ] * Y[ 0 ][ 0 ] + X[ 0 ][ 1 ] * Y[ 1 ][ 0 ];
Z[ 0 ][ 1 ] = X[ 0 ][ 0 ] * Y[ 0 ][ 1 ] + X[ 0 ][ 1 ] * Y[ 1 ][ 1 ];
Z[ 1 ][ 0 ] = X[ 1 ][ 0 ] * Y[ 0 ][ 0 ] + X[ 1 ][ 1 ] * Y[ 1 ][ 0 ];
Z[ 1 ][ 1 ] = X[ 1 ][ 0 ] * Y[ 0 ][ 1 ] + X[ 1 ][ 1 ] * Y[ 1 ][ 1 ];

}
// Copy Y onto X
void copyMat( int X[][ 2 ], int Y[][ 2 ] ) {

X[ 0 ][ 0 ] = Y[ 0 ][ 0 ];
X[ 0 ][ 1 ] = Y[ 0 ][ 1 ];
X[ 1 ][ 0 ] = Y[ 1 ][ 0 ];
X[ 1 ][ 1 ] = Y[ 1 ][ 1 ];

}

The following is a more efficient way to computeAn. It is based on the fact that since we want just
An we can avoid to compute many of the intermediateAis, 2� i � n. This is possible by repeatedly
squaring the matrixA till we get toAn.
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A �A � A2

A2 �A2 � A4

A4 �A4 � A8� � �
A2��logn��1� �A2��logn��1� � A2�logn�

The following code works forn � 2h (the code must be adjusted whenn is not a power of two).

// Compute the logarithm base 2
double log2( int x ) {

return ( log( x )/ log( 2 ) );
}
// MAIN
int main() {

// Defs as above
int k = (int)( log2( n ) );
for( int b = 0; b < k; b++ ) {

squareMat( A, B );
copyMat( A, B );

}
...

}
// Multiply X by itself and return the result in Y
void squareMat( int X[][ 2 ], int Y[][ 2 ] ) {

Y[ 0 ][ 0 ] = X[ 0 ][ 0 ] * X[ 0 ][ 0 ] + X[ 0 ][ 1 ] * X[ 1 ][ 0 ];
Y[ 0 ][ 1 ] = X[ 0 ][ 0 ] * X[ 0 ][ 1 ] + X[ 0 ][ 1 ] * X[ 1 ][ 1 ];
Y[ 1 ][ 0 ] = X[ 1 ][ 0 ] * X[ 0 ][ 0 ] + X[ 1 ][ 1 ] * X[ 1 ][ 0 ];
Y[ 1 ][ 1 ] = X[ 1 ][ 0 ] * X[ 0 ][ 1 ] + X[ 1 ][ 1 ] * X[ 1 ][ 1 ];

}

(b) Determine the time complexity of your solution.

Since functionscopyMat, mulMat andsquareMat are executed in constant time, the first method for
computingAn requiresO�n� time, while the second method producesAn in O�logn� time.

(c) How can a solution to point(a) be used to return thenth number of the Fibonacci sequence.

It can be proved (by mathematical induction) that, whenn � 0,

An �
�

Fn�1 Fn

Fn Fn�1 �
Hence, to return (in logarithmic time!) thenth Fibonacci number, it is enough to computeAn and then
returnan

1�0.
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� Problem # 7. The recursive definition of the binomial coefficient whenk � n

�
n
k � �

�
���
���

1 if k � 0 or k � n�
n� 1
k� 1 � � �

n� 1
k � if 0 � k

�
n�

write a function that returns

�
n
k � in a way that is different from the more “natural” recursive im-

plementation. The binomial coefficient

�
n
k � can be seen as the last entrycn�k of a �n�

1� � �k�
1�

matrix which can be filled out line by line in the following way: c0� j � 0, 1� j � k, ci �0 � 1, 0� i � n,
and

ci � j � ci�1� j�1
�

ci�1� j �1 � i � n�1 � j � k�

Use this characterization (also known asPascal’s triangle) to write a function that taken as inputn

andk returns

�
n
k � . Discuss the timeand thespacecomplexity of your solution. Can this problem

be solved in linear space?

The following function works in O(nk) (which given thatk � n is O�n2�).

int bcI( int n, int k ) {
int T[ k + 1 ];
T[ 0 ] = 1;
for( int j = 1; j < k + 1; j++ )

T[ j ] = 0;
for( int i = 0; i < n; i++ )

for( int j = k; j > 0; j-- )
T[ j ] += T[ j - 1 ];

return T[ k ];
}

The only data structure used (over an over again) is the unidimensional arrayT with k
�

1 � n
�

1
elements. Hence the space is linear inn.
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� Problem # 8. Write anoptimalBoolean C++ function that, given an array ofn integers� 0, returns
true is there are two elements in the array whose sum equals 23,falseotherwise.

A possible solution is given by the following function:

bool twentyThree( int A[], int n ) {
bool S[ 24 ];
for( int a = 0; a < 24; a++ )

S[ a ] = false;
for( int b = 0; b < n; b++ )

if ( A[ b ] < 24 )
S[ A[ b ] ] = true;

for( int c = 0; c < 12; c++ )
if ( S[ c ] && S[ 23 - c ] )
return true;

return false;
}
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