G205
Fundamentals of Computer Engineering
CLASS 8, Wed. Oct. 1 2003
Stefano Basagni
Fall 2003
M-W, 9:50am-11:30am, 410 Ell
Sorting in Linear Time

- We cannot go faster than $\Omega(n)$
- Must be a non-comparison sorting
- Works when assumptions on the number to be sorted are made
 - Counting sort \rightarrow numbers in $\{0,1,\ldots,k\}$
 - Radix sort \rightarrow numbers with a constant number of digits
 - Bucket sort \rightarrow numbers drawn from a uniform distribution
Radix Sort

Key idea: Sort least significant digit of each number first

To sort d digits:

Radix-Sort(A,d)
for i = 1 to d do
 use a stable sorting to sort array A on digit i
Radix Sort, Example

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>329</td>
<td>720</td>
<td>720</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>457</td>
<td>355</td>
<td>329</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>436</td>
<td>436</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>839</td>
<td>457</td>
<td>839</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>436</td>
<td>657</td>
<td>355</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>329</td>
<td>457</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>839</td>
<td>657</td>
<td>839</td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort: Correctness

- Induction on number of passes (i in pseudo-code)
- Assume digits 1, 2, ..., i-1 are sorted
- Show that a stable sort on digit i leaves digits 1, 2, ..., i sorted
 - If two digits in position i are different ordering by position i is correct (other digits are irrelevant)
 - If the digits are the same, numbers are already in the right order (ind. hyp.)
Radix Sort, Analysis

- Use Counting Sort as stable sorting
- $\Theta(n+k)$ per pass
- d passes
- $\Theta(d(n+k))$ total
- If k is in $O(n)$ the $T_{RS}(n)$ is in $\Theta(dn)$
- When d is $\Theta(1)$ Radix Sort is linear time
How to break a number into digits

- n b-bits numbers
- Break into r-bits digits, have $d = \lceil b/r \rceil$
- Use Counting Sort $k = 2^r - 1$
- $T_{RS}(n)$ is in $\Theta\left(\frac{b}{r}(n+2^r)\right)$
- Exercise: Choose r and compare Radix Sort and Merge-Sort
Searching

- The Selection Problem
 - INPUT: A set A of n (distinct) numbers and a number i, $0 \leq i \leq n$
 - OUTPUT: The element i in A that is larger than exactly $i-1$ other elements of A

The element i is called the i-th order statistics of A

- The first order statistics is the minimum ($i=1$)
- The n-th is the maximum ($i=n$)
- Solvable in $O(n \log n)$
Minimum or Maximum

Minimum(A,n)

min = A[1]
for i = 2 to n do
 if min > A[i] then min = A[i]
return min

\[n-1 \text{ comparisons, } T_M(n) \in O(n) \]
\[n-1 \text{ comparisons are necessary (tournament)} \]
\[\Rightarrow T_M(n) \in \Omega(n) \]

Minimum is OPTIMAL
Minimum AND Maximum, 1

Min-Max(A,n,min,max)
if n mod 2 = 0
 then max=MAX(A[1],A[2]) // one comparison
 min=MIN(A[1],A[2]) // one comparison
 k=3
else max=min=A[1]
 k=2
for i = k to n-1 step 2 do // floor(n/2) iter
Minimum AND Maximum, 2

if A[i]>A[i+1] // 1 co
 then
 if max<A[i] then max=A[i]; // 1 co
 if min>A[i+1] then min=A[i+1]; // 1 co
 else
 if max<A[i+1] then max=A[i+1]; // 1 co
 if min>A[i] then min=A[i]; // 1 co
Min-Max Analysis

- n odd: $3 \times \lceil n/2 \rceil$ comparisons
- n even: $3((n-2)/2)+1=(3n/2)-2$
- At most $3 \times \lceil n/2 \rceil < 2n-2$ comparisons
- Both are asymptotically in $\Theta(n)$
Searching for a Given Element

- Unsorted arrays, worst-case $\Theta(n)$
- Sorted arrays, binary search

- **Input:** A sorted array A, a value v and a range $[low...high]$ in A to search for v

- **Output:** i such that $v = A[i]$ or NIL if v is not found in A between low and high

- **Initial call:** $A, v, 1, n$
Iterative Binary Search

ITERATIVE-BINARY-SEARCH(A, v, low, high)

while low ≤ high do
 mid=(low+high)/2
 if v = A[mid] then return mid
 if v > A[mid] then low=mid+1
 else high=mid-1

return NIL
Recursive Binary Search

REC-BSEARCH(A, v, low, high)

if low > high then return NIL
mid=(low+high)/2
if v = A[mid] then return mid
if v > A[mid] then return REC-BSEARCH(A,v,mid+1,high)
else return REC-BSEARCH(A,v,low,mid-1)
Binary Search Analysis

Based on the comparison on \(v \) with \(A \)'s middle element the search continues halved.

The recurrence for the procedures is:

- \(T(n) = \Theta(1) \) for \(n = 1 \)
- \(T(n) = T(n/2) + \Theta(1) \) for \(n > 1 \)

Solution: \(T(n) \) in \(\Theta(\log n) \)
Assignments

- Textbook, pages 165—173, 183—185
- Updated information on the class web page:
 www.ece.neu.edu/courses/eceg205/2003fa