
G205
Fundamentals of Computer
Engineering
CLASSES 23-24, 11/26-12/1 2003
Stefano Basagni
Fall 2003
M-W, 9:50am-11:30am, 410 Ell

11/26/2003 2

All-Pairs Shortest Paths

Finding shortest path between all pairs
of vertices in a graph
Input:

G=(V,E)
w:E→ R

Output: For each pair of vertices u and
v in V we want the least weight path
from u to v

11/26/2003 3

Representation of Input

For APSP graph represents by an
adjacency matrix W = (wij)

wij = 0 if i = j
wij = w(i,j) if i ≠ j and (i,j) ∊ E
wij = ∞ if i ≠ j and (i,j) ∉ E

Negative-weight edges OK
Negative-weight cycles not OK

11/26/2003 4

Representation of Output

n x n matrix D = (dij)
dij = shortest path weight from i to j
At termination: dij = ɗ(i,j)

Actual shortest paths: Predecessor matrix Π
= (πij)

πij = NIL if i=j or there is no path from i to j
πij = predecessor of j on some path from i to j
otherwise

11/26/2003 5

Predecessor Subgraph

The subgraph induced by the u-th row
of the matrix Π is a shortest path tree
with root i
For each vertex i ∊ V we define the
predecessor subgraph Gπ,i=(Vπ,i,Eπ,i):

Vπ,i = {j ∊ V: πij≠NIL } ∪{i}
Eπ,i = {(πij,j): j ∊ Vπ,i∖{i}}

11/26/2003 6

Printing APSPs

Print-APSP(Π,i,j)
if i = j then print i

else if πij = NIL
then print no i-j path
else Print-APSP(Π,i, πij)

print j

11/26/2003 7

Some Notation

Graph G has |V|=n vertices

Matrix are denoted in uppercase D,W,L

Matrix elements: dij, wij, lij
Iterates of matrices: D(m) = (d(m)

ij)

11/26/2003 8

Shortest Paths and Matrix
Multiplication

Dynamic Programming approach:

Characterize the structure of an optimal

solution

Define its value recursively

Compute a solution in a bottom-up fashion

Constructing an optimal solution

11/26/2003 9

Structure of a Shortest Path

All subpaths of a shortest paths are shortest
paths
Graph represented by adjacency matrix W =
(wij)
Let p be a shortest path with at most m
edges
If i=j then p has no edges and weight 0
If i≠j then p=i↝k→j with i↝k with at most m-
1 edges and ɗ(i,j) = ɗ(i,k)+wkj

11/26/2003 10

Recursive Solution

l(m)
ij is the minimum weight of any path from i

to j with at most m edges
When m=0

l(0)
ij = 0 if i = j

l(0)
ij = ∞ if i ≠ j

When m≥1
l(m)

ij = min(l(m-1)
ij,min1≤k≤n{l(m-1)

ik+wki}) =
min1≤k≤n{l(m-1)

ik+wki}) (since wjj=0 for each j)

11/26/2003 11

The Shortest Path Weight

No negative-weight cycles shortest
paths have at most n-1 edges
A path from i to j for which ɗ(i,j) < ∞ is
simple and with ≤ n-1 edges or
otherwise it cannot have weight ≤ ɗ(i,j)
Actual shortest path weight:

ɗ(i,j)= l(n-1)
ij = l(n)

ij = l(m+1)
ij = …

11/26/2003 12

Computing weights bottom-up

Input: W = (wij)
We compute: L(1), L(2), …, L(n-1) with
L(m)=(l(m)

ij), m=1,2,…,n-1
L(n-1) contains the shortest-path weights
By definition of L(m) is L(1) = W
Basic step: Extending shortest paths
edge by edge: Given L(m-1) and W we
obtain L(m)

11/26/2003 13

Extending Shortest Paths

Extend-Shortest-Paths(L,W)
for i = 1 to n do

for j = 1 to n do
l’ij = ∞
for k = 1 to n do

l’ij = min(l’ij, lik+ wkj)
return L’

11/26/2003 14

Matrix Multiplication Analogy

Extend-Shortest-Paths costs O(n3)
It is like multiplying n x n matrices:
C=A x B cij = SUM(k=1,n) aik bkj

Here:
l(m-1) = a
w = b
l(m) = c
min = +
+ = *
∞ = 0

11/26/2003 15

Computing Shortest-Paths
Weights

We extend shortest paths edge by edge
We compute the sequence:

L(1) = L(0) x W = W
L(2) = L(1) x W = W2

L(2) = L(2) x W = W3
…

L(n-1) = L(n-2) x W = Wn-1

11/26/2003 16

A Slow APSP algorithm

Slow-APSP(W)
L(1) = W
for m = 2 to n – 1 do
L(m) = Extend-Shortest-Paths(L(m-1),W)

return L(n-1)

Since Extend-Shortest-Paths is O(n3)
Slow-APSP(W) is O(n4)

11/26/2003 17

Improving the Running Time

Goal: Compute L(n-1) and not the whole
sequence L(1), L(2), …, L(n-1)

Recall: L(m) = L(n-1) for each m ≥ n – 1
Repeated Squaring:

L(1) = L(0) x W = W
L(2) = W2 = W x W
L(4) = W4 = W2 x W2

…

L(2log(n-1)) = W(2log(n-1)) = W(2log(n-1)-1) x W(2log(n-1)-1)=L(n-1)

11/26/2003 18

A Faster APSP Algorithm

Faster-APSP(W)
L(1) = W
m = 1
while m ≤ n-1 do
L(2m) = Extend-Shortest-Paths(L(m), L(m))
m = 2m

return L(m)

Faster-APSP(W) is O(n3 log n)

11/26/2003 19

The Floyd-Warshall Algorithm

Another dynamic programming
formulation for All-Pairs Shortest Path

The structure of a shortest path
Uses intermediate vertices of a shortest path

Recursive solution to the ASPS problem

Computing the shortest path weights
bottom up

11/26/2003 20

Structure of a Shortest Path, 1

An intermediate vertex of a simple path
p =<v1,v2,…,vl> is any vertex of p in
{v2,…,vl-1}
Consider G=(V,E) with V={1,…,n}
Consider K={1,…,k}, for some k
For each i, j ∊ V consider paths with
vertices only from K
Let p be a shortest paths among them

11/26/2003 21

Structure of a Shortest Path, 2

Relationship of p and the i↝j shortest
path with vertices from K-1={1,…,k-1}

k is not intermediate in p the int.
vertices of p are in K-1 shortest path i↝j
with vertices in K-1 has also vertices in K
If k is an intermediate vertex in p then:

p=p1p2 where p1= i↝k and p2= k↝j
where p1 and p2 have int. vertices in K-1

11/26/2003 22

Recursive Solution to ASPS

Let d(k)
ij the weight of a i↝j shortest

path with all int. vertices in K
k=0 d(0)

ij = wij

k ≥1 min{d(k-1)
ij, d(k-1)

ik + d(k-1)
kj}

Since for any path all intermediate
vertices are in V the matrix D(n)=(d(n)

ij)
is such that d(n)

ij= ɗ(i,j), for each i, j ∊ V

11/26/2003 23

Computing the Shortest-Paths
Weights Bottom Up

Floyd-Warshall(W)
D(0)=W
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

d(k)
ij=min{d(k-1)

ij, d(k-1)
ik + d(k-1)

kj}
return D(n)

11/26/2003 24

Running Time and Space

The running time is clearly Θ(n3) since
the min operation and the sum takes
O(1) time
Space needed is Θ(n3): Each of the n
D(k) needs Θ(n2) space
Dropping all superscript leads to a
solution that works in Θ(n2) space

11/26/2003 25

C++ implementation of Floyd-
Warshall

void FW(int n, matrix< int > &fw) {
matrix< int > t(n, n) =fw;
for(int k = 0; k < n; k++) {
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
fw[i][j] = min(t[i][j],

t[i][k] + t[k][j]);
t = fw;

}
}

11/26/2003 26

Assignments

Textbook, Chapter 25, pages 620—640

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2003fa

	G205Fundamentals of Computer Engineering
	All-Pairs Shortest Paths
	Representation of Input
	Representation of Output
	Predecessor Subgraph
	Printing APSPs
	Some Notation
	Shortest Paths and Matrix Multiplication
	Structure of a Shortest Path
	Recursive Solution
	The Shortest Path Weight
	Computing weights bottom-up
	Extending Shortest Paths
	Matrix Multiplication Analogy
	Computing Shortest-Paths Weights
	A Slow APSP algorithm
	Improving the Running Time
	A Faster APSP Algorithm
	The Floyd-Warshall Algorithm
	Structure of a Shortest Path, 1
	Structure of a Shortest Path, 2
	Recursive Solution to ASPS
	Computing the Shortest-Paths Weights Bottom Up
	Running Time and Space
	C++ implementation of Floyd-Warshall
	Assignments

