G205 **Fundamentals of Computer** Engineering CLASSES 23-24, 11/26-12/1 2003 Stefano Basagni Fall 2003 M-W, 9:50am-11:30am, 410 Ell

All-Pairs Shortest Paths

Finding shortest path between all pairs of vertices in a graph ♦Input: G=(V,E) • w:E \rightarrow R Output: For each pair of vertices u and v in V we want the least weight path from u to v

Representation of Input

For APSP graph represents by an adjacency matrix $W = (W_{ii})$ if i = j • w_{ii} = 0 if $i \neq j$ and $(i,j) \in E$ • $w_{ii} = w(i,j)$ ■ W_{ii} = ∞ if $i \neq j$ and $(i,j) \in E$ \otimes Negative-weight edges \rightarrow OK \otimes Negative-weight cycles \rightarrow not OK

Representation of Output

- $n x n matrix D = (d_{ij})$
 - d_{ij} = shortest path weight from i to j
 - At termination: d_{ij} = d(i,j)
- Actual shortest paths: Predecessor matrix Π
 - = (π_{ij})
 π_{ii} = NIL if i=j or there is no path from i to j
 - π_{ij} = predecessor of j on some path from i to j otherwise

Predecessor Subgraph

The subgraph induced by the u-th row of the matrix ∏ is a shortest path tree with root i

◆For each vertex i ∈ V we define the predecessor subgraph G_{π,i}=(V_{π,i}, E_{π,i}):
• V_{πi} = {j ∈ V: π_{ii} ≠NIL } ∪ {i}

$$\bullet \mathsf{E}_{\pi,i} = \{(\pi_{ij},j): j \in \mathsf{V}_{\pi,i} \setminus \{i\}\}$$

Printing APSPs

Print-APSP(Π ,i,j) if i = j then print i else if π_{ij} = NIL then print no i-j path else Print-APSP(Π ,i, π_{ij}) print j

Some Notation

Graph G has |V|=n vertices

Matrix are denoted in uppercase D,W,L

Matrix elements: d_{ij}, w_{ij}, l_{ij}

• Iterates of matrices: $D^{(m)} = (d^{(m)}_{ii})$

Shortest Paths and Matrix Multiplication

- Dynamic Programming approach:
 - Characterize the structure of an optimal solution
 - Define its value recursively
 - Compute a solution in a bottom-up fashion
 - Constructing an optimal solution

Structure of a Shortest Path

All subpaths of a shortest paths are shortest paths \bullet Graph represented by adjacency matrix W = (W_{ii}) Let p be a shortest path with at most m edges If i=j then p has no edges and weight 0 • If $i \neq j$ then $p = i \neg k \rightarrow j$ with $i \neg k$ with at most m-1 edges and $d(i,j) = d(i,k) + w_{ki}$

Recursive Solution

- I^(m)_{ij} is the minimum weight of any path from i to j with at most m edges
- ♦ When m=0
 - $I^{(0)}_{ij} = 0$ if i = j
 - $I^{(0)}_{ij} = \infty$ if $i \neq j$
- ♦ When m≥1
 - $I^{(m)}_{ij} = \min(I^{(m-1)}_{ij}, \min_{1 \le k \le n} \{I^{(m-1)}_{ik} + w_{ki}\}) = \min_{1 \le k \le n} \{I^{(m-1)}_{ik} + w_{ki}\})$ (since $w_{ij} = 0$ for each j)

The Shortest Path Weight

 \bullet No negative-weight cycles \rightarrow shortest paths have at most n-1 edges A path from i to j for which $d(i,j) < \infty$ is simple and with \leq n-1 edges or otherwise it cannot have weight $\leq d(i,j)$ Actual shortest path weight: $d(i,j) = |^{(n-1)}_{ij} = |^{(n)}_{ij} = |^{(m+1)}_{ij} = \dots$

Computing weights bottom-up

Input: W = (w_{ij}) We compute: L⁽¹⁾, L⁽²⁾, ..., L⁽ⁿ⁻¹⁾ with L^(m)=(I^(m)_{ij}), m=1,2,...,n-1

♦ L⁽ⁿ⁻¹⁾ contains the shortest-path weights

- By definition of $L^{(m)}$ is $L^{(1)} = W$
- Basic step: Extending shortest paths edge by edge: Given L^(m-1) and W we obtain L^(m)

Extending Shortest Paths

Extend-Shortest-Paths(L,W) for i = 1 to n do for j = 1 to n do $I'_{ii} = \infty$ for k = 1 to n do $I'_{ij} = min(I'_{ij}, I_{ik} + W_{kj})$ return L'

Matrix Multiplication Analogy

Computing Shortest-Paths Weights

We extend shortest paths edge by edge
We compute the sequence:

L⁽¹⁾ = L⁽⁰⁾ × W = W
L⁽²⁾ = L⁽¹⁾ × W = W²
L⁽²⁾ = L⁽²⁾ × W = W³
...
L⁽ⁿ⁻¹⁾ = L⁽ⁿ⁻²⁾ × W = Wⁿ⁻¹

A Slow APSP algorithm

- Slow-APSP(W) $L^{(1)} = W$ for m = 2 to n – 1 do $L^{(m)} = Extend-Shortest-Paths(L^{(m-1)},W)$ return $L^{(n-1)}$
- Since Extend-Shortest-Paths is O(n³)
 Slow-APSP(W) is O(n⁴)

Improving the Running Time

♦ Goal: Compute L⁽ⁿ⁻¹⁾ and not the whole sequence L⁽¹⁾, L⁽²⁾, ..., L⁽ⁿ⁻¹⁾ ♦ Recall: $L^{(m)} = L^{(n-1)}$ for each $m \ge n-1$ Repeated Squaring: • $L^{(1)} = L^{(0)} \times W = W$ $L^{(2)} = W^2 = W \times W$ • $L^{(4)} = W^4 = W^2 \times W^2$ $= \bigcup_{(2\log(n-1))} = \bigcup_{(2\log(n-1))} = \bigcup_{(2\log(n-1)-1)} \times \bigcup_{(2\log(n-1)-1)} = \bigcup_{(n-1)} (n-1)$

A Faster APSP Algorithm

Faster-APSP(W) (1) = Wm = 1while $m \leq n-1$ do $L^{(2m)} = Extend-Shortest-Paths(L^{(m)}, L^{(m)})$ m = 2mreturn L^(m) Faster-APSP(W) is O(n³ log n)

The Floyd-Warshall Algorithm

Another dynamic programming formulation for All-Pairs Shortest Path The structure of a shortest path Uses intermediate vertices of a shortest path Recursive solution to the ASPS problem Computing the shortest path weights bottom up

Structure of a Shortest Path, 1

An intermediate vertex of a simple path $p = \langle v_1, v_2, ..., v_l \rangle$ is any vertex of p in $\{v_{2},...,v_{l-1}\}$ Consider G=(V,E) with $V=\{1,...,n\}$ Consider K={1,...,k}, for some k \bullet For each i, j \in V consider paths with vertices only from K Let p be a shortest paths among them

Structure of a Shortest Path, 2

Relationship of p and the i~j shortest path with vertices from K-1={1,...,k-1} • k is not intermediate in $p \rightarrow$ the int. vertices of p are in K-1 \rightarrow shortest path i \neg j with vertices in K-1 has also vertices in K If k is an intermediate vertex in p then: $p=p_1p_2$ where $p_1 = i \sim k$ and $p_2 = k \sim j$ where p_1 and p_2 have int. vertices in K-1

Recursive Solution to ASPS

◆Let d^(k)_{ij} the weight of a i~j shortest path with all int. vertices in K • $k=0 \rightarrow d^{(0)}_{ij} = W_{ij}$ ■ $k \ge 1 \rightarrow \min\{d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}\}$ Since for any path all intermediate vertices are in V the matrix D⁽ⁿ⁾=(d⁽ⁿ⁾_{ii}) is such that $d^{(n)}_{ii} = d(i,j)$, for each i, $j \in V$

Computing the Shortest-Paths Weights Bottom Up

Floyd-Warshall(W) $D^{(0)} = W$ for k = 1 to n do for i = 1 to n do for j = 1 to n do $d^{(k)}_{ii} = \min\{d^{(k-1)}_{ii}, d^{(k-1)}_{ik} + d^{(k-1)}_{ki}\}$ return D⁽ⁿ⁾

Running Time and Space

◆The running time is clearly ⊕(n³) since the min operation and the sum takes O(1) time

Space needed is \Overline(n³): Each of the n D^(k) needs \Overline(n²) space

• Dropping all superscript leads to a solution that works in $\Theta(n^2)$ space

C++ implementation of Floyd-Warshall

t = fw;

Assignments

Textbook, Chapter 25, pages 620—640

Updated information on the class web page:

www.ece.neu.edu/courses/eceg205/2003fa

