G205

'Fundamentals of Computer
Engineering

CLASSES 23-24, 11/26-12/1 2003
Stefano Basagni

Fall 2003

M-W, 9:50am-11:30am, 410 Ell

4

All-Pairs Shortest Paths

#Finding shortest path between all pairs
of vertices in a graph

#Input:
N G=(V,E)
s W.E—> R
#Qutput: For each pair of vertices u and

v in V we want the least weight path
fromutov

11/26/2003

Representation of Input

#For APSP graph represents by an
adjacency matrix W = (WU)

O W =0
W.] = w(i,j)

IWij=OO

ifi =

|f|¢"
ifi #]

and (i,j) € E
and (i,j) ¢ E

#Negative-weight edges - OK
#Negative-weight cycles - not OK

11/26/2003

N

Representation of Output

» d;; = shortest path weight from i to j
= At termination: d; = d(i,j)

Actual shortest paths: Predecessor matrix I1
= (Tcij)
» m; = NIL if i=j or there is no path from i to j

» m; = predecessor of j on some path from i to]
otherwise

11/26/2003

Predecessor Subgraph

#The subgraph induced by the u-th row
of the matrix ITis a shortest path tree
with root i

#For each vertex i € V we define the
predecessor subgraph G_;=(V_;E.)):
n V= {j €V:m#NIL} U{i}
m B = Wmygd)i J € ViMids

11/26/2003

Printing APSPs

Print-APSP(I1,i,j)
if i = j then print |
else if m; = NIL
then print no i-j path
else Print-APSP(IL,i, m;)
print]

11/26/2003

Some Notation

N

#Graph G has |V]|=n vertices

#Matrix are denoted in uppercase D,W,L

#Matrix elements: d.

ij7 Wijl

3
#®Iterates of matrices: DM = (d™);)

11/26/2003 7

N

Shortest Paths and Matrix
Multiplication

#Dynamic Programming approach:

= Characterize the structure of an optimal

solution
= Define its value recursively
= Compute a solution in a bottom-up fashion

= Constructing an optimal solution

11/26/2003 8

Structure of a Shortest Path

N

All subpaths of a shortest paths are shortest
paths

Graph represented by adjacency matrix W =
(wj)

Let p be a shortest path with at most m
edges

If i=j then p has no edges and weight 0

If i#j then p=i~k—j with i~k with at most m-
1 edges and d(i,j) = d(i,k)+w,,

11/26/2003 9

Recursive Solution

N

@ (M), is the minimum weight of any path from i
to j with at most m edges

When m=0
= [@;=0 if i =]
= 0= 00 if i #]
When m=1

- I(m)ij = min(l(m_l)ij/min15k$n{|(m_1)ik+wki}) =
min, ¢, <, {1™ Yy +wy.}) (since w;=0 for each j)

11/26/2003 10

The Shortest Path Weight

#No negative-weight cycles > shortest
paths have at most n-1 edges

#A path from i to j for which d(i,j) < oo is
simple and with < n-1 edges or
otherwise it cannot have weight < d(i,j)

#Actual shortest path weight:

d(|lJ)= I(n-l)ij —_ I(n)lj = I(m+1)ij i

11/26/2003 11

Computing weights bottom-up

@Input: W = (w;)

#We compute: L), L), ..., LD with
Lm=(lm),), m=1,2,...,n-1

#L("1) contains the shortest-path weights

#By definition of L(M js L) = W

#Basic step: Extending shortest paths
edge by edge: Given LMD and W we
obtain LM

11/26/2003 12

Extending Shortest Paths

Extend-Shortest-Paths(L, W)
fori=1tondo

forj=1tondo

I = oo
fork-=-1to-ndo
I’ij = min(l’;, |+ ij)

return L’

1J/

11/26/2003 13

Matrix Multiplication Analogy

N

Extend-Shortest-Paths costs O(n3)
It is like multiplying n x n matrices:
$C=A XB - C'J — SUM(k=1,n) aik ka

Here:
s [(M1) =3
s W=D
s (M=
m Min =+
m + =%
m OO =0

11/26/2003 14

Computing Shortest-Paths
Weights

#\We extend shortest paths edge by edge

#\We compute the sequence:
n-L(1)-=-L Oy V- =W
a L@ =L x W = W2
n LA =1L xW=W3

o LD = L(2) x W = Wn-!

11/26/2003 15

A Slow APSP algorithm

Slow-APSP(W)
L) =W
form=2ton—-1do
L(M = Extend-Shortest-Paths(L(M1 W)
return L1

#Since Extend-Shortest-Paths is O(n3)
Slow-APSP(W) is O(n%)

11/26/2003 16

N

Improving the Running Time

Goal: Compute L("1) and not the whole
sequence L), L), ., L(0-1)

Recall: LM = L("1) foreachm=>n-1

Repeated Squaring:
a LD =LOxW=W
s LO=W2=WxW
a L&) = W4= W2 x W2

u
- L(zlog(n-l)) — W(zlog(n-l)) — W(zlog(n-l)-l) X W(zlog(n-l)-1)=L(n-1)

11/26/2003 17

A Faster APSP Algorithm

N

Faster-APSP(W)
LA) = W
m=1
while m < n-1 do
Lm) = Extend-Shortest-Paths(L(™m), L(M)
m=2m
return L(M)
Faster-APSP(W) is O(n3 log n)

11/26/2003 18

N

The Floyd-Warshall Algorithm

#Another dynamic programming
formulation for All-Pairs Shortest Path

= [he structure of a shortest path
» Uses intermediate vertices of a shortest path

= Recursive solution to the ASPS problem

s Computing the shortest path weights
bottom up

11/26/2003 19

Structure of a Shortest Path, 1

#An intermediate vertex of a simple path
p =<VV,,...,V,> is any vertex of p in
{VZI"'Ivl-l}

#Consider G=(V,E) with V={1,...,n}

#Consider K={1,...,k}, for some k

#For each i, j € V consider paths with
vertices only from K

#Let p be a shortest paths among them

11/26/2003 20

Structure of a Shortest Path, 2

N

#Relationship of p and the i~j shortest
path with vertices from K-1={1,...,k-1}

m k is not intermediate in p 2 the int.
vertices of p are in K-1 - shortest path i~j
with vertices in K-1 has also vertices in K

m If k is an intermediate vertex in p then:
p=p.P, Where p;= i~k and p,= k-]
where p; and p, have int. vertices in K-1

11/26/2003 21

Recursive Solution to ASPS

N

®Let d¥; the weight of a i~j shortest
path with all int. vertices in K
n k=0 > dO; = w;
« k 21 > min{d®Dy, dk1, + don,}
#Since for any path all intermediate

vertices are in V the matrix DM=(d"),)
is such that d™;= d(i,j), for each i, jeV

11/26/2003 22

Computing the Shortest-Paths
Weights Bottom Up

Floyd-Warshall(W)
DO) =\
fork =1tondo
fori=1tondo
forj=1tondo
d®,=min{d®D;, d&, + dkD,}
return DM

11/26/2003 23

Running Time and Space

#The running time is clearly ®(n?3) since
the min operation and the sum takes
O(1) time

#Space needed is ®(n3): Each of the n
D& needs ®(n?) space

#Dropping all superscript leads to a
solution that works in ®(n2) space

11/26/2003 24

C++ implementation of Floyd-
Warshall

N

void FW(int n, matrix< int > &fw) {
matrix< int > t(n, n) =fw;
forCintk =0; k< n; k++) {
for(inti=0;i<n;i++)
for(intj=0;j<n;j++)
fwli][j]=min(t[i][]j]
thillk]I+tk]lj])

t = fw;
}
y

11/26/2003 25

N

Assignments

Textbook, Chapter 25, pages 620—640

Updated information on the class web

page:

www.ece.neu.edu/courses/eceg205/2003fa

11/26/2003 26

	G205Fundamentals of Computer Engineering
	All-Pairs Shortest Paths
	Representation of Input
	Representation of Output
	Predecessor Subgraph
	Printing APSPs
	Some Notation
	Shortest Paths and Matrix Multiplication
	Structure of a Shortest Path
	Recursive Solution
	The Shortest Path Weight
	Computing weights bottom-up
	Extending Shortest Paths
	Matrix Multiplication Analogy
	Computing Shortest-Paths Weights
	A Slow APSP algorithm
	Improving the Running Time
	A Faster APSP Algorithm
	The Floyd-Warshall Algorithm
	Structure of a Shortest Path, 1
	Structure of a Shortest Path, 2
	Recursive Solution to ASPS
	Computing the Shortest-Paths Weights Bottom Up
	Running Time and Space
	C++ implementation of Floyd-Warshall
	Assignments

