
Shortest Paths Algorithms and
the Internet:

The Distributed Bellman Ford
Lecturer: Prof. Chiara Petrioli

Dipartimento di Informatica
Rome University “La Sapienza”

G205: Fundamentals of Computer Engineering

Material for the slides of this lecture was taken from the Kurose Ross book:
“Computer Networking: A top down approach featuring the Internet”

Routing
Goal: determine “good” path
(sequence of routers) thru

network from source to dest.

Routing protocol

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

Graph abstraction for
routing algorithms:

• graph nodes are
routers

• graph edges are
physical links
– link cost: delay, $ cost,

or congestion level

• “good” path:
– typically means

minimum cost path
– other defs possible

Graph theory is indeed useful!!!

Routing Algorithm classification
Global or decentralized

information?
Global:
• all routers have complete

topology, link cost info
• “link state” algorithms
Decentralized:
• router knows physically-

connected neighbors, link costs
to neighbors

• iterative process of computation,
exchange of info with neighbors
(which is the cost of the ‘best
route’ from the neighbor?

• “distance vector” algorithms

Centralized Shortest Paths
Algorithms can be run to
compute the routes (–indeed
we will see Dijkstra is used
in link state algorithms)

Distributed Algorithms based
only on local information
are needed distributed
Bellman Ford

Bellman-Ford
Given a graph G=(N,A) and a node s finds the shortest path

from s to every node in N.
A shortest walk from s to i subject to the constraint that the walk

contains at most h arcs and goes through node s only once, is denoted
shortest(<=h) walk and its length is Dh

i.

Bellman-Ford rule:
Initiatilization Dh

s=0, for all h; wi,k = infinity if (i,k) NOT in A; wk,k =0;
D0

i=infinity for all i!=s.
Iteration:

Dh+1
i=mink [wi,k + Dh

k]
Assumption: non negative cycles (this is the case in a network!!)
The Bellman-Ford algorithm first finds the one-arc

shortest walk lengths, then the two-arc shortest walk
length, then the three-arc…etc. distributed version
used for routing

Bellman-Ford

Dh+1
i=mink [wi,k + Dh

k]

Can be computed locally.
What do I need?

For each neighbor k, I need to know
-the cost of the link to it (known info)
-The cost of the best route from the neighbor k to the destination
(this is an info that each of my neighbor has to send to me via
messages)

In the real world: I need to know the best routes among each
pair of nodes we apply distributed Bellman Ford to get the best
route for each of the possible destinations

Distance Vector Routing Algorithm
-Distributed Bellman Ford

iterative:
• continues until no

nodes exchange info.
• self-terminating: no

“signal” to stop
asynchronous:
• nodes need not

exchange info/iterate
in lock step!

Distributed, based on
local info:

• each node
communicates only
with directly-attached
neighbors

Distance Table data structure
each node has its own
• row for each possible

destination
• column for each directly-

attached neighbor to node
• example: in node X, for dest. Y

via neighbor Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min {D (Y,w)}Z
w

=

=

Cost associated to the (X,Z) link

Info maintained at Z. Min must
be communicated

Distance Table: example

A

E D

CB
7

8
1

2

1

2
D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E
cost to destination via

de
st

in
at

io
n

D (C,D)
E

c(E,D) + min {D (C,w)}D
w=

= 2+2 = 4

D (A,D)
E

c(E,D) + min {D (A,w)}D
w=

= 2+3 = 5

D (A,B)
E

c(E,B) + min {D (A,w)}B
w=

= 8+6 = 14

loop! Best path
from D goes through E

loop!

Distance table in node E after the
algorithm has converged

destination

Path B-C-D-E-A

First
example

Distance table gives routing table
D ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E
cost to destination via

de
st

in
at

io
n

A

B

C

D

A,1

D,5

D,4

D,2

Outgoing link
to use, cost

de
st

in
at

io
n

Routing tableDistance table

Distance Vector Routing: overview

Iterative, asynchronous:
Each local iteration
caused by:

• Local link cost change
• Message from neighbor:

its least cost path change
from neighbor

Distributed:
• each node notifies

neighbors only when its
least cost path to any
destination changes
– neighbors then notify their

neighbors if necessary

wait for (change in local link
cost of msg from neighbor)

recompute distance table

if least cost path to any dest
has changed, notify
neighbors

There are periodic
exchanges of estimates

Each node:

Distance Vector Algorithm:

At all nodes, X:

1 Initialization:
2 for all adjacent nodes v:
3 D (*,v) = infinity /* the * operator means "for all rows" */
4 D (v,v) = c(X,v)
5 for all destinations, y
6 send min D (y,w) to each neighbor /* w over all X's neighbors */

X
X

X
w

From the node to whatever destination going through v

Distance Vector Algorithm (cont.):
8 loop
9 wait (until I see a link cost change to neighbor V
10 or until I receive update from neighbor V)
11
12 if (c(X,V) changes by d)
13 /* change cost to all dest's via neighbor v by d */
14 /* note: d could be positive or negative */
15 for all destinations y: D (y,V) = D (y,V) + d
16
17 else if (update received from V wrt destination Y)
18 /* shortest path from V to some Y has changed */
19 /* V has sent a new value for its min DV(Y,w) */
20 /* call this received new value is "newval" */
21 for the single destination y: D (Y,V) = c(X,V) + newval
22
23 if we have a new min D (Y,w)for any destination Y
24 send new value of min D (Y,w) to all neighbors
25 + periodic asynchronous transmissions
26 forever

w

XX

X
X

X

w
w

Distance Vector Algorithm: example

X Z
12

7

Y

Cost updates from the neighbors are used for sake of recomputing
The best routes and may lead to new cost updates…

Distance Vector Algorithm: example

X Z
12

7

Y

D (Y,Z)
X c(X,Z) + min {D (Y,w)}w=

= 7+1 = 8

Z

D (Z,Y)
X c(X,Y) + min {D (Z,w)}w=

= 2+1 = 3

Y

Line 21 of the algorithm description

Distributed Bellman Ford
correctness

• Completely asynchronous
• Starting from arbitrary estimates of the cost of the

‘best route’ from node i to the destination, if:
– link weights and topology are constant for enough time

for the protocol to converge
– stale info expire after a while
– once in a while updated info are sent from a node to

its neighbors
the Distributed Bellman Ford algorithm converges,

i.e. each node correctly estimates the cost of the
best route to the destination

Distance Vector: link cost changes
Subtitle: Distributed Bellman Ford converges but how fast?

Link cost changes:
• node detects local link cost change
• updates distance table (line 15)
• if cost change in least cost path,

notify neighbors (lines 23,24)

X Z
14

50

Y
1

“good
news
travels
fast”

Z receives update
updates table, new least
Cost informs neighbors

Y receives new least
cost; no modification
in the routing table,
No updates sent

algorithm
Terminates
(exchange of
info triggered by
change completes

Ydetects change
informs neighbors

Distance Vector: link cost changes
Link cost changes:
• good news travels fast
• bad news travels slow - “count

to infinity” problem!
X Z

14

50

Y
60

algorithm
continues

on!

Y detects link cost
Increase but think can
Reach X through Z at a
total cost of 6 (wrong!!)

The path is Y-Z-Y-X

Count-to-infinity–an everyday life example

Which is the problem here?
the info exchanged by the protocol!! ‘the best route to X I have
has the following cost…’ (no additional info on the route)

A Bostonian example…
-assumption: there is only one route going from Northeastern to
Prudential center: Huntington Ave. Let us now consider a network,
whose nodes are Northeastern Un., Simphony Hall, Prudential
Center

Northeastern
.5mile .5mile

Symphony Prudential

Count-to-infinity–everyday life example (2/2)

Northeastern
.5mile .5mile

Symphony Prudential

The Northeastern Un. and Symphony nodes exchange the following info
• NU says ‘the shortest route from me to Prudential is 1 mile’
• Symphony says ‘the shortest path from me to Prudential is .5 mile’
Based on this exchange from NU you go to SY, and from there to Prudential OK
Now due to the big dig they close Huntington Ave from Symphony to Prudential
• Symphony thinks ‘I have to find another route from me to Prudential.
Look there is aa route from Northeastern University to Prudential that
takes 1 mile, I can be at Northearn University in .5 mile I have found
a 1.5 mile route from me to Prudential!!’ Communicates the new cost to
Northeastern that updates ‘OK I can go to Prudential via SY in 2 miles’
VERY WRONG!! Why is it so? I didn’t know that the route from
Northeastern Un. to Prudential was going through the section of
Hungtinton Ave. from Symphony to Prudential (which is closed)!!

Distance Vector: poisoned reverse
If Z routes through Y to get to X :
• Z tells Y its (Z’s) distance to X is

infinite (so Y won’t route to X via Z)
• will this completely solve count to

infinity problem?

X Z
14

50

Y
60

algorithm
terminates

Infinity is advertized by Y
(poisoned reverse)

Routing in the Internet
• The Global Internet consists of Autonomous Systems

(AS) interconnected with each other:
– Stub AS: small corporation: one connection to other AS’s
– Multihomed AS: large corporation (no transit): multiple

connections to other AS’s
– Transit AS: provider, hooking many AS’s together

• Two-level routing:
– Intra-AS: administrator responsible for choice of routing

algorithm within network
– Inter-AS: unique standard for inter-AS routing: BGP

Autonomous system: administered (or at leats some degree of technical
And administrative control) by a single entity, characterized by a given
Routing technology.

Internet AS Hierarchy
Inter-AS border (exterior gateway) routers

Intra-AS interior (gateway) routers

Hierarchical Routing
• aggregate routers into

regions, “autonomous
systems” (AS)

• routers in same AS run
same routing protocol
– “intra-AS” routing

protocol
– routers in different AS

can run different intra-
AS routing protocol

• special routers in AS
• run intra-AS routing

protocol with all other
routers in AS

• also responsible for
routing to destinations
outside AS
– run inter-AS routing

protocol with other
gateway routers

gateway routers

Intra-AS and Inter-AS routing
Gateways:

•perform inter-AS
routing amongst
themselves
•perform intra-AS
routers with other
routers in their
AS

inter-AS, intra-AS
routing in

gateway A.c

network layer
link layer

physical layer

a

b

b

a
aC

A

B
d

A.a
A.c

C.b
B.a

c
b

c

Intra-AS and Inter-AS routing

Host
h2

a

b

b

a
aC

A

B
d c

A.a
A.c

C.b
B.a

c
b

Host
h1

Intra-AS routing
within AS A

Inter-AS
routing

between
A and B

Intra-AS routing
within AS B

• We’ll examine specific inter-AS and intra-AS
Internet routing protocols shortly

Intra-AS Routing
• Also known as Interior Gateway Protocols (IGP)
• Most common Intra-AS routing protocols:

– RIP: Routing Information Protocol
• basically implements the distributed Bellman Ford Algorithm
• Distance metric: # of hops (max = 15 hops)

– Can you guess why? (why limit on the num. of hops, why #hops as
a metric?)

– OSPF: Open Shortest Path First (link state protocol,
uses Dijkstra, more later)

– IGRP: Interior Gateway Routing Protocol (Cisco
proprietary)

Routing instability
Number of hops simple metric. Why don’t we use a more

involved metric?, e.g., link cost = amount of carried traffic

If less traffic goes from A to B then lower delays experienced
from A to B (think at what happens if you have to select a
register line at the supermarket…)

Oscillations possible:
Problem: based on computation more or less
packets use the same path but this changes
the edges weight!!

A
D

C
B

1 1+e

e0

e
1 1

0 0

A
D

C
B

2+e 0

00
1+e 1

A
D

C
B

0 2+e

1+e1
0 0

initially … recompute
routing

… recompute

Usually metric adopted in routing simply the number of hops

A
D

C
B

2+e 0

e0
1+e 1

… recompute

OSPF (Open Shortest Path First)

• “open”: publicly available
• Uses Link State algorithm

– LS packet dissemination
– Topology map at each node
– Route computation using Dijkstra’s algorithm

• OSPF advertisement carries one entry per neighbor
router

• Advertisements disseminated to entire AS (via
flooding)
– Carried in OSPF messages directly over IP

OSPF “advanced” features (not in RIP)

• Security: all OSPF messages authenticated (to
prevent malicious intrusion)

• Multiple same-cost paths allowed (only one path in
RIP)

• Load balancing
• For each link, multiple cost metrics for different TOS

(e.g., satellite link cost set “low” for best effort; high
for real time)

• Integrated uni- and multicast support:
– Multicast OSPF (MOSPF) uses same topology

data base as OSPF
• Hierarchical OSPF in large domains.

Hierarchical OSPF

•Two-level hierarchy: local area, backbone.

–Link-state advertisements only in area

–each nodes has detailed area topology; only know
direction (shortest path) to nets in other areas.

Further readings

If you still have doubts:
Asynchronous, distributed Bellman Ford description+
formal proof it converges to shortest paths in:

D.Bertsekas, R. Gallager, “Data Networks”, Prentice Hall 1992,
Pag 404-410

Internet drafts su RIP and OSPF (the latter unreadable):
available on the web

	Routing
	Routing Algorithm classification
	Bellman-Ford
	Distance Vector Routing Algorithm-Distributed Bellman Ford
	Distance Table: example
	Distance table gives routing table
	Distance Vector Routing: overview
	Distance Vector Algorithm:
	Distance Vector Algorithm (cont.):
	Distance Vector Algorithm: example
	Distance Vector Algorithm: example
	Distributed Bellman Fordcorrectness
	Distance Vector: link cost changes
	Distance Vector: link cost changes
	Count-to-infinity–an everyday life example
	Distance Vector: poisoned reverse
	Routing in the Internet
	Internet AS Hierarchy
	Hierarchical Routing
	Intra-AS and Inter-AS routing
	Intra-AS and Inter-AS routing
	Intra-AS Routing
	Routing instability
	OSPF (Open Shortest Path First)
	OSPF “advanced” features (not in RIP)
	Hierarchical OSPF

