G205
Fundamentals of Computer Engineering
Stefano Basagni
Fall 2003
M-W, 9:50am-11:30am, 410 Ell
Search Trees

- Dynamic data structures supporting dynamic set operations:
 - Search
 - Minimum, maximum
 - Predecessor, successor
 - Insert, delete
- Implement dictionary and priority queues
Binary Search Trees (BSTs)

- Binary trees
- Each node is an object that contains:
 - Key, satellite data
 - Pointer left to the left child
 - Pointer right to the right child
 - Pointer p to the parent
- The root node is the only one with the pointer p = NIL
- Each leaf of the tree has left = right = NIL
Binary Search Tree Property

Keys satisfy the BINARY SEARCH PROPERTY

Let x be a node in a BST. If y is a node in the left subtree of x then $\text{key}[y] \leq \text{key}[x]$. If y is a node in the right subtree of x then $\text{key}[x] \leq \text{key}[y]$
Visiting a Tree

- Printing out the keys of the tree nodes
- **Preorder** tree visit: Prints the keys in the left subtree, then the root key, then the keys in the right subtree
- **Inorder** tree visit: Left subtree, root, right subtree
- **Postorder** tree visit: Left subtree, right subtree, root
Visiting a BST

- An inorder visit prints out all the keys in sorted order

Inorder-Tree-Walk(x)

if x = NIL then
 Inorder-Tree-Walk(left[x])
 print(key[x])
 Inorder-Tree-Walk(right[x])
Correctness and Analysis

- Induction, from the binary search tree property
- Theorem: If x is the root of an n-node, then Inorder-Tree-Walk(x) takes $\Theta(n)$ time
- Proof: Substitution method by proving that $T(n) = (c+d)n + c$ (complete induction)
Querying a Binary Search Tree

- Typical search operation in a BST:
 - Searching for a key stored in the tree
 - Minimum
 - Maximum
 - Successor
 - Predecessor
- All in $O(h)$ time, where h is the height of the tree
Searching, Recursive Version

- **Input:** pointer \(t \) to the root of the tree and the key to be searched
- **Output:** pointer to the node with \(k \) or NIL

\[
\text{Tree-Search}(x, k) \\
\begin{align*}
\text{if } x &= \text{NIL or } k = \text{key}[x] \text{ return } x \\
\text{if } k &< \text{key}[x] \\
&\text{then return } \text{Tree-Search}(\text{left}[x], k) \\
\text{else return } \text{Tree-Search}(\text{right}[x], k)
\end{align*}
\]
Searching, Iterative Version

Recursion is “unrolled” into a while loop

\[\text{It-Tree-Search}(x,k)\]

\[
\text{while } x \neq \text{NIL} \text{ and } k \neq \text{key}[x] \text{ do} \\
\quad \text{if } k < \text{key}[x] \\
\quad \quad \text{then } x = \text{left}[x] \\
\quad \quad \text{else } x = \text{right}[x] \\
\]

\[\text{return } x\]

Initial call, in both cases: \text{Tree-Search}(t,k)

Both cases: \(O(h)\)
Minimum and Maximum

- The minimum element is found by following the left child pointers to a NIL

\[
\text{Tree-Minimum}(x)
\]
\[
\quad \text{while } \text{left}[x] \neq \text{NIL} \text{ do } x = \text{left}[x]
\]
\[
\quad \text{return } x
\]

- The binary search property guarantees the correctness of Tree-Minimum

- Similar code for the maximum

- Clearly $O(h)$
The successor of a node x is the node with the smallest key bigger than $\text{key}[x]$.

BS property → No comparisons are needed!

Two cases:

- If the right subtree is non-empty: The successor of x is the minimum in its right subtree.
- If the right subtree is empty: If x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x.

Successor, 1
Successor, 2

Tree-Successor(x)
if right[x]≠NIL
then return Tree-Minimum(right[x])
y=p[x]
while y≠NIL and x=right[y] do
 y=p[y]
 x=y
return y

◆ The time complexity is $O(h)$ (we either go down a path, or up)
Insertion and Deletion

- Insertion and deletion cause a dynamic set to change.
- The BST that represents that set changes too.
- The BST must be modified to reflect the change but the binary search property must continue to hold.
Insertion, 1

- **Input:**
 - root t
 - pointer z to a node such that
 - $\text{key}[z] = v$
 - $\text{left}[z] = \text{NIL}$
 - $\text{right}[z] = \text{NIL}$

- Begins at the root and traces a path downward.

- Pointer x traces a path and y is maintained as the parent of x
Tree-Insert(t, z)
 y=NIL
 x=t
 while x≠NIL do // Traces the path
 y=x
 if key[z]<key[x]
 then x=left[x]
 else x=right[x]
 p[z]=y // z’s parent is initialized
Insertion, 3

if $y = \text{NIL}$

then $t = z$ // Tree was empty

else if $\text{key}[z] < \text{key}[y]$

then $\text{left}[y] = z$

else $\text{right}[y] = z$

◆ A new node is always inserted as a leaf

◆ Time complexity: $O(h)$
Deletion, 1

- **Input:**
 - root t
 - pointer z to the node to be deleted

- **Three cases:**
 1. z has no children \Rightarrow $p[z]=NIL$
 2. z has only one child: z is “spliced out”
 3. z has two children: z’s successor y with no left child is spliced out and z and y data are swapped

- **Time complexity:** $O(h)$
Deletion, 1

Tree-Delete(t,z)
 if left[z]=NIL or right[z]=NIL
 then y=z // Find y in three cases
 else y=Tree-Successor(z)
 if left[y]≠NIL // x=non-NIL child of y
 then x=left[y]
 else x=right[y]
 if x≠NIL then p[x]=p[y] // y is spliced out
Deletion, 2

if p[y]=NIL
 then t=x
else if y=left[p[y]]
 then left[p[y]]=x
 else right[p[y]]=x

if y≠z
 then key[z]=key[y]
 copy y’s satellite data into z

return y // To be recycled
Randomly Built BSTs

- All operation on a BST take $O(h)$
- h can vary depending in insertion
- Worst case: items are inserted in strictly increasing order: $h = n-1$
- It can be shown that $h \geq \log n$
- It can be proven that the average height h of a BST is in $O(\log n)$
Assignments

- Textbook, Chapter 12, pages 253—264
- Updated information on the class web page:

 www.ece.neu.edu/courses/eceg205/2003fa