G205
Fundamentals of Computer Engineering

CLASS 10, Wed. Oct. 8 2003
Stefano Basagni
Fall 2003
M-W, 9:50am-11:30am, 410 Ell
Hash Tables, 1

- Dictionary operations: Insert, delete and Search
- Implementation of Dictionaries: HASH TABLES
- Expected time for search: $O(1)$
- Worst case time for search: $\Theta(n)$
Hash Tables, 2

Generalize ordinary arrays

- Ordinary array stores the element whose key is k in position k of the array
- Direct addressing: Given a key k, the element whose key is k is in the array kth position
- Direct addressing requires to allocate an array with one position for every possible key
Use of Hash Tables

- Number of keys actually stored is « of the number of possible keys
- Size is proportional to the number of keys to be stored (rather than the number of possible keys)
- Given a key k, the index into the array is not necessarily k
- Compute a function of k, and use that value to index into the array
- This function is a hash function
Direct-Address Tables, 1

Scenario

- Maintain a dynamic set
- Each element has a key drawn from a universe \(U = \{0, 1, \ldots, m-1\} \)
- \(m \) isn’t too large
- No two elements have the same key
Direct-Address Tables, 2

Represented by an array $T[0...m-1]$:

- Each **slot**, or position, corresponds to a key in U
- If there’s an element x with key k, then $T[k]$ contains a pointer to x
- Otherwise, $T[k]$ is empty, represented by NIL
Dictionary Operations

Very simple, all O(1):

- DIRECT-ADDRESS-SEARCH(T, k)

 return $T[k]$

- DIRECT-ADDRESS-INSERT(T, x)

 $T[\text{key}[x]] = x$

- DIRECT-ADDRESS-DELETE(T, x)

 $T[\text{key}[x]] = \text{NIL}$
Using Hash Tables

- If U is large direct-address is unpractical
- Often the set K of keys actually stored is small compared to |U|
 - When K is « U less space is required than a direct-address table
 - Storage requirements are down to $\Theta(|K|)$.
 - Can still get average case O(1) search (not worst case)
The Idea Behind Hashing

Instead of storing an element with key \(k \) in slot \(k \), use a function \(h \) and store the element in slot \(h(k) \).

We call \(h \) a **hash function**.

\(h : U \rightarrow \{0, 1, \ldots, m-1\} \), so that \(h(k) \) is a legal slot number.

We say that \(k \) **hashes** to slot \(h(k) \).
Collisions

Collisions: Two or more keys hash to the same slot

- Can happen when there are more possible keys than slots ($|U| > m$)
- For a given set K of keys with $|K| \leq m$, may or may not happen. Definitely happens if $|K| > m$
- Must be prepared to handle collisions in all cases
- Two methods: chaining and open addressing
- Chaining is usually better than open addressing
Collisions Resolution by Chaining

- All elements that hash to the same slot are organized into a list
- Slot j contains a pointer to the head of the list of all stored elements that hash to j
- If there are no such elements, slot j contains NIL
Dictionary Operations with Chaining: Insertion

CHAINED-HASH-INSERT(T, x)

insert x at the head of list T [h(key[x])]

- Worst-case running time is O(1)
- Element being inserted is not already in the list

(It would take an additional search to check if it was already inserted)
Dictionary Operations with Chaining: Search

CHAINED-HASH-SEARCH(T, k)

search for a key k element in list T

[h(k)]

Running time is proportional to the length of the list of elements in slot h(k)
Dictionary Operations with Chaining: Deletion

CHAINED-HASH-DELETE(T, x)
delete x from the list T[h(key[x])]

- pointer x to the element to delete is given (so no search is needed)
- Worst-case running time is $O(1)$ time if the lists are doubly linked
- If the lists are singly linked, then deletion takes as long as searching (we must find x’s predecessor in its list to correctly update next pointers)
Analysis of Hashing with Chaining

Given a key, how long does it take to find an element with that key, if any?

Analysis is in terms of the load factor
\[\alpha = \frac{n}{m} \]

- \(n \) = # of elements in the table
- \(m \) = # of slots in the table = # of (possibly empty) linked lists

\(\alpha = \) number of elements per linked list

Can have \(\alpha < 1 \), \(\alpha = 1 \), or \(\alpha > 1 \)
Worst case analysis

- Worst case is when all n keys hash to the same slot: Single list of length n
- Worst-case time to search is $\Theta(n)$, plus time to compute hash function
- Average case depends on how well the hash function distributes the keys among the slots
Average Case Analysis, 1

- Assume **simple uniform hashing**: Any given element is equally likely to hash into any of the m slots.
- For $j = 0, 1, \ldots, m-1$, denote the length of list $T[j]$ by n_j. Then $n = n_0 + n_1 + \ldots + n_{m-1}$.
- Average value of n_j is $E[n_j] = \alpha = n/m$.
- Assume the hash function takes $O(1)$ time → Search time depends on the length $n_{h(k)}$ of the list $T[h(k)]$.
Average Case Analysis, 2

We consider two cases:

- Unsuccessful search: The hash table contains no element with key k
- Successful Search: The hash table does contain an element with key k
Unsuccessful Search

Theorem: An unsuccessful search takes expected time $\Theta(1 + \alpha)$

Proof Simple uniform hashing \rightarrow any key not in the table is equally likely to hash to any of the m slots. Search unsuccessfully for any key $k = \text{search to the end of the list } T[h(k)]$ \rightarrow Expected length $E[n_{h(k)}] = \alpha$ \rightarrow The expected number of elements examined in an unsuccessful search is α. Adding in the time to compute the hash function, the total time required is $\Theta(1 + \alpha)$.
Successful Search

- The expected time for a successful search is also $\Theta(1+\alpha)$
- The circumstances are slightly different from an unsuccessful search
- The probability that each list is searched is proportional to the number of elements it contains
- **Theorem:** A successful search takes expected time $\Theta(1 + \alpha)$
Analysis Interpretation

- If $n = O(m)$ then $a = n/m = O(m)/m = O(1)$
- Search takes constant time on average
- Insertion takes $O(1)$, worst case
- Deletion takes $O(1)$, worst case
 (doubly-linked list)
- ON AVERAGE dictionary operations take constant time
Hash Functions

What is a good hash function $h: U \to \{0, 1, \ldots, m-1\}$?

- Simple uniform hashing (ideally)
- Unpractical: Key distribution is not known and possibly not independent
- Use heuristic based on the domain of keys to create a hash function that performs well
Keys as Natural Numbers

Hash functions assume that keys are natural numbers (or interpreted as such)

Example: Interpret strings in some radix notation: CLRS

- ASCII values: C = 67, L = 76, R = 82, S = 83
- There are 128 basic ASCII values
- So interpret CLRS as $(67 \times 128^3) + (76 \times 128^2) + (82 \times 128^1) + (83 \times 128^0) = 141,764,947$
Division Method

- \(h(k) = k \mod m \rightarrow m=20, k=91 \rightarrow h(k)=11 \)
- **Advantage:** Fast, requires just one division
- **Disadvantage:** There are bad values of \(m \):
 - Powers of 2 are bad. If \(m = 2^p \) for integer \(p \), then \(h(k) \) is just the least significant \(p \) bits of \(k \)
 - If \(k \) is a character string interpreted in radix \(2^p \) then \(m = 2^{p-1} \) is bad: permuting characters in a string does not change its hash value

Good choice for \(m \): A prime not too close to an exact power of 2
Multiplication Method

1. Choose constant A in the range $0 < A < 1$
2. Multiply key k by A
3. Extract the fractional part of kA
4. Multiply the fractional part by m
5. Take the floor of the result

- **Advantage:** Value of m is not critical
- **Disadvantage:** Slower than division method
How to Choose A

- The multiplication method works with any legal value of A.
- It works better with some values than with others, depending on the keys being hashed.
- D. E. Knuth suggests using $A \approx (\sqrt{5} - 1)/2$.
Assignments

- Textbook, Chapter 11
- Updated information on the class web page:
 www.ece.neu.edu/courses/eceg205/2003fa