G205
Fundamentals of Computer Engineering

CLASS 1
Stefano Basagni
Fall 2003
M-W, 9:50am-11:30am, 410 Ell
Aims of the Class

- Basics of data structures and algorithms
- Resource (e.g., time, space) analysis
- Algorithm correctness
- Implementation issues (C++)
 (This is not a C++ class!)
An ALGORITHM is a:

- Well defined computational procedure
- INPUT VALUE \rightarrow OUTPUT VALUES
- Set of COMPUTATIONAL STEPS to transform the INPUT into the OUTPUT
- Tool for solving a COMPUTATIONAL PROBLEM
Computational Problems

A Computational Problem (CP) is a:

- General term description of an INPUT/OUTPUT relationship
- The way from INPUT to OUTPUT (algorithm) is NOT described
Example: SORTING, 1

As a computational problem:

- INPUT: a sequence of n numbers
 \[<a_1, a_2, \ldots, a_n> \]
- OUTPUT: A permutation (reordering)
 \[<a'_1, a'_2, \ldots, a'_n> \] on the input sequence such that:
 \[a'_1 \leq a'_2 \leq \ldots \leq a'_n \]
EXAMPLE: Sorting, 2

- **Input sequence:** \(<31, 41, 59, 26, 41, 58>\)
- **Output sequence:** \(<26, 31, 41, 41, 58, 59>\)

- The input sequence is called an **INSTANCE** of the sorting problem.
- One CP → many (sorting) algorithms

 - NEXT QUESTION ...
The BEST algorithm for a CP

 Depends on:

- Size of the instance (how many numbers to be sorted?)
- “Format” of the instance (are the numbers sorted already?)
- Restriction on the input values
- Where are the values stored
- The metric of interest (best wrt to what?)
Algorithm EFFICIENCY, 1

How FAST is an algorithm? How much SPACE does it need?

Complexity of an algorithm, as a function of the SIZE OF THE INPUT

- Time complexity often more important than space complexity
- Other complexity metrics (messages)
Algorithm EFFICIENCY, 2

- Grossly speaking: An algorithm is EFFICIENT when its time complexity is at most “polynomial”
 - \(t(n): \log^k n, \sqrt{n}, n, n^k, n^k \log^k n \)
- Exponential time complexities are considered “bad”
 - \(t(n): a^{k(n)}, n^n, n! \)
Algorithm Correctness

💎 An algorithm is said to be CORRECT if *for every* input it HALTS with the expected, correct output
- → Termination
- → Correctness of output

💎 A correct algorithm it is said to solve a computational problem
Data Structures

- Facilitate access and modifications
- Way to store and organize data, i.e., input, output and intermediate values
- Impact on algorithm efficiency
From Algorithms to Programs

- Pseudo-code highlights algorithms properties/requirements
- One algorithm, many programming languages
- C++, object orientation + Standard Template library = very close to pseudo-code
- Executable and understandable
A Working Example: Sorting \(n \) Numbers

- **INPUT:** a sequence of \(n \) numbers
 \(<a_1, a_2, \ldots, a_n>\)

- **OUTPUT:** A permutation (reordering)
 \(<a'_1, a'_2, \ldots, a'_n>\) on the input sequence such that:
 \(a'_1 \leq a'_2 \leq \ldots \leq a'_n \)

- Data structure for the input: ARRAY A with \(n \) elements

- Sorting is said to be IN PLACE if numbers are rearranged in A
Insertion Sort, 1

- Efficient for small numbers of values
- Sort a hand of playing cards
- Input is an array $A[1...n]$
- Sorting in place
Insertion Sort, 2

Insertion-Sort(A,n)
 for j = 2 to n do
 key = A[j]
 i = j - 1
 while (i > 0) and (A[i] > key) do
 A[i + 1] = A[i]
 i = i - 1
 A[i + 1] = key
Insertion Sort, 3

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>[5, 2, 4, 6, 1, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>[2, 5, 4, 6, 1, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>[2, 4, 5, 6, 1, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>[2, 4, 5, 6, 1, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>[1, 2, 4, 5, 6, 3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>[1, 2, 3, 4, 5, 6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insertion Sort: Correctness, 1

- **Via loop invariants**
 - (*) At the start of each iteration of the for loop, the sub-array $A[1 \ldots j-1]$ is sorted

- **We have to show three things:**
 - **Initialization:** (*) is true before the loop
 - **Maintenance:** If (*) is true before an iteration of the loop, it is true before the next one
 - **Termination:** (*) at the end helps to show the algorithm correctness
Insertion Sort: Correctness, 2

- **Init:** $j = 2$, $A[1] = 5$ is sorted!
- **Maint:** The outer loop seek a position for $A[j]$ in $A[1...j-1]$ and insert it in the right position. If $A[1...j-1]$ is sorted, $A[1...j]$ is sorted too (cmp. induction)
- **Termin:** The loop terminates when $j = n+1$. In this case $A[1...n]$ is sorted and hence the algorithm is correct
Analysis of Algorithms, 1

- Analyzing = predicting the resources (here \textit{time}) that the algorithm require
- Model of computation: one-processor RAM = Random Access Machine
 - Instruction are executed serially
 - No concurrent operations
- Usual constant time operations: arithmetic, data movements and control
Analysis of Algorithms, 2

RUNNING TIME as a function of the SIZE OF THE INPUT

- **Input size:**
 - Number of items in the input (e.g., sorting)
 - Total number of bits needed to represent the input in the model (e.g., primality)

- **Running time:** number of primitive operations or “steps” executed
Insertion Sort: Analysis

Insertion-Sort(A, n)
for j = 2 to n do
 key = A[j]
 i = j–1
 while (i>0) and (A[i]>key) do
 A[i+1] = A[i]
 i = i–1
 A[i + 1] = key

<table>
<thead>
<tr>
<th>cost</th>
<th>times</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>n</td>
</tr>
<tr>
<td>c2</td>
<td>n-1</td>
</tr>
<tr>
<td>c3</td>
<td>n-1</td>
</tr>
<tr>
<td>c4</td>
<td>(a)</td>
</tr>
<tr>
<td>c5</td>
<td>(b)</td>
</tr>
<tr>
<td>c6</td>
<td>(c)</td>
</tr>
<tr>
<td>c7</td>
<td>n-1</td>
</tr>
</tbody>
</table>
Insertion Sort: Running time, 1

- $t_j = \text{number of times the while is executed in the } j\text{-th for loop}$
- $(a) = \sum_{j=2}^{n} t_j$
- $(b) = (c) = \sum_{j=2}^{n} (t_j - 1)$
- $T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (a) + c_5 (b) + c_6 (c) + c_7 (n-1)$
Insertion Sort: Running time,\textit{2}

- **Dependency on the while = dependency on the input**
 - **BEST CASE:** while never executed = array is already sorted ($t_j=1$)
 - $T(n) = Cn+D$, LINEAR FUNCTION OF n
 - **WORST CASE:** while always executed = arrays sorted reverse
 - $T(n)= Cn^2+D$, QUADRATIC FUNCTION OF n
Order of Growth

- Actual cost of single operations can be ignored since it depends on the specific computer, on the language, etc.
- Another abstraction: Order of growth. We consider the leading term of a formula, with no constants
- Expressed by the “theta notation”
Analysis, again

- **Worst case analysis**
 - Time complexity in the worst case = longest running time for *any* input of size n
 - It is an UPPER BOUND on the running time for any input
 - INSERTION SORT is $O(n^2)$, i.e., quadratic

- **Average case analysis**
 - A distribution of the input is considered
Assignments

- Textbook, till page 27
- Homework 1: due in class 9/17/2003
- Updated information on the class web page:
 www.ece.neu.edu/courses/eceg205/2003fa