

Biomedical Imaging Endoscopy

Charles A. DiMarzio & Eric M. Kercher EECE–4649 Northeastern University

June 2018

- Mostly Optical
 - Relay Lenses (*e.g.* Hopkins Relay)
 - Fiber Bundles (About 30,000 Fibers)
 - Scanners
 - Small Cameras
- Some Ultrasound (*e.g.* Intra–Vascular Ultrasound)
- Combine Imaging with Therapy/Surgery
- Rigid vs. Flexible
- Side or Forward View
- Diameter
 - Mostly 2 to 14 mm (3 French = 1 mm)
 - Imaging Channel May Be Smaller
 - Remember λ/NA

June 2018

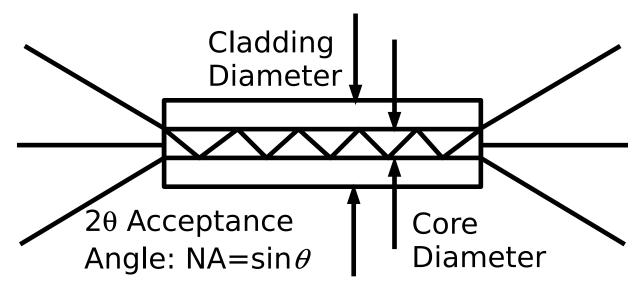
Chuck DiMarzio, Northeastern University

12232..slides6-1

Northeastern University College *of* Engineering

Some Diameters

	1	
Application	Technology	Diameter
Laproscopic	Hopkins relay	5mm to 1cm, some
surgery		smaller
(eg. knee)		
Bronchoscopy	Fiber or video	Few mm. Some rigid
		endoscopes to 1 cm
Rhinoscopy	Hopkins relay	4 mm
Esophagus	HDTV	Few mm
Urethra or	Fiber bundle	2 to 7 mm or Hopkins
bladder		relay to 5.4mm
Ureter or	Fiber bundle	2mm
kidney		
Uterus or	Fiber bundle	2 to 10 mm
fallopian		
tubes		
Colonoscopy	Video camera	Few mm up to 1.4cm


- Reasonably Flexible
- Limited NA
- No Scanning Required
- Hopkins Relay
 - Glass Rods as Lenses

Optical Fibers

- Total Internal Reflection: $NA = \sqrt{n_{core}^2 n_{clad}^2}$
- Etendue: $\frac{\pi^2 D^2}{2} \left(1 \sqrt{1 NA^2} \right) \approx \frac{\pi^2 D^2 NA^2}{4}$
- Single–Mode: $NA \approx \frac{\lambda}{D}$ Multi–Mode: $NA > \frac{\lambda}{D}$
- SM Etendue: $\frac{\pi^2 \lambda^2}{4}$

Northeastern University College *of* Engineering

Fiber Bundles

- "Coherent Bundle"
- Fiber Size
- Fiber NA
- Cross–Talk
- Discrete Imaging

Cameras

- Only Need Wires and Illumination
- Probably White Light
- Pixel Size
- Pixel Number
- Lens (NA)

Scanners

- Rotating
- MEMS Azimuth and Elevation

https://washington-seattle.digication.com /jonliu/Point-of-care_pathology

https://washington-seattle.digication.com /jonliu/spectral_imaging_device

• Oscillating Fiber End

Spectral Encoding

- Grating on a Fiber
- Diameter 0.5 mm or Less
- Wavelength Encodes Angle
- Varifocus Lens (Water) for Depth

http://gmwgroup.harvard.edu/pubs/pdf/1236.pdf

June 2018

Chuck DiMarzio, Northeastern University

12232..slides6-8

- Intravascular Ultrasound
- Coronary Artery
- Side-Viewing
- Theta Dimension by Rotating
- Radial Dimension by Time-of-Flight
- Axial Dimension by Pulling
- Also IV-OCT

June 2018

Chuck DiMarzio, Northeastern University

12232..slides6-9