

Biomedical Imaging Optical Imaging

Charles A. DiMarzio EECE-4649 Northeastern University

May 2018

Optical Imaging

- Basics; μ_s , μ_a , n
- Optical Instruments: Lens Equation, Magnification
- Fourier Transform: NA, and more
- Sources and Detectors
- Microscopy
 - Brightfield Microscopy
 - Fluorescence
 - Phase Contrast
 - Confocal Microscopy
 - Multi-Photon and Harmonic Microscopy
- Optical Coherence Tomography
- Diffusive Optical Tomography

June 2018

(and of course, emission)

June 2018

Chuck DiMarzio, Northeastern University

Skin Optical Properties

Blood and Water

Light Penetration

- Best in Near-IR Window
- Ballistic to 100s of micrometers
- Diffuse to centimeters
- Except in the Eye

Chuck DiMarzio, Northeastern University

Optical Fourier Transform

2–D Fourier Transform Pairs

Chuck DiMarzio, Northeastern University

Pupil as Low–Pass Filter

• Transverse

Northeastern University College *of* Engineering

$$f_x = \frac{u}{\lambda} = \frac{\sin\theta\cos\zeta}{\lambda} \qquad MAX = \frac{NA}{\lambda}$$
$$\delta = \frac{\lambda}{NA}$$

• Axial

$$\delta z = \frac{\lambda}{NA^2}$$

• Examples

NA = 0.95 $\lambda = 500$ nm \rightarrow 526 nm $f_{max} = 1900/mm$ NA = 0.25 $\lambda = 800$ nm \rightarrow 3.2 μ m $f_{max} = 312/mm$

Light Sources

- Tungsten Lamp
- Quartz-Halogen-Tungsten Lamp
- Mercury Lamp
- Light-Emitting Diode
- Laser (Pulsed, CW)

Detectors

- Photon Detectors vs. Thermal Detectors
- Some Vacuum Photomultipliers
- Mostly Silicon Photon Detectors
- Arrays
 - Slower
 - Massively Parallel
 - Pixel Size Choices (Resolution, Full Well, etc.

June 2018

Chuck DiMarzio, Northeastern University

Early Microscopes

- Compound Microscope (Jansen, 1590)
- Simple Microscope (m=300) (Leeuwenhoek, early 1600s)
- Physiological Observation (Hooke 1665)
- Diffraction Theory (Abbe, 1860)
- Diffraction-Limited Imaging (Spencer, mid 1880s)

June 2018

Modern Microscopy

• What's so Modern?

Microscopy has been around since 1590...

- ... But a Lot Has Happened in the Last Few Decades
- Three Reasons why the Time is Right
 - Illumination Sources (From Tungsten to Lasers, LEDs)
 - Fast, Low-Cost Computers (and Cameras, etc.)
 - Chemistry (Molecular Tags)

Microscope Layout

Fourier Transform Between Field Planes and Pupil Planes

• 10X 0.25 Objective with Green Light

$$NA = 0.25$$
 $\lambda = 500$ nm \rightarrow 2 μ m

• Resolution on Camera

 $2 \ \mu m \times 10 = 20 \ \mu m$

- Camera Pixel 5 micrometers
- Point–Spread Function Covers 4 Pixels

Sampling with an Array

- Pixel Pitch vs. Pixel Size
- Pixel Pitch vs. Object Size
- Blurring
- Aliasing
- Nyquist
- Anti-Aliasing Filter

June 2018

Sampling Example

Keeping Nyquist Happy ...

June 2018

Northeastern University College of Engineering

Pathology Slide

Milind Rajadhyaksha

Northeastern University College *of* Engineering

June 2018

Chuck DiMarzio, Northeastern University

Fluorescence 2–Photon Fluorescence Second Harmonic

June 2018

Chuck DiMarzio, Northeastern University

Fluorescence Imaging

Gal, OCT4, Dapi http://www.mediacy.com/index.aspx?page=UManchester_stemcellanalysis

June 2018

Chuck DiMarzio, Northeastern University

DIC and Phase

Epi-Fluorescence with Hoechst Dye, vs. DIC and OQM

Newmark Microscopy and Microanalysis, 2007

June 2018

Reflectance or Fluorescence

Adapted from Milind Rajadhyaksha

June 2018

Brightfield Focusing

In–Focus Image

Out–Of–Focus Image

Confocal Focusing

Judy Newmark (Warner Group), Bill Warger

June 2018

Chuck DiMarzio, Northeastern University

Normal Skin

Milind Rajadhyaksha

June 2018

Chuck DiMarzio, Northeastern University

Skin Cancers

CRM, Nodular BCC

H&E, Nodular BCC

Infiltrative BCC

Infiltrative BCC

Milind Rajadhyaksha

June 2018

Chuck DiMarzio, Northeastern University

Large 3–D Mosaics

Mouse Embryo at Day 9 Z–Stack from Confocal Reflectance Microscopy

Irina Larina (Baylor), Kirill Larin (Houston), Joe Kerimo

June 2018

Multi–Modal Slices

Inverted Microscope Red: DIC Blue: Hoechst CFM Green: CRM

Hoechst Confocal shows nuclei

Weak CRM deep suggests lack of ballistic light.

1. Top (Deep)

3.

2–Photon Microscopy

Huang, UCF

June 2018

Chuck DiMarzio, Northeastern University

2–P Advantages

- IR Light to Reduce Photodamage
- Nonlinearity to Reduce Photodamage
- IR Light to Increase Penetration
- No Pinhole (Better Alignment, Better Sectioning)
- Wide Detector (Collects All Light, including Scattered)
- Easier Filtering

June 2018

Melanin 3–P

Before Activation

After Activation

Kerimo Photochemistry and Photobiology, 2011

June 2018

Chuck DiMarzio, Northeastern University

Collagen Fibrils in SHG

- Long–Range Goal: Understand Organization Under Load
- Current Goal: Measure Organization in Cornea

Thanks to Yair Mega, Mike Robitaille, Ramin Zareian

Collaboration with Kai–Tak Wan and Jeff Ruberti

June 2018

Collagen Fibril Organization

Optical Coherence Tomography

- Michaelson Interfereometer M1 Front = M2 BS 50% R? Rear= AR
- Short Coherence Source
 - Super–Luminescent
 Diode
 - Ti:Sap Laser
 - Other
- M1 is Reference
- Moving Reference Mirror
- M2 is Target
- Interference? Compare...
 - Path Difference
 - Coherence Length

Q

OCT Signals

- Examples with Partial Reflectors
- Air-Glass Interfaces (Simulated Signals)
- Idea Extends to Thick "Distributed" Targets

Chuck DiMarzio, Northeastern University

Lung Images (OCT)

Northeastern University College of Engineering

Initial Lung Image with Transparent Probe

Partially Indented Lung Image

(Detail)

Scale Bar 300 μ m

Andrew Gouldstone, Maricris Silva, MIE Ph.D. 2011

June 2018

Bubble Phantom

100 200 300 400

100 200 300 400

Diffusive Imaging

Chuck DiMarzio, Northeastern University

DOT and Ultrasound **Northeastern University**

College *of* Engineering

Some Safety Issues

- Chemical Toxicity
- Light Toxicity
 - Photochemical
 - Thermal
- Issues for Patient and Operator

Summary

- Imaging with Light Offers
 - Imaging Deep in the Body
 - Imaging with Sub-Micrometer Resolution
 - Non–Invasive Imaging

Summary

- Imaging with Light Offers
 - Imaging Deep in the Body
 - Imaging with Sub-Micrometer Resolution
 - Non-Invasive Imaging
- Pick Any Two