

Biomedical Imaging Ultrasound

Charles A. DiMarzio EECE-4649 Northeastern University

May 2018

Ultrasound Agenda

- Ultrasound Waves
- Interactions with Materials
- Pulses and Transit Time
- A-Scans
- B-Scans
- More Scans
- Sources and Detectors
- Doppler Ultrasound
- Mixed Modalities: PAT, UOT, etc.
- Ultrasound Therapy

May 2018

Chuck DiMarzio, Northeastern University

A Wave is a Wave...

• Pressure Difference Causes Acceleration

$$-\nabla P = \rho a = \rho \frac{\partial \mathbf{v}}{\partial t}$$

• Convergence Increases Pressure

$$K\nabla \mathbf{v} = \frac{\partial P}{\partial t}$$

• Solve for Pressure

$$\nabla^2 P = \frac{\rho}{K} \frac{\partial^2 P}{\partial t^2}$$

• Plane Wave Solution

$$P = P_0 e^{-j(\omega t - kz)}$$

May 2018

Chuck DiMarzio, Northeastern University

Plane Waves

• Plane Wave (Previous Page)

$$P = P_0 e^{-j(\omega t - kz)}$$

$$c = \frac{K}{\rho}$$

• Impedance

$$Z = \rho c$$

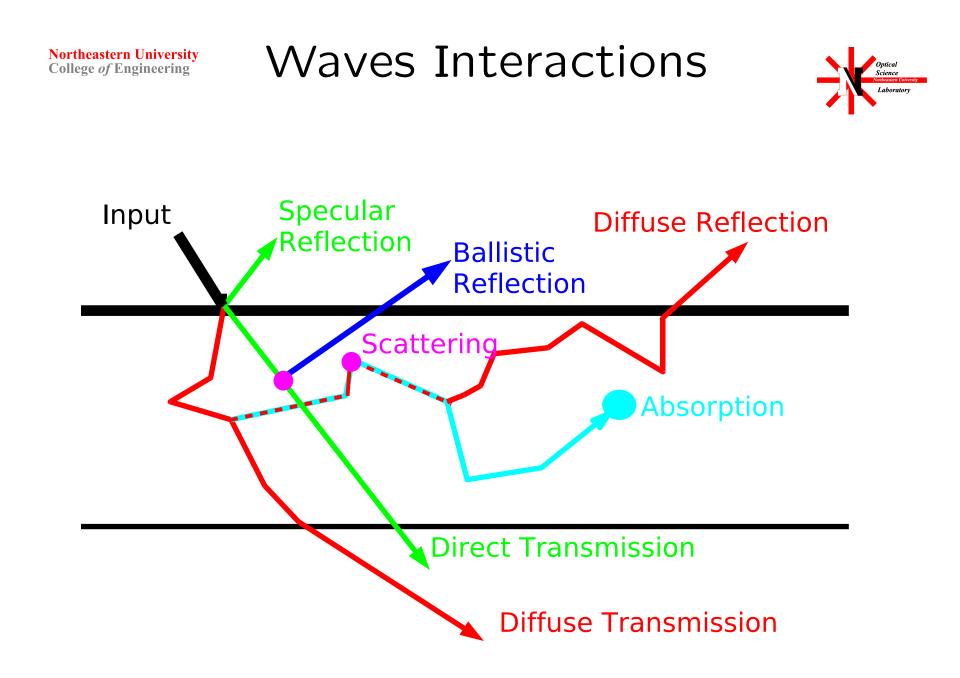
• Reflection

May 2018

$$R = \frac{\frac{\rho'}{\rho}\cos\theta - n\sqrt{1 - \frac{\sin^2\theta}{n^2}}}{\frac{\rho'}{\rho}\cos\theta + n\sqrt{1 - \frac{\sin^2\theta}{n^2}}} = \frac{\cos\theta - \frac{Z}{Z'}\sqrt{1 - \frac{\sin^2\theta}{n^2}}}{\cos\theta + \frac{Z}{Z'}\sqrt{1 - \frac{\sin^2\theta}{n^2}}}$$

Chuck DiMarzio, Northeastern University

Impedance Matching


• Reflection Equation

$$R = \frac{\cos\theta - \frac{Z}{Z'}\sqrt{1 - \frac{\sin^2\theta}{n^2}}}{\cos\theta + \frac{Z}{Z'}\sqrt{1 - \frac{\sin^2\theta}{n^2}}}$$

$$Z = \rho c$$

- Match speed and density
- ρc (Rosy!) Rubber
- Acrylamide Gel (Optical Match Too)

May 2018

(and reverberation, cavitation)

May 2018

Chuck DiMarzio, Northeastern University

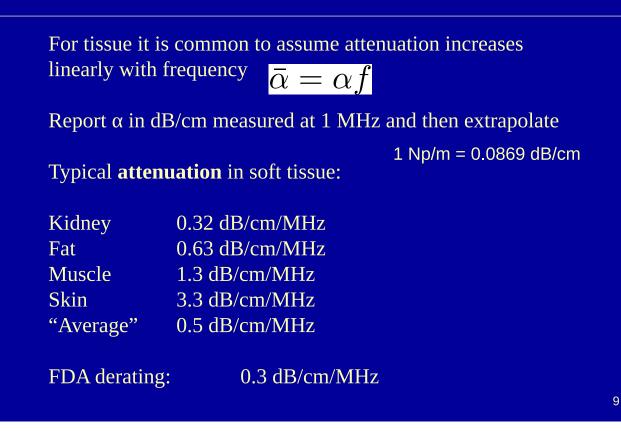
Sound Speed and Impedance					
Material	Velocity (mm/µs)	Impedance(MRayl)			
Water	1.48	1.48			
Blood	1.57	1.61			
Liver	1.55	1.65			
Kidney	1.56	1.62			
Muscle	1.58	1.70			
Fat	1.45	1.40			
Soft tissue	1.54	1.63			
Dense bone	4.10	7.8			
Air	0.33	0.0004			

S. A. Goss, et al. J. Acoust. Soc. Am. 64(2):423–457, 1978. S. A. Goss, et al. J. Acoust. Soc. Am. . 68(1):93–108, 1980.

6

F. A. Duck, Physical Properties of Tissue (Academic, New York, 1990).

Thanks to Robin Cleveland, Oxford


May 2018

Northeastern University College *of* Engineering

Extinction

Attenuation

Beer's Law; $e^{-\mu z}$ where $\mu = 10 \log 10 \alpha$

Thanks to Robin Cleveland, Oxford

May 2018

Attenuation, Frequency, Depth

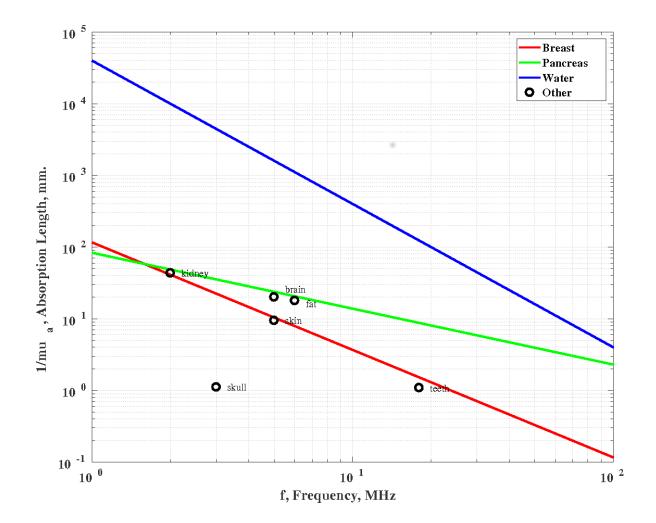
Attenuation - range decreases with higher frequency

Freq (MHz)	λ (mm)	Att. coeff. (dB/cm)	Imaging depth (cm)
2.0	0.75	1.0	15
3.5	0.45	1.8	8
5	0.30	2.5	6
7.5	0.20	3.8	4
10	0.15	5	3
Wavelength:	$\lambda = \frac{C}{f}$		

Imaging depth is usually on the order of **400 wavelengths** (~ -30dB)

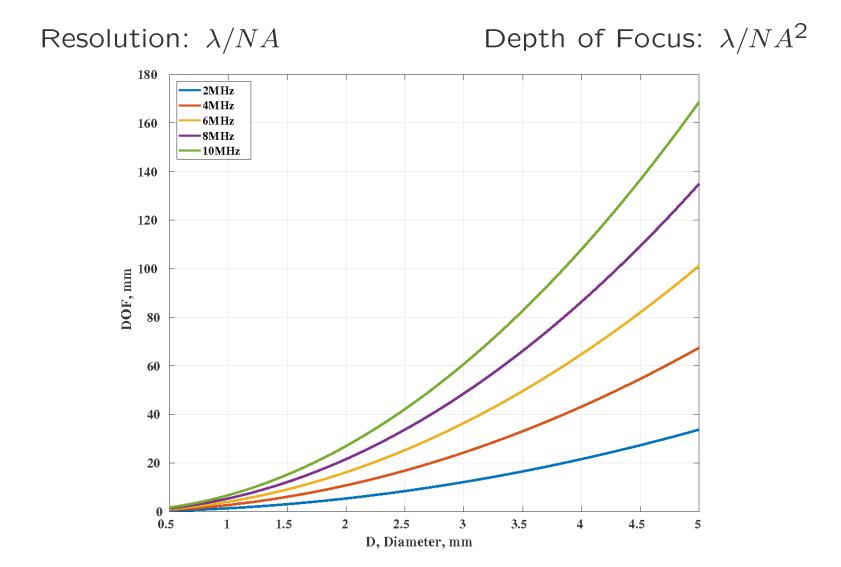
Frequency \nearrow \leftrightarrow Attenuation \checkmark \leftrightarrow Imaging depth

16


Thanks to Robin Cleveland, Oxford

May 2018

Chuck DiMarzio, Northeastern University


Extinction

Resolution & Depth of Focus

Chuck DiMarzio, Northeastern University

- In Air: *c* = 344 m/s
- In Water: c = 1482 m/s
- $f\lambda = c$

1	MHz	1500	μ m
2		740	
5		300	
10		150	
100		15	

- Slow Enough for Time-of-Flight
 - 1482 m/s
 - 1482 mm/ms
 - 1482 $\mu m/\mu s$
- Round Trip: 2z = ct

A–Scan

- One Pulse
- Signal vs. Depth
- Assume Known c

$$2z = ct$$

- Transverse Resolution λ/NA
- Axial Resolution for Pulse Length τ

$$2z = c\tau$$

• Avoid Ambiguity (Pulse Repetition Frequency)

May 2018

Chuck DiMarzio, Northeastern University

B–Scan

Thanks to Robin Cleveland, Oxford

May 2018

Chuck DiMarzio, Northeastern University

Sources and Detectors

- Piezoelectric Transducer (PZT)
 - Usually Resonant, Moderate Q
 - Focused or Not
 - Arrays or Not
- Transmit / Receive Switch
- Maybe Dynamic Focus on Receiver

Doppler Ultrasound

- "Color Doppler"
- Principles

$$f_{doppler} = \frac{2v_{\parallel}}{\lambda}$$

- 100s to 1000s of Hz.
- Pulsed or CW? (Resolution and Ambiguity?)

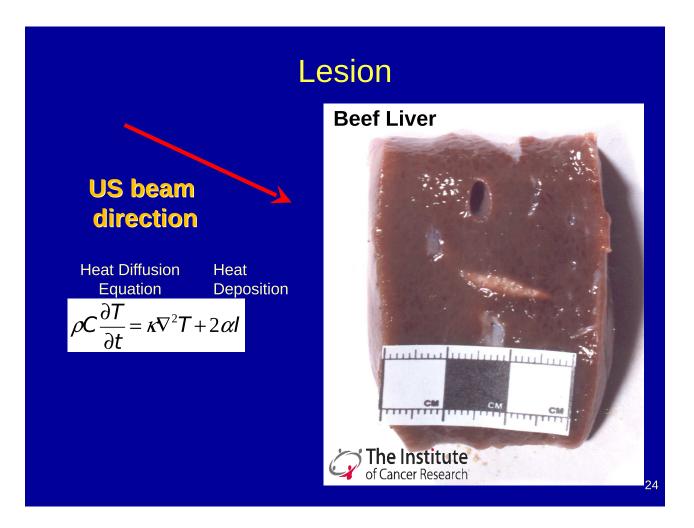
Miscellaneous

- C-Scans
- Microbubbles
- Elastography
- Photoacoustic Tomography
- Ultrasound Modulated Optical Tomography

- Intereference Effect
- Most Noticable with Highly Coherent Sources
 - Ultrasound
 - Optical Imaging with
 Laser Sources
- Random, High–Contrast
 Pattern
- Normally Unwanted

Image Time

- A-Scan Limited by Depth (wait for return)
- B-Scan Limited by Transverse Resolution Requirement
- Example
 - 20-cm Depth (260 μ s for A-Scan)
 - 128 A-Scans per B-Scan
 - Total 24 ms (29 Hz Frame Rate)



- Mechanical Index
- Thermal Index

High Power Focused Ultrasound (HIFU)

Thanks to Robin Cleveland, Oxford

May 2018

Chuck DiMarzio, Northeastern University

HIFU Applications

Applications of HIFU

- Opthamology
 - FDA approval 1985
- Cancer
 - Liver, kidney, prostate, breast, brain, skin...
- Non Cancer
 - Uterine fibroids, liver surgery, BPH, ...
- Trauma Care
 - Acoustic hemostasis through vessel occlusion
 - Transcutaneous
 - Intraoperative

Thanks to Robin Cleveland, Oxford