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Background and
History

• Measurement of Nuclear Spins

– Widely used in physics/chemistry labs (Absorption)

– First Medical applications in the 1980s (Wiggles)

– Improvement over Decades with Computer Technology

• NMR = Nuclear Magnetic Resonance

– But you can’t say “Nuclear” to Patients!

– Not about ionization

– Not about bombs

• Marketable name: Magnetic Resonance Imaging
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Larmor Precession

• An object with magnetic moment µ is placed in an external

magnetic field B. Torque τ is applied on the object:

τ = µ×B (1)

• Torque causes the object to rotate at a frequency propor-

tional to the applied field, i.e., the Larmor frequency

ω = γB (2)

• γ is the gyromagnetic ratio, which depends on the properties

of the object

γ =
|e|
2m

g (3)
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Zeeman Effect

• Spin-state energy levels ”split” under an applied magnetic

field
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Magnetization

• Convenient to talk about bulk material properties.

• Imagine a material with many objects ”spinning” in random

directions...

• Result of a external magnetic field is two-fold:

– Torque causes precession at ω = γB around the B field.

– Two spin states ”appear”; spin up (+1/2) and spin down

(−1/2). These are also aligned with the B field.

• The material now has a net magnetization M =
∑

imi.
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Population Difference

• Spin states populated in a Boltzmann distribution. Most

spins will align with B field (low energy state), but some will

be anti-aligned!

• Fields in a few Teslas, Larmor frequencies in Tens of MHz.

• Photon Energies ≈ 10−26 Joules

(Below µEv)

Nupper/Nlower ≈ e−hf/kT = 10−5

• but N ≈ NA/ cm3

Nupper −Nlower ≈ 10−18/ cm3
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MRI Imaging

• ”Excite” spins into the higher energy state.

– Use RF pulses to ”Flip” M

– If half the spins flip → M rotates 90 degrees

– If most of the spins flip → M rotates 180 degrees

• Let spins relax back to equilibrium. M(x,y, z, t) is 4D!

– Mz: Longitudinal relaxation

– Mx,My: Transverse relaxation

• Reconstruct image from collected signals.
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Bloch Equations

dMx′

dt
= (ω0 − ω)My′ −

Mx′

T2

dMy′

dt
= − (ω0 − ω)Mx′ −

My′

T2
+2πγB1Mz

dMz

dt
= −

Mz −Mz0

T1
−2πγB1My

Green Terms are Rotation “Error”

Red Term is Decay

B1 is RF field parallel to x̂

Blue Terms are Dephasing
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Longitudinal
Relaxation - T1

• AKA Spin-Lattice relaxation, applies to the z-component of

M. Natural decay from spins flipping back to low energy

state (thermal decay).
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Transverse Relaxation
- T2

• AKA Spin-Spin relaxation, applies to the xy-components of
M. Spins in phase create coherent Mxy vector (rotating at ω).
Signal decays as spins de-phase. Local field imhomogeneities
cause faster-than-expected decay → T2*.
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Decay Times

• T1 and T2 decay happen simultaneously. Put together:

S = kρ
(
1− e−TR/T1

)
e−TE/T2

• Rule: T1 > T2.

Parameter to Which Signal is Sensitive

TR Long TR Med TR Short

TE Long 0 0 0
TE Med T2 0
TE Short ρ T1 0
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Contrast

• Endogenous contrast comes from differences in bulk tissue

properties:

– Water, fat: Lots of 1H → High signal (Most of body)

– Bone: Not as much signal

• Tissues have varying T1 and T2. Compare Fat and CSF:
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Contrast Agents

• Exogenous contrast alters T1 and T2 to boost contrast

• Gadolinium

–

–

• Iron Oixide Nanoparticles (Ferumoxytol)

–

–
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Helmholtz Coils

Large, Uniform, DC Magnetic Field
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Anti–Helmholtz Coils

Moderate Field Gradient (More is Better)
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Big Fields: Big
Problems

• Large Coils for Uniform Field

• High Current for High Field

• Superconductors

• Liquid Helium

• High Cost

• B Field Hazards →

• dB/dt: Loud Noise

• Start/Stop Challenges
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Slice Selection

Excite with Narrow–Band RF Signal, B = B0 +Gzz

ω = γB0 + γGzz
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Slice Selection

Match the Resonant Frequency
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Column Measurement

Sort Detected Signal by Frequency, B = B0 +Gxx

ω = γB0 + γGxx
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Row Measurement

Sort Detected Signal by Phase, B = B0 +Gyy

ω = γB0 + γGyy
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Fourier Transforms

Signals vs. Time Fourier Transform of Sum (Amplitude)
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