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Abstract

In this paper we discuss farthest-point problems in which a set or seqerfce points in the plane is given in advance and
can be preprocessed to answer various queries efficiently. First, we give a data structure that can be used to compute the poi
farthest from a query line segment il’(l@gzn) time. Our data structure needs$/dogn) space and preprocessing time. To the best
of our knowledge no solution to this problem has been suggested yet. Second, we show how to use this data structure to obtain &
output-sensitive query-based algorithm for polygonal path simplification. Both results are based on a series of data structures fo
fundamental farthest-point queries that can be reduced to each other.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Proximity problems are fundamental in computational geometry and have been studied intensively since Knuth [17]
posed the post-office problem about three decades ago. In this paper we discuss farthest-point problems in which
set or sequencs of n points in the plane is given in advance and can be preprocessed to answer various queries
efficiently. Our main results are the following.
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First, we present a data structure that can be used to compute the point farthest from a query line segment
O(log?n) time. Our data structure needg/Qogn) space and preprocessing time. To the best of our knowledge no
solution to this problem has been suggested yet.

Second, we design a data structure that can be used to simplify polygonal paths in the following sense: given
pathP = (p1,..., p,) and a reald > 0 we want to find a subpatR’ of P that goes fromp1 to p, and consists
exclusively of A-approximating segmenggcording to theolerance-zone criterion.e., a sequence of line segments
pipr With the property that eaclp; with i < j < k is at mostA away from p; p;. We are interested in a min-#
subpath, i.e., a subpath with the minimum number of vertices. This is motivated by data reduction (e.g. in geographi
information systems) and considered an important problem—finding a near-linear solution is listed as problem 24 ii
theOpen Problems Proje¢21]. Our query-based algorithm finds a min-# subpath in{lbg® n) worst-case running
time. This is slightly worse than the quadratic running time of the best incremental algorithm [8], but much better in
practice since, as we will see later, the running time of our algorithm is output sensitive. Our algorithm has the sam
structure as a query-based algorithm [13] for the weak@ite-beam criteriorwhich requires that a vertex; of P
that is shortcut by an edgg p; of P’ must be within distance: from theline throughp; and p,. The algorithm [13]
outperformed an incremental algorithm similar to [8] in an experimental evaluation.

Before we go into more detail, we briefly introduce some notations. In this papédenotes the length of the
line segmenfpyg, i.e., the Euclidean distance pfandg. For p # g we usepq to denote the line through andg,
directed fromp to g. By projection we will always mean orthogonal projection.

Both main results of this paper rely on our solution of the following problem:

FARTHESTVERTEXINHALFPLANE (FV-halfplane):
Preprocess a convexgon C for queries of the following type. Give@y, /,), whereg is a point and, is a
directed line througly, decide whether there is a vertex©fto the left of/,. If yes, report the one farthest
fromgq. (See Fig. 1.)

Other than one might think at first glance, this problem cannot be solved simply by binary search on the vertices o
C since the distance from the query pajnis not unimodal on the boundary 6f Our data structure for FV-halfplane
answers queries in @g? n) time given Qn logn) space and preprocessing time.

Next we address a problem whose solution yields our first main result, an efficient data structure for finding points
farthest from query line segments.

FARTHESTPOINTINHALFSTRIP (FP-halfstrip):
Preprocess a sétof n points for queries of the following type. Given a triplgt, /,, A), whereg is a point
andl, is a directed line through such that all points ir§ are within distanceA from [, decide whether
there is a poinp € S such that (i)lgp| > A, and (i) the projection op onl, lies beforeg. If yes, report the
point farthest fronmy that fulfills conditions (i) and (ii). (See Fig. 2.)

We prove that if there are points fulfilling conditions (i) and (ii), then among these the one farthest &ormang
them lies on the convex hull &f. Note that this statement does not hold if we drop condition (i): in Fig. 3 the point
is farthest fromy among all points ir§' that fulfill condition (ii), butp does not lie on the convex hull 6t Thanks to
condition (i), our data structure for FV-halfplane in fact solves FP-halfstrip within the same asymptotic bounds. This
in turn yields our first main result: we can preprocess aSseft » points in Qnlogn) time and space such that the
point in S farthest from a query line segmentan be reported in @g?») time.

For our second main result, which deals with polygonal path simplification, point order is important. Thus we
consider an indexed version of FP-halfstrip:

FARTHESTINDEXEDPOINTINHALFSTRIP (FIP-halfstrip):
Preprocess a sequenge-= (p1, ..., p,) of points for queries of the following type. Given a triplgf j, A)
such that all pointg, with i < k < j are within distanceA from the linep; p;, decide whether there is a
point p; with i < k < j such that (i) p; px| > A, and (i) the projection opy on p; p; lies beforep;. If yes,
report the poinf; farthest fromp; that fulfills (i) and (ii). (See Fig. 4.)
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Fig. 1. FV-halfplane. Fig. 2. FP-halfstrip. Fig. 3. Counterexample. Fig. 4. FIP-halfstrip.

Our time and space bounds for FIP-halfstrip are a log-factor above those for FV-halfplane. The data structure for
FIP-halfstrip yields an output-sensitive query-based algorithm for polygonal path simplification. Given a polygonal
pathP = (p1,..., pn) in R? and arealr > 0, the algorithm computes a subpathrovith the minimum numbety,
of vertices among all subpaths satisfying the tolerance-zone criterion. The algorithm ruif,in@) n log® n) time
and uses O« |ngn) space, wherdi,(my;) < n is the number of vertices that can be reached fggnwith at most
(myz — 2) A-approximating segments.

Next we look at a batched version of an indexed farthest-point problem. Given a seguehpeints, we want
to observe how the point farthest from a fixed paginthanges over time while we insert the pointsSobne after
the other. In each round we ignore all those points that lie in a halfplane determined by the newly inserted point. Our
solution assumes knowledge $before the observation starts.

BATCHEDFARTHESTINDEXEDPOINTINHALFPLANE (BFIP-halfplane):
Given a sequencg& = (p1, ..., pn) Of points and a poinp ¢ S, decide for each e {1, ..., n} whether there
is a pointpy € {p1, ..., pi} that lies on the same side @swith respect to the perpendicular bisectorpof
andp;. If yes, report the poinp ; farthest fromp that has the above property.

Our algorithm for this problem takes®@log? ) time and Qn logn) space.

Our paper is structured as follows. In Section 2 we briefly review related work. In Section 3 we first consider the
problem FP-halfplane, a generalization of FV-halfplane where points do not have to be in convex position. In Section 4
we solve the convex case, i.e., FV-halfplane. In Section 5 we show that FP-halfstrip can be reduced to FV-halfplane
and how this helps to solve the farthest-point-to-line-segment problem. In Section 6 we show how the data structure
for FV-halfplane can be used to solve the indexed problem FIP-halfstrip. Section 7 settles the connection between FIP
halfstrip and polygonal path simplification. In Section 8 we address the batched problem BFIP-halfplane. In Section 9
we conclude.

2. Previouswork

The problems that we study are related to the nearest-point query problem [12,18,20,22] and to the all-pairs farthest
and closest-neighbors problem [2,3,24]. Cole and Yap [12] consider closest-point-to-line queries and present a dat
structure with @logn) query time that needs @?) preprocessing time and space. The same result is obtained by
Lee and Ching [18] using a duality-based approach. A data structure wifh®€%) query time that needs @logn)
preprocessing time and(®@) space is presented by Mitra and Chaudhuri [20]. Using simplicial partitions, Mukhopad-
hyay [22] constructs in G:'*¢) time a data structure of size(@logn) that finds a pointlosestto a query line in

O(n%+€) time for arbitrarye > 0. Finding a poinfarthestfrom a query line seems to be easier: it can be done by
O(logn) time given Qnlogn) preprocessing and @) space, see Section 5. This data structure helps us to show
how to find a point farthest from a query line segment ifio@ ) time given Qnlogn) preprocessing and space.
Bespamyatnikh and Snoeyink [6] show how to preprocess &gkt points in Qn logn) time using Qr) space such
that the point closest to a query line segmeutsidethe convex hull ofS can be reported in @ogn) time. Using
this data structure, Bespamyatnikh [5] shows how to solve(inl@y’ n) time a batched problem wherepoints and
n disjoint line segments are given and for each segmentlihgestpoint has to be determined. In contrast, our data
structure for FP-halfstrip (see Section 5) answfarthestpoint queries for ararbitrary line segment in @og? n)
time each, given G:logn) space and preprocessing time.

While the all-pairs nearest neighbors mofpoints in a fixed dimension can be computed in optimét I0g»)
time [24], no algorithm is known to compute the all-pairs farthest neighbotspaiints within the same time bound.
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Agarwal et al. [3] show that the all-pairs farthest neighbor&fcan be computed in @*3log*/3n) time. If the
points are the vertices of a convex polygorRif the all-pairs farthest neighbors can be computed in linear time, even
though the problem has a complexity @iz logn) for arbitrary points [2]. INR® the convex case can be solved in
O(nlog?n) expected time [11].

Although the closest-point-to-line query problem and the all-pairs farthest neighbors problem are well understood
we are not aware of any published work on the farthest-point problems we consider.

3. Farthest point in halfplane
In this section, for completeness we address the following natural generalization of FV-halfplane.

FARTHESTPOINTINHALFPLANE (FP-halfplane):
Preprocess a sétof n points for queries of the following type. Givep, /,), whereg is a point and, is a
directed line througly, decide whether there is a point $nto the left ofl,. If yes, report the one farthest
fromg.

We use the following structure: implicial partitionfor a setS of n points in the plane is a collection of pairs
v (S) = {(S1, 1), (S2,12), ..., (S, t,)}, where the sets of typ§; partition S, andr; is a triangle that contains;
fori =1,...,r. An example of a point sef and a simplicial partition ofS of size 4 are given in Fig. 5. For a
given simplicial partition (S), the crossing numbeof a line/ is the number of triangles a¥ (S) that! intersects.
For example, the liné in Fig. 5 has crossing number 3. The crossing numbe# ¢f) is the maximum crossing
number over all possible linds We say that a simplicial partitiod (S) is fineif |S;| < 2n/r, for every 1<i <r.
MatouSek [19] showed the following important result on the construction of fine simplicial partitions with low crossing
number:

Theorem 1[19]. Let S be a set of: points in the plane, and let r be an integer witk r < n/2. Then a fine simplicial
partition ¥ (S) of sizer with crossing numbe®(,/r) exists. Ifr is constant¥ (§) can be constructed i®(n) time
and space.

Simplicial partitions are the basis of an efficient search data structure, paltétion tree The root of a partition
tree of S hasr childrenvs, ..., v, that correspond one-to-one to the s&tsn ¥ (S). Each childv; is the root of a
recursively defined partition tree ¢f. The partition tree of: points can be computed in(®@logn) time and uses
O() space [19].

To solve the problem FP-halfplane we will take advantage ofdh@est-point Voronoi diagransiven a set of:
sites in the plane, the farthest-point Voronoi diagram is a partition of the plane into cells, each of which is associate
with a site and contains all the points in the plane thatfaréher from that site than from any other site. Unlike
the nearest-pointVoronoi diagram, in the farthest-point Voronoi diagram only the sites on the convex hull have a
non-empty Voronoi region associated with them. In the plane, the farthest-point Voronoi diagram can be constructe
in O(nlogn) time if the sites are in general position [23]. When the sites are the vertices of a convex polygon, the
diagram can be constructed [1] and preprocessed for planar point-location queries [14] in linear time.

We start by constructing the partition tree$fRecall that for a node; of the tree,S; is the subset of stored at
v;, andz; is the triangle of¥ (S) that containss;. Letn; = |S;|. For each node; we compute and store the farthest-
point Voronoi diagram of5; and preprocess it for planar point-location queries. This takes = O(n; logn;) time
and usesr (n;) = O(n;) space. Letl'(n) and S(n) be the total construction time and space consumption of these

Fig. 5. An example of a simplicial partition of size 4. The points$in S, S3, andS, are marked by boxes, circles, disks, and squares, respectively.



50925-7721(05)00057-X/FLA AID:791 Vol.eee(eee) t791 [+model] P.5 (1-12)
COMGEO:m3SC+ v 1.46 Prn:2/09/2005; 9:08 Cg by:ML p. 5

O. Daescu et al. / Computational Geomeiie (eeee) ecoe—eee 5

secondary data structures, respectively. They satisfy the following recurr@ieess t(n)+;_; T (n;) andS(n) =
o) +r+>i_18m) forn>1,andT (1) = S(1) = 1. Since we have thdt_;_; n; =n, thatn; < 2n/r, and that
r is a constant, the general version of the Master theorem [10] yield¥ that= O(n |Og2n). ThusT (n) dominates
the preprocessing time. Similar arguments asff¢r) show thatS(n) = O(nlogn). ThusS(n) dominates the space
consumption.

When we query the partition tree, we want to find the poins ifarthest from the query point that is left of the
directed linel,. We have to consider two different kinds of point s&tsFirst we consider the Q/r) point setsS;
with t; N1, # @. For each such point sét, we recursively search in its simplicial partiti@n(s;). Second we have
to consider those point sefs that lie left of the linel,. For each of these at most- O(,/r) point sets, we locate
the query poinyy in the farthest-point Voronoi diagram to find the point farthest frgnPoint location takes time
logarithmic in the size of the partition. Therefore, we get the following recurrence for the queryQithe= 1 and
forn>1

Qn)<r+ Y Odogn)+ Y Q). (1)

t; ﬂlq =0 t; ﬁlq #0

Let c/r = O(y/r) be the crossing number @f(S). Given an arbitrary > 0, we can set = [2(c+/2)Y#7, which
makesr a constant and yield® (n) = O(n'/2t¢) for n large enough, i.en > 2r. This can be seen by bounding the
first sum in inequality (1) by @ logn) and the second sum lay/r - Q(2n/r). We sum up:

Theorem 2. There is a data structure for FP-halfplane that answers querie®©(n/2¢) time givenO(n log?n)
preprocessing time an@(n logn) space.

4. Farthest vertex in halfplane

We now tackle FV-halfplane, the convex case of FP-halfplane. It is the basis of our solutions for the problems FP-
halfstrip and FIP-halfstrip. The problem is to preprocess a convgan C such that for a query paiy, /,), whereg
is a point and, is a directed line through, one can efficiently decide whether there is a verte& déft of /, and if
yes, report the one farthest fram

Given a query paifg, I,), we first compute potential intersection pointslpfwith the boundandC of C. This
can be done by binary search irl@g») time since the distance frofy is a unimodal function odC. There are
three possible cases, see Fig. 6:/fa) C =¥ andC lies to the right of;; (b) [, N C =@ and( lies to the left ofl;

(c) I, has nonempty intersection with. Knowing thatl, N C = @, case (a) can be handled in constant time. Case (b)
reduces to finding the point afi farthest from/,. This can be achieved in(@g») time by locating the query point

in the farthest-point Voronoi diagram of the verticesfIn the remainder of this section we show how to handle
case (c).

In the preprocessing phase, we construct a balanced binar¥ tire®(n logn) time as follows. The vertices of
the convex polygor€, in counter-clockwise order from the rightmost vertex, are associated with the leaVe#\bf
each internal node, we compute and store the farthest-point Voronoi diagkgrof the leaf descendants of This
takes linear time for each level @f since all point sets are in convex position [1]. Within the same asymptotic time
bound we then preproce¥s for planar point-location queries [14]. Thus the computatio ¢ékes Qn logn) time
in total.

Fig. 6. The three possible cases for the intersectidp efith C.
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We queryT as follows. Consider the edges@fintersected by, . If these edges are incident to the same vertex
of C to the left ofi, then we reporb. Otherwise the edges have two different endpoints to the I€ft. dfet s be the
first andr the second endpoint in counter-clockwise ordersee Fig. 6. We assume that the sequence of points on
C that lie to the left of, does not contain both the rightmost vertex and its counter-clockwise predecessor. Otherwise
the words left and right in the following description have to be exchanged.

We walk in T from s to r and collect a seV of O(logn) farthest-point Voronoi diagrams in two phases. In the
ascending phase we go upwards fronmtil we reach the least common ancestaf s andz. Whenever we getto a
nodeu # a from itsleft child, we add to) the Voronoi diagram stored at the right childuofin the descending phase
we go down fronu towardst. Whenever we go to theght child of a node: # a, we add toy the Voronoi diagram
stored at the left child of. Clearly, all points associated with these Voronoi diagrams are to the lgfiemfd thus the
sought vertex is either, ¢ or one of these points. We locajen O(logn) time in each farthest-point Voronoi diagram
in V and keep track of the point farthest framThis answers a query in@g?n) time.

Theorem 3. There is a data structure for FV-halfplane that answers querig3(ing? n) time givenO(n logn) space
and preprocessing time.

5. Farthest point in halfstrip

In this section we want to preprocess a$eff n points for queries of the following type. Given a triplgt /,, A),
wheregq is a point and, is a directed line through such that all points ir§ are within distanceA from [, decide
whether there is a point € S such that (i)gp| > A, and (ii) the projection o onl, lies beforeg. If yes, report the
point farthest frony that fulfills (i) and (ii). (See Fig. 2.)

FP-halfstrip can be solved by the same approach as for FP-halfplane: construct a partition tree based on a fine sil
plicial partition in O(n1*+¢) time [19] and enhance it with a second-level data structure. For the points at each internal
node of the partition tree, the second-level structure consists of the farthest-point Voronoi diagram preprocessed f
planar point location.

We would prefer to use the faster solution for FV-halfplane, i.e., for the convex case. At first glance it seems that
this is not possible, since among the points that fulfill condition (ii), the ppifatrthest from the query poirt may
lie insidethe convex hullC of S, see Fig. 3. Condition (i), however, does in fact give us a way to use the data structure
for FV-halfplane to solve FP-halfstrip.

For a pointg and a directed ling, with ¢ €, let l,; be the directed line that results from turnifigaroundg by
+90°. Then the points whose projection pnlies beforeg are exactly the points to the left q;

Lemma 4. Given a setS ¢ R? and a triplet(q, l4, A), whereg is a point and), is a directed line througly such that
all points in S are within distanceA from/,, if there is a pointp € S such thaf(i) |gp| > A, and(ii) p lies to the left
of l[], then among all points i to the left ofl[] the point farthest frong is a vertex of the convex hudl of S.

Proof. Let X be the closed strip that is bounded by the two lines at distanfrem /, and letH be the part of§ to
the right ofl;. In Fig. 7, X is the whole shaded areH, is the darker part. Lep be the point farthest from to the left
of l(;, let D be a disk centered gtthat toucheg, and letD’ = DN X. In Fig. 7, the boundary ab is dotted, that of
D’ is bold solid. Finally let/ = D’ U H. Thenp lies on the boundary d¥ . If |pg| > A, U is convex. Thus for any
(finite) setF with p € F C U it holds thatp is a vertex of the convex hulldf. O

Fig. 7. The pointp farthest fromyg is a vertex of the convex hull' of S if |gp| > A.
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By Lemma 4 we can now reduce FP-halfstrip to FV-halfplane.

Theorem 5. There is a data structure for FP-halfstrip that answers querie®itog? n) time givenO(n logn) space
and preprocessing time.

Proof. From Lemma 4, it follows that it suffices to consider the vertices of the convex h8illdius, we first compute
the convex hullC of then points in Qi logn) time [23]. We then proceed as for FV-halfplane, see Section.

This yields our first main result, a data structure for finding the point farthest from a query segment.

Theorem 6. Given a setS of n points, we can construct i@(n logn) space and preprocessing time a data structure
that for any line segmentdetermines irD(log? n) time the point inS farthest froms.

Proof. Lets =uv and let¢ = uv be the line that is directed fromto v. There are two mutually exclusive cases. In
the first case the point farthest fraris also the point farthest from For this case we preproceSdy computing
in O(nlogn) time the convex hulC of S. Then this case can be solved by binary search(ings) time since the
distance fron? is unimodal onC.
Note that the point farthest fromalso gives us the smallest valdesuch thatS lies within a A-strip arounde.
For the second case, I8}, (w < {u, v}) be the set of all points i§ that are separated frosrby the line orthogonal to
s in w. In this case the point farthest frasris the point inS, farthest fromu or the point inS, farthest fromv. These
two points can be determined within the desired time and space bounds by querying a data structure for FP-halfstriy
with the triplets(u, uv, A) and(v, vu, A). O

6. Farthest indexed point in halfstrip

We solve FIP-halfstrip, the indexed version of FP-halfstrip, in a way similar to FV-halfplane. At the same time we

use the data structure for FV-halfplane as a plug-in. Let the points in the input sedubaaenoted by, ..., p,.

In the preprocessing phase we construct a balanced binar§ tofé¢he same structure as for FV-halfplane. The

leaf of 7 is associated with the point; € S. We build the treeZ” bottom-up. At each internal node we compute

and store the convex hull, of the leaf descendanjs,, ..., p;«) of v. We also compute and storewa secondary

level data structure, namely the tree described in Section 4 that solves FV-halfplane (i.e., FP-halfstrip) for the vertices
of C,. The overall computation df requires Qn log?n) time and space.

A query is also very similar to FV-halfplane: for a queiy j, A), we follow the unique path fromp; to p; in 7
collecting a set of O(logn) convex hulls whose union contains all poinig with i < k < j. This is done in the
same way as with the set of farthest-point Voronoi diagrams in Section 4. For each convé kull, we solve
FP-halfstrip for the triple{p;, p; p;, A) using the secondary data structure stored at vartek 7. (Compare the
situations in Figs. 2 and 4!) Thus we can decide '(|’ro@2 |Cy|) time whether there is &, i (v) < k < j(v), such that
the pc;intpk satisfies the two FIP-halfstrip conditions. Since the size of thé &e0O(logn), the overall query time is
O(log®n).

Theorem 7. There is a data structure for FIP-halfstrip that answers querie@{h)g3n) time giverO(n log? n) space
and preprocessing time.

7. Polygonal path simplification and FIP-halfstrip

In this section we use our solution of FIP-halfstrip to extend a recent result of Daescu and Mi [13] for the min-#
version of the polygonal path simplification problem: Given a polygonal path(p1, p2, ..., p,), with n vertices,
and an error toleranca, find a subpath?’ = (p;, = p1, piy, - .-, pi,, = pa) Of P such that the vertices af’ are
an ordered subset of the verticesifeach line segment; p;,;, of P’ is a A-approximation of the corresponding
subpath(p,-j,pin, oo Pijia) of P, and the number of vertices of P’ is minimized.

To decide whether a line segment Bf is a A-approximation of the corresponding subpathAftwo error cri-
teria are commonly used: thelerance-zoneriterion and thenfinite-beamcriterion. The first criterion produces a
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compressed version that better captures the features of the original path, while the second gives a better degree
compression. According to the tolerance-zone criterion, all vertices of the approximated subpattust be within
distancea from the approximating line segment #f, while according to the infinite-beam criterion all vertices of

the approximated subpath must be within distandeom the line supporting the approximating line segment.

Earlier algorithms for the min-# problem first compute thepproximation graplds , with vertex sef{p1, ..., pu}
and an edge for each-approximating segment. Then breadth-first seardfi jnyields a min-# path fronp; to p,.

Chin and Chan [7] showed how to compufe,—and thus solve the min-# problem—in(£3) time and space.
Chen and Daescu [8] managed to avoid the explicit computatia@ pby combining the computation of tha-
approximating segments and the breadth-first search. This was achieved by an iterative procedure thapfor each
incrementally determined the larggssuch thatp; p; is a A-approximating segment. This iterative-incremental al-
gorithm needs only linear space. Its running time &%) for the tolerance-zone criterion and 3 logn) for the
infinite-beam criterion.

For a different metric, namely thei-metric, a subquadratic-time algorithm for the min-# problem has been pro-
posed by Agarwal and Varadarajan [4]. Their algorithm is based on the divide-and-conquer technique, sophisticate
data structures and a compact representatiofi of Time and space complexity of their algorithm aré:€33+¢),
wheree > 0 can be chosen arbitrarily small. However, the algorithm cannot be extended to the case of the Euclidea
metric.

Daescu and Mi [13] presented an output-sensitive query-based algorithm for the infinite-beam criterion. The al:
gorithm runs in QFj,(mip) nlogn) time, whereFi, (mip) < n is the number of vertices that can be reached fyam
with at most(mjp, — 2) A-approximating segments according to the infinite-beam criterionpgpds the number
of vertices on an optimal approximating path, again according to the infinite-beam criterion. While the asymptotic
running time of this algorithm is the same as that of the algorithm by Chen and Daescu [8], experiments showed the
for random paths the value &f, (mip) is usually significantly smaller than the numizeof vertices on the input path
[23].

We repeat the description of this algorithm here since only a slight modification is necessary to apply it to the
tolerance-zone criterion. The general structure of the algorithm is outlined in Algorithm 1. In the pseudbeotie
denotes the Euclidean distance of a pgirfitom a linet.

Algorithm 1 computes an array of integers where foj = 1,...,n the values[;] is the number of vertices in
an optimal solution to the min-# problem on the subpath fgonto p;. At the start, the algorithm set$1] = 0 and
s[jl=o00 for j =2,...,n, and places the index 1 into an initially empty quedeThen, it repeats the following
operations untik[n] is updated for the first time. Létbe the first index ir@. The algorithm removesfrom Q and
finds (through the use of a dynamic binary search ¥ethat contains only unvisited vertices) the first index i
such thats[j] = oo. Then, for eactp;» with ;' > j ands[ ;'] = oo, the algorithm queries a geometric data structure
to determine the vertep; with i < k < j’ that is farthest from the ling; p ;. If d(pk, pip;’) < A, the algorithm sets
s[j'1=s[i]1+ 1 and placeg’ at the tail ofQ.

Since aA-approximation segment according to the tolerance-zone criterion is alsagproximation segment
according to the infinite-beam criterion, extending Algorithm 1 to the tolerance-zone criterion reduces to answering
queries on indexed points, as formulated in problem FIP-halfstrip. More precisely, if the line sggment of P/,
for j e {1,..., my — 1}, approximates the subpaii;,i; ;1] = (Pijs Pij+1s -+ Pijya) of P according to the infinite-
beam criterion, then all the vertices of the subp@ily, i ;1] are within distancei from the Iinep,»j Pijyp- LELL and
l} denote the lines orthogonal g, p;; ., in p;; andp;,,,, respectively. If for each vertex of P, i; <k <iji1, with
the property that; separateg, andp;; , orl; separateg, andp;;, we have thapy is within distanceA from p;; or
Pi; 41, T€spectively, then every vertex on the subp@iby, i;+1] is within distanceA from the line segmeng;; p; ;.

Clearly, this reduces to solving FIP-halfstrip, see Section 6. The result is an output sensitive, query-based algorithr
for solving the min-# problem under the tolerance-zone criterion.

Theorem 8. Given a polygonal patt? = (p1, p2, ..., p,) in the plane, the min-# problem under the tolerance-zone
criterion can be solved iO(F(myz) n Iog3n) time usingO(n |ngn) space, wherd-;(m;) < n is the number of
vertices that can be reached from with at most(mt, — 2) A-approximating segments, ame, is the number of
vertices on an optimal approximating path.
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: 7 = balanced binary search tre@,= queue
: s = integefl..n]; visited= Booleanj2..n]
: Q.enqueue(l)
s[1]=0
for j=2ton do
visited j] = false
sLjl =00
T .inser(j)
: end for
: repeat
11: i = Q.dequeue()
12:  j =T .searcli,s) {yields the smallesj > i such that[;] = oo}
13:  whilethere is a ling throughp; with d(p;+1,0), ..., d(pj,0) <Ado

PN AEWNRE

=
o ©o

14: if notvisited j] then
15: if p;p; is aA-approximating segment according to the infinite-beam critettien
16: visited j] = true
17: 7T .delete()

18: s[jl=sli1+1
19: Q.enqueue()
20: end if

21: end if

22: j =T .searclyj, s)
23:  end while

24 until visitedn|]

25: return s

Algorithm 1. SMPLIFY POLYGONALPATH (p1, ..., Pn; A).

Proof. The algorithm is similar to the query-based algorithm in [13] (here Algorithm 1), except that now each query
takes Q@logn + log®n) time instead of @ogn) time: in line 15 we first spend @gn) time to decide whether
some segmer; p; is a A-approximating segment according to the infinite-beam criterion. If the answer is positive,
we now use Theorem 7 and spend additiondb@¥ ») time to decide whethep; p; is a A-approximating segment
according to the tolerance-zone criterion. This changes the running time of Algorithm 1 ft&(#y) n logn) to
O(Fiz(m) nlog®n). O

8. Batched farthest indexed point in halfplane

In this section we consider the problem BFIP-halfplane: given a sequeace, ..., p,) Of points and a point
p ¢ S, decide for eachi € {1, ..., n} whether there is a poinis € {p1, ..., p;} that lies on the same side aswith
respect to the perpendicular bisectopaindp; . If yes, report the poinp  farthest fromp that has the above property.

A version of BFIP-halfplane without the index restriction has been considered in [16]. There the problem of com-
puting the minimum-sum dipolar spanning tree (MSST) is considered. The MSST of a pdirissetree with vertex
setS and two non-leaf nodes, y € S that minimizesixy| + maxr,, r,}, wherer, andr, are the radii of two disks
centered ak andy whose union covers. In the computation of the MSST the following subproblem shows up:
report for each poinp; € S a point farthest from the fixed point ¢ S that lies on the same side aswith respect
to the perpendicular bisector pfand p;. In [16] the problem is reduced to the problem of finding for eagcle §
the first disk in a sequence of disks that doescontainp;. This problem has been addressed in [9] under the name
off-line ball exclusion searcfOLBES. The authors set up a tree data structure with a space requireme@ilof@)
and then query this structure with each poinfinThis results in a total running time of(@logn) for OLBES in the
plane. For dimensiod > 2 the problem is solved differently in@?%(4/2D+1) time. In [16], a version of OLBES
where all disks intersect a common point is solved i [0gn) time and Gn) space by sweeping an arrangement of
circular arcs. The same problem is solved in [15] im@gn) time and space using a tree data structure and fractional
cascading.

We are interested in the problem BFIP-halfplane since it adds a time component to the pure query problem FIP-
halfplane. We want to keep track on how the point farthest from the fixed pathianges over time while we insert
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Fig. 8. The treel” for n = 13. Bold arrows indicate the search path for a pgiet(D1 N ---N D1g) \ D11.

the points ofS one after the other and ignore all those points that lie in a halfplane determined by the newly inserted
point. We solve this problem by setting up a tree data structure similar to that in the proof of Lemma 2 in [15]. Here,
however, we must solve a different OLBES problem in each query and thus need to modify our tree successively.

We need some notation. L&t(x, p) be the open disk centered.athat touchegp and leth(p, ¢) be the closed
halfplane that containg and whose boundary is the perpendicular bisectop @ind ¢q. Note thatx € k(p, q) is
equivalent tgxp| < |xg|, which in turn is equivalent tg ¢ D(x, p). This is the basis of the following lemma that we
need to prove the correctness of our algorithm for BFIP-halfplane.

Lemma 9 [16]. Among the points i Nz (p, q), x is farthest fromp if and only ifg ¢ D(x, p) andg € D(x', p) for
all x’ € S with | px’| > |px]|.

Now we are ready to give our algorithm for BFIP-halfplane. pet. .., p, be the sequence of input points. We
first sort then disks D(p;, p) in order of non-increasing radius. L&y, ..., D, be the resulting sequence. Thus, a
disk Dy in this sequence corresponds to some diglp;, p) and in generak #i. Let D,1 = . We build a binary
treeT as follows. The leaves df correspond to the sequen£n, ..., D,.1, from left to right. Each inner node
stores the intersectiof) of the leaf descendants of(excludingD,,11). We label each node with a pair[a,, b,]
encoding the se§, = {a,, ..., by} Of consecutive indices that correspond to the disks associated with the leaves of
the subtree of” rooted atv. In Fig. 8 a tree withh = 13 is depicted. We build@ in a bottom-up fashion. Each inner
node has two children in the previous level, except possibly a level’s rightmost node, which can have a right child in
an earlier level, see the node with lap@] 13] in Fig. 8. We queryl" with the points inS, and the answer of a query
will correspond to the index of the first disk in the sequepge. .., D, 1 that doeshot contain the query point.

Unlike [9,15] we start with an empty skeletonBf i.e., all inner nodes are labeled bya,, b,], but all leaves and
all intersectiond,, are set taR2. The order in which we query becomes crucial. We go through the ppints. , p, €
S in order of increasing index. When we query with the pgintonly the disksD(p1, p), ..., D(pi—1, p) have been
inserted inT. Before queryingl’ with p; we updatel’ by adding the new dislo, = D(p;, p) (recall that usually
k # i) to the intersectior, for each node on the path from the root to the leaf that correspond®toQuerying
T with p; amounts to following a path from the root to a leaf. In each inner nodih left child ¢, the testp; € I,
is performed. Ifp; € I, the query continues with the right, otherwise with the left child pfee Fig. 8. The leaf at
the end of the query path determines what our algorithm reports. L2} be the disk corresponding to that leaf. If
Jj < n, then we report thap; is the point farthest fronp in {p1, ..., p;} N h(p, p;). Otherwise (i.e., ifi =n 4+ 1) we
reportthat{ps, ..., p;} N h(p, p;) is empty. This algorithm yields the following.

Theorem 10. Given a sequenc§ of n points and a poinp ¢ S, BFIP-halfplane can be solved i@(n log?n) time
andO(n logn) space.

Proof. We first show the correctness of the above algorithm. Depending on the index of thb digk consider

two cases. The first case is that n + 1. Thenx is the rightmost root—leaf path. Consider the left children of the
nodes onr. The setsS,; that belong to these left children partiti¢h, ..., n}. In other words, the intersection &f

over these children i®1 N --- N D,. Sincer is the rightmost root—leaf path, the containment queries in all nodes
onm were answered positively. Thys is contained in all disks currently ifi, i.e., p; € D(p1, p) N --- N D(p;, p).
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This means that none of the poinis, ..., p; lies in the halfplané(p, p;). Otherwise Lemma 9 would guarantee that
pi ¢ D(px, p) for the pointp; € {p1, ..., p;} farthest fromp in h(p, p;).

The second case js< n. Again we consider the left children of the nodes on the query paih p;. The setsS,
partition{1, ..., j — 1} if we take only those left childref into account that do not themselves lieonSimilarly to
above, the intersection df over these children i®; N ---N D;_3. Thus, p; is contained in allD; with k < j that
are currently in7. On the other hand, since is not the rightmost root—leaf path, contains at least one node that
is a left child of a node om. The last such left child is the root of the subtree whose rightmost leaf corresponds
to D;. Thusv is associated with some s&t = {i,, ..., j}, where 1<, < j. Since we have already observed that
is contained in allD; with k < j that are currently irf’, butzz came tov via a “no”-branch p; ¢ I,,), we now know
that p; ¢ D;. Letm be such thaD; = D(p,,, p). Note thatp; ¢ D(p,,, p) means thaD(p,,, p) was inserted irf’
before querying withp;, and thusn < i. Sincep; ¢ D(pn., p), andp; € D(p,, p) for all r <i with |pp,| > |ppm|,
Lemma 9 yields thap,, is farthest fromp in {p1, ..., pi} N h(p, pi).

The running time is as follows. Queryirgtakes Qlog®») time since the height df is O(logn) and in each node
of the query path the query point has to be located in the intersettiohsome disks, which takes(@gn) time.
When we updaté by adding a new dislo;, we have to go from the root to the leaf that corresponds toln each
node on this path we must computen D; and update our data structure it This can be done in @bgn) time
per node by a procedure detailed in the proof of Lemma 4 in [16]. Thus, each update also{dakés)Qime. Now,
the running time of @: log® ) is obvious. The space consumption i&:gn) since a) each disk contributes only to
intersections stored on the path from the root to “its” leaf, and b) a disk that contributes to some intersemtios
at most one arc to the boundary Bf see Fact 2 of [16]. O

The definition of BFIP-halfplane and Theorem 10 can be generalized without much effort as follows. Instead of
insisting that the separator pfand p; splits pp; in a ratio of 1:1, any other ratio can be used as long as the split is
orthogonal.

9. Conclusions

We have presented solutions to some very basic farthest-point problems and have shown how they can be used:
solve other, more complex problems efficiently, such as simplifying polygonal paths or determining the point farthest
from a query segment. Both these problems can be solved more efficiently if the solution of the underlying problem
FV-halfplane can be improved. It is possible to reduce the query timgltm®@), e.g., by storing the farthest-point
Voronoi diagrams of al® (n2) subsets of vertices that are consecutive on the given convex polygon. However, it seems
hard to achieve the same improvement under the condition that space consumption and preprocessing time remain
O logn).
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