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Abstract

In this paper we discuss farthest-point problems in which a set or sequenceS of n points in the plane is given in advance a
can be preprocessed to answer various queries efficiently. First, we give a data structure that can be used to comput
farthest from a query line segment in O(log2 n) time. Our data structure needs O(n logn) space and preprocessing time. To the b
of our knowledge no solution to this problem has been suggested yet. Second, we show how to use this data structure to
output-sensitive query-based algorithm for polygonal path simplification. Both results are based on a series of data stru
fundamental farthest-point queries that can be reduced to each other.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Proximity problems are fundamental in computational geometry and have been studied intensively since Kn
posed the post-office problem about three decades ago. In this paper we discuss farthest-point problems i
set or sequenceS of n points in the plane is given in advance and can be preprocessed to answer various
efficiently. Our main results are the following.

✩ This article is based on the preliminary version [O. Daescu, N. Mi, C.-S. Shin, A. Wolff, Farthest-point queries with geometric and comb
constraints, in: Proc. 8th Japanese Conf. on Discrete and Computational Geometry (JCDCG’04), in: Lecture Notes in Computer Science
Verlag, Berlin, 2005].
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First, we present a data structure that can be used to compute the point farthest from a query line se
O(log2 n) time. Our data structure needs O(n logn) space and preprocessing time. To the best of our knowledg
solution to this problem has been suggested yet.

Second, we design a data structure that can be used to simplify polygonal paths in the following sense
pathP = (p1, . . . , pn) and a real∆ > 0 we want to find a subpathP ′ of P that goes fromp1 to pn and consists
exclusively of∆-approximating segmentsaccording to thetolerance-zone criterion, i.e., a sequence of line segme
pipk with the property that eachpj with i < j < k is at most∆ away frompipk . We are interested in a min-
subpath, i.e., a subpath with the minimum number of vertices. This is motivated by data reduction (e.g. in ge
information systems) and considered an important problem—finding a near-linear solution is listed as proble
theOpen Problems Project[21]. Our query-based algorithm finds a min-# subpath in O(n2 log3 n) worst-case running
time. This is slightly worse than the quadratic running time of the best incremental algorithm [8], but much b
practice since, as we will see later, the running time of our algorithm is output sensitive. Our algorithm has th
structure as a query-based algorithm [13] for the weakerinfinite-beam criterionwhich requires that a vertexpj of P

that is shortcut by an edgepipk of P ′ must be within distance∆ from theline throughpi andpk . The algorithm [13]
outperformed an incremental algorithm similar to [8] in an experimental evaluation.

Before we go into more detail, we briefly introduce some notations. In this paper|pq| denotes the length of th
line segmentpq, i.e., the Euclidean distance ofp andq. For p �= q we usepq to denote the line throughp andq,
directed fromp to q. By projection we will always mean orthogonal projection.

Both main results of this paper rely on our solution of the following problem:

FARTHESTVERTEXINHALFPLANE (FV-halfplane):
Preprocess a convexn-gonC for queries of the following type. Given(q, lq), whereq is a point andlq is a
directed line throughq, decide whether there is a vertex ofC to the left oflq . If yes, report the one farthe
from q. (See Fig. 1.)

Other than one might think at first glance, this problem cannot be solved simply by binary search on the ve
C since the distance from the query pointq is not unimodal on the boundary ofC. Our data structure for FV-halfplan
answers queries in O(log2 n) time given O(n logn) space and preprocessing time.

Next we address a problem whose solution yields our first main result, an efficient data structure for findin
farthest from query line segments.

FARTHESTPOINTINHALFSTRIP(FP-halfstrip):
Preprocess a setS of n points for queries of the following type. Given a triplet(q, lq,∆), whereq is a point
and lq is a directed line throughq such that all points inS are within distance∆ from lq , decide whethe
there is a pointp ∈ S such that (i)|qp| � ∆, and (ii) the projection ofp on lq lies beforeq. If yes, report the
point farthest fromq that fulfills conditions (i) and (ii). (See Fig. 2.)

We prove that if there are points fulfilling conditions (i) and (ii), then among these the one farthest fromq among
them lies on the convex hull ofS. Note that this statement does not hold if we drop condition (i): in Fig. 3 the pop

is farthest fromq among all points inS that fulfill condition (ii), butp does not lie on the convex hull ofS. Thanks to
condition (i), our data structure for FV-halfplane in fact solves FP-halfstrip within the same asymptotic bound
in turn yields our first main result: we can preprocess a setS of n points in O(n logn) time and space such that t
point inS farthest from a query line segments can be reported in O(log2 n) time.

For our second main result, which deals with polygonal path simplification, point order is important. Th
consider an indexed version of FP-halfstrip:

FARTHESTINDEXEDPOINTINHALFSTRIP(FIP-halfstrip):
Preprocess a sequenceS = (p1, . . . , pn) of points for queries of the following type. Given a triplet(i, j,∆)

such that all pointspk with i < k < j are within distance∆ from the linepipj , decide whether there is
pointpk with i < k < j such that (i)|pipk| � ∆, and (ii) the projection ofpk onpipj lies beforepi . If yes,
report the pointpk farthest frompi that fulfills (i) and (ii). (See Fig. 4.)
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Fig. 1. FV-halfplane. Fig. 2. FP-halfstrip. Fig. 3. Counterexample. Fig. 4. FIP-halfstrip.

Our time and space bounds for FIP-halfstrip are a log-factor above those for FV-halfplane. The data stru
FIP-halfstrip yields an output-sensitive query-based algorithm for polygonal path simplification. Given a pol
pathP = (p1, . . . , pn) in R

2 and a real∆ > 0, the algorithm computes a subpath ofP with the minimum numbermtz
of vertices among all subpaths satisfying the tolerance-zone criterion. The algorithm runs in O(Ftz(mtz) n log3 n) time
and uses O(n log2 n) space, whereFtz(mtz) � n is the number of vertices that can be reached fromp1 with at most
(mtz − 2) ∆-approximating segments.

Next we look at a batched version of an indexed farthest-point problem. Given a sequenceS of points, we want
to observe how the point farthest from a fixed pointp changes over time while we insert the points ofS one after
the other. In each round we ignore all those points that lie in a halfplane determined by the newly inserted po
solution assumes knowledge ofS before the observation starts.

BATCHEDFARTHESTINDEXEDPOINTINHALFPLANE (BFIP-halfplane):
Given a sequenceS = (p1, . . . , pn) of points and a pointp /∈ S, decide for eachi ∈ {1, . . . , n} whether there
is a pointpf ∈ {p1, . . . , pi} that lies on the same side asp with respect to the perpendicular bisector op
andpi . If yes, report the pointpf farthest fromp that has the above property.

Our algorithm for this problem takes O(n log2 n) time and O(n logn) space.
Our paper is structured as follows. In Section 2 we briefly review related work. In Section 3 we first consi

problem FP-halfplane, a generalization of FV-halfplane where points do not have to be in convex position. In S
we solve the convex case, i.e., FV-halfplane. In Section 5 we show that FP-halfstrip can be reduced to FV-h
and how this helps to solve the farthest-point-to-line-segment problem. In Section 6 we show how the data
for FV-halfplane can be used to solve the indexed problem FIP-halfstrip. Section 7 settles the connection betw
halfstrip and polygonal path simplification. In Section 8 we address the batched problem BFIP-halfplane. In S
we conclude.

2. Previous work

The problems that we study are related to the nearest-point query problem [12,18,20,22] and to the all-pairs
and closest-neighbors problem [2,3,24]. Cole and Yap [12] consider closest-point-to-line queries and prese
structure with O(logn) query time that needs O(n2) preprocessing time and space. The same result is obtain
Lee and Ching [18] using a duality-based approach. A data structure with O(n0.695) query time that needs O(n logn)

preprocessing time and O(n) space is presented by Mitra and Chaudhuri [20]. Using simplicial partitions, Mukho
hyay [22] constructs in O(n1+ε) time a data structure of size O(n logn) that finds a pointclosestto a query line in

O(n
1
2+ε) time for arbitraryε > 0. Finding a pointfarthestfrom a query line seems to be easier: it can be don

O(logn) time given O(n logn) preprocessing and O(n) space, see Section 5. This data structure helps us to
how to find a point farthest from a query line segment in O(log2 n) time given O(n logn) preprocessing and spac
Bespamyatnikh and Snoeyink [6] show how to preprocess a setS of n points in O(n logn) time using O(n) space such
that the point closest to a query line segmentoutsidethe convex hull ofS can be reported in O(logn) time. Using
this data structure, Bespamyatnikh [5] shows how to solve in O(n log2 n) time a batched problem wheren points and
n disjoint line segments are given and for each segment theclosestpoint has to be determined. In contrast, our d
structure for FP-halfstrip (see Section 5) answersfarthest-point queries for anarbitrary line segment in O(log2 n)

time each, given O(n logn) space and preprocessing time.
While the all-pairs nearest neighbors ofn points in a fixed dimension can be computed in optimal O(n logn)

time [24], no algorithm is known to compute the all-pairs farthest neighbors ofn points within the same time boun
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Agarwal et al. [3] show that the all-pairs farthest neighbors inR
3 can be computed in O(n4/3 log4/3 n) time. If the

points are the vertices of a convex polygon inR
2, the all-pairs farthest neighbors can be computed in linear time,

though the problem has a complexity of�(n logn) for arbitrary points [2]. InR
3 the convex case can be solved

O(n log2 n) expected time [11].
Although the closest-point-to-line query problem and the all-pairs farthest neighbors problem are well und

we are not aware of any published work on the farthest-point problems we consider.

3. Farthest point in halfplane

In this section, for completeness we address the following natural generalization of FV-halfplane.

FARTHESTPOINTINHALFPLANE (FP-halfplane):
Preprocess a setS of n points for queries of the following type. Given(q, lq), whereq is a point andlq is a
directed line throughq, decide whether there is a point inS to the left of lq . If yes, report the one farthe
from q.

We use the following structure: asimplicial partition for a setS of n points in the plane is a collection of pai
Ψ (S) = {(S1, t1), (S2, t2), . . . , (Sr , tr )}, where the sets of typeSi partition S, and ti is a triangle that containsSi

for i = 1, . . . , r . An example of a point setS and a simplicial partition ofS of size 4 are given in Fig. 5. For
given simplicial partitionΨ (S), thecrossing numberof a line l is the number of triangles ofΨ (S) that l intersects.
For example, the linel in Fig. 5 has crossing number 3. The crossing number ofΨ (S) is the maximum crossin
number over all possible linesl. We say that a simplicial partitionΨ (S) is fine if |Si | � 2n/r , for every 1� i � r .
Matoušek [19] showed the following important result on the construction of fine simplicial partitions with low cro
number:

Theorem 1 [19]. LetS be a set ofn points in the plane, and let r be an integer with1� r � n/2. Then a fine simplicia
partition Ψ (S) of sizer with crossing numberO(

√
r) exists. Ifr is constant,Ψ (S) can be constructed inO(n) time

and space.

Simplicial partitions are the basis of an efficient search data structure, calledpartition tree. The root of a partition
tree ofS hasr childrenv1, . . . , vr that correspond one-to-one to the setsSi in Ψ (S). Each childvi is the root of a
recursively defined partition tree ofSi . The partition tree ofn points can be computed in O(n logn) time and uses
O(n) space [19].

To solve the problem FP-halfplane we will take advantage of thefarthest-point Voronoi diagram. Given a set ofn
sites in the plane, the farthest-point Voronoi diagram is a partition of the plane into cells, each of which is as
with a site and contains all the points in the plane that arefarther from that site than from any other site. Unli
the nearest-pointVoronoi diagram, in the farthest-point Voronoi diagram only the sites on the convex hull h
non-empty Voronoi region associated with them. In the plane, the farthest-point Voronoi diagram can be con
in O(n logn) time if the sites are in general position [23]. When the sites are the vertices of a convex polyg
diagram can be constructed [1] and preprocessed for planar point-location queries [14] in linear time.

We start by constructing the partition tree ofS. Recall that for a nodevi of the tree,Si is the subset ofS stored at
vi , andti is the triangle ofΨ (S) that containsSi . Let ni = |Si |. For each nodevi we compute and store the farthe
point Voronoi diagram ofSi and preprocess it for planar point-location queries. This takesτ(ni) = O(ni logni) time
and usesσ(ni) = O(ni) space. LetT (n) andS(n) be the total construction time and space consumption of t

Fig. 5. An example of a simplicial partition of size 4. The points inS1, S2, S3, andS4 are marked by boxes, circles, disks, and squares, respect
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secondary data structures, respectively. They satisfy the following recurrences:T (n) � τ(n)+∑r
i=1 T (ni) andS(n) =

σ(n) + r + ∑r
i=1 S(ni) for n > 1, andT (1) = S(1) = 1. Since we have that

∑r
i=1 ni = n, thatni � 2n/r , and that

r is a constant, the general version of the Master theorem [10] yields thatT (n) = O(n log2 n). ThusT (n) dominates
the preprocessing time. Similar arguments as forT (n) show thatS(n) = O(n logn). ThusS(n) dominates the spac
consumption.

When we query the partition tree, we want to find the point inS farthest from the query pointq that is left of the
directed linelq . We have to consider two different kinds of point setsSi . First we consider the O(

√
r) point setsSi

with ti ∩ lq �= ∅. For each such point setSi , we recursively search in its simplicial partitionΨ (Si). Second we hav
to consider those point setsSi that lie left of the linelq . For each of these at mostr − O(

√
r) point sets, we locat

the query pointq in the farthest-point Voronoi diagram to find the point farthest fromq. Point location takes tim
logarithmic in the size of the partition. Therefore, we get the following recurrence for the query time:Q(1) = 1 and
for n > 1

Q(n) � r +
∑

ti∩lq=∅
O(logni) +

∑

ti∩lq �=∅
Q(ni). (1)

Let c
√

r = O(
√

r ) be the crossing number ofΨ (S). Given an arbitraryε > 0, we can setr = �2(c
√

2)1/ε	, which
makesr a constant and yieldsQ(n) = O(n1/2+ε) for n large enough, i.e.,n � 2r . This can be seen by bounding t
first sum in inequality (1) by O(r logn) and the second sum byc

√
r · Q(2n/r). We sum up:

Theorem 2. There is a data structure for FP-halfplane that answers queries inO(n1/2+ε) time givenO(n log2 n)

preprocessing time andO(n logn) space.

4. Farthest vertex in halfplane

We now tackle FV-halfplane, the convex case of FP-halfplane. It is the basis of our solutions for the proble
halfstrip and FIP-halfstrip. The problem is to preprocess a convexn-gonC such that for a query pair(q, lq), whereq

is a point andlq is a directed line throughq, one can efficiently decide whether there is a vertex ofC left of lq and if
yes, report the one farthest fromq.

Given a query pair(q, lq), we first compute potential intersection points oflq with the boundary∂C of C. This
can be done by binary search in O(logn) time since the distance fromlq is a unimodal function on∂C. There are
three possible cases, see Fig. 6: (a)lq ∩ C = ∅ andC lies to the right oflq ; (b) lq ∩ C = ∅ andC lies to the left oflq ;
(c) lq has nonempty intersection withC. Knowing thatlq ∩ C = ∅, case (a) can be handled in constant time. Cas
reduces to finding the point onC farthest fromlq . This can be achieved in O(logn) time by locating the query poin
in the farthest-point Voronoi diagram of the vertices ofC. In the remainder of this section we show how to han
case (c).

In the preprocessing phase, we construct a balanced binary treeT in O(n logn) time as follows. The vertices o
the convex polygonC, in counter-clockwise order from the rightmost vertex, are associated with the leaves ofT . At
each internal nodeu, we compute and store the farthest-point Voronoi diagramVu of the leaf descendants ofu. This
takes linear time for each level ofT since all point sets are in convex position [1]. Within the same asymptotic
bound we then preprocessVu for planar point-location queries [14]. Thus the computation ofT takes O(n logn) time
in total.

Fig. 6. The three possible cases for the intersection oflq with C.
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We queryT as follows. Consider the edges ofC intersected bylq . If these edges are incident to the same vertev

of C to the left oflq then we reportv. Otherwise the edges have two different endpoints to the left oflq . Let s be the
first andt the second endpoint in counter-clockwise order onC, see Fig. 6. We assume that the sequence of poin
C that lie to the left oflq does not contain both the rightmost vertex and its counter-clockwise predecessor. Oth
the words left and right in the following description have to be exchanged.

We walk in T from s to t and collect a setV of O(logn) farthest-point Voronoi diagrams in two phases. In
ascending phase we go upwards froms until we reach the least common ancestora of s andt . Whenever we get to
nodeu �= a from its left child, we add toV the Voronoi diagram stored at the right child ofu. In the descending phas
we go down froma towardst . Whenever we go to theright child of a nodeu �= a, we add toV the Voronoi diagram
stored at the left child ofu. Clearly, all points associated with these Voronoi diagrams are to the left oflq and thus the
sought vertex is eithers, t or one of these points. We locateq in O(logn) time in each farthest-point Voronoi diagra
in V and keep track of the point farthest fromq. This answers a query in O(log2 n) time.

Theorem 3. There is a data structure for FV-halfplane that answers queries inO(log2 n) time givenO(n logn) space
and preprocessing time.

5. Farthest point in halfstrip

In this section we want to preprocess a setS of n points for queries of the following type. Given a triplet(q, lq,∆),
whereq is a point andlq is a directed line throughq such that all points inS are within distance∆ from lq , decide
whether there is a pointp ∈ S such that (i)|qp| � ∆, and (ii) the projection ofp on lq lies beforeq. If yes, report the
point farthest fromq that fulfills (i) and (ii). (See Fig. 2.)

FP-halfstrip can be solved by the same approach as for FP-halfplane: construct a partition tree based on a
plicial partition in O(n1+ε) time [19] and enhance it with a second-level data structure. For the points at each i
node of the partition tree, the second-level structure consists of the farthest-point Voronoi diagram preproce
planar point location.

We would prefer to use the faster solution for FV-halfplane, i.e., for the convex case. At first glance it see
this is not possible, since among the points that fulfill condition (ii), the pointp farthest from the query pointq may
lie insidethe convex hullC of S, see Fig. 3. Condition (i), however, does in fact give us a way to use the data str
for FV-halfplane to solve FP-halfstrip.

For a pointq and a directed linelq with q ∈ lq let l′q be the directed line that results from turninglq aroundq by
+90◦. Then the points whose projection onlq lies beforeq are exactly the points to the left ofl′q .

Lemma 4. Given a setS ⊂ R
2 and a triplet(q, lq,∆), whereq is a point andlq is a directed line throughq such that

all points inS are within distance∆ from lq , if there is a pointp ∈ S such that(i) |qp| � ∆, and(ii) p lies to the left
of l′q , then among all points inS to the left ofl′q the point farthest fromq is a vertex of the convex hullC of S.

Proof. Let Σ be the closed strip that is bounded by the two lines at distance∆ from lq and letH be the part ofS to
the right ofl′q . In Fig. 7,Σ is the whole shaded area,H is the darker part. Letp be the point farthest fromq to the left
of l′q , let D be a disk centered atq that touchesp, and letD′ = D ∩ Σ . In Fig. 7, the boundary ofD is dotted, that o
D′ is bold solid. Finally letU = D′ ∪ H . Thenp lies on the boundary ofU . If |pq| � ∆, U is convex. Thus for an
(finite) setF with p ∈ F ⊂ U it holds thatp is a vertex of the convex hull ofF . �

Fig. 7. The pointp farthest fromq is a vertex of the convex hullC of S if |qp| � ∆.
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By Lemma 4 we can now reduce FP-halfstrip to FV-halfplane.

Theorem 5. There is a data structure for FP-halfstrip that answers queries inO(log2 n) time givenO(n logn) space
and preprocessing time.

Proof. From Lemma 4, it follows that it suffices to consider the vertices of the convex hull ofS. Thus, we first comput
the convex hullC of then points in O(n logn) time [23]. We then proceed as for FV-halfplane, see Section 4.�

This yields our first main result, a data structure for finding the point farthest from a query segment.

Theorem 6. Given a setS of n points, we can construct inO(n logn) space and preprocessing time a data struct
that for any line segments determines inO(log2 n) time the point inS farthest froms.

Proof. Let s = uv and let	 = uv be the line that is directed fromu to v. There are two mutually exclusive cases.
the first case the point farthest froms is also the point farthest from	. For this case we preprocessS by computing
in O(n logn) time the convex hullC of S. Then this case can be solved by binary search in O(logn) time since the
distance from	 is unimodal onC.

Note that the point farthest from	 also gives us the smallest value∆ such thatS lies within a∆-strip around	.
For the second case, letSw (w ∈ {u,v}) be the set of all points inS that are separated froms by the line orthogonal to
s in w. In this case the point farthest froms is the point inSu farthest fromu or the point inSv farthest fromv. These
two points can be determined within the desired time and space bounds by querying a data structure for FP
with the triplets(u,uv,∆) and(v, vu,∆). �
6. Farthest indexed point in halfstrip

We solve FIP-halfstrip, the indexed version of FP-halfstrip, in a way similar to FV-halfplane. At the same ti
use the data structure for FV-halfplane as a plug-in. Let the points in the input sequenceS be denoted byp1, . . . , pn.
In the preprocessing phase we construct a balanced binary treeT of the same structure as for FV-halfplane. Theith
leaf of T is associated with the pointpi ∈ S. We build the treeT bottom-up. At each internal nodev, we compute
and store the convex hullCv of the leaf descendantspi(v), . . . , pj (v) of v. We also compute and store atv a secondary
level data structure, namely the tree described in Section 4 that solves FV-halfplane (i.e., FP-halfstrip) for the
of Cv . The overall computation ofT requires O(n log2 n) time and space.

A query is also very similar to FV-halfplane: for a query(i, j,∆), we follow the unique path frompi to pj in T
collecting a setC of O(logn) convex hulls whose union contains all pointspk with i < k < j . This is done in the
same way as with the set of farthest-point Voronoi diagrams in Section 4. For each convex hullCv ∈ C, we solve
FP-halfstrip for the triplet(pi,pipj ,∆) using the secondary data structure stored at vertexv of T . (Compare the
situations in Figs. 2 and 4!) Thus we can decide in O(log2 |Cv|) time whether there is ak, i(v) � k � j (v), such that
the pointpk satisfies the two FIP-halfstrip conditions. Since the size of the setC is O(logn), the overall query time is
O(log3 n).

Theorem 7. There is a data structure for FIP-halfstrip that answers queries inO(log3 n) time givenO(n log2 n) space
and preprocessing time.

7. Polygonal path simplification and FIP-halfstrip

In this section we use our solution of FIP-halfstrip to extend a recent result of Daescu and Mi [13] for the
version of the polygonal path simplification problem: Given a polygonal pathP = (p1,p2, . . . , pn), with n vertices,
and an error tolerance∆, find a subpathP ′ = (pi1 = p1,pi2, . . . , pim = pn) of P such that the vertices ofP ′ are
an ordered subset of the vertices ofP , each line segmentpij pij+1 of P ′ is a∆-approximation of the correspondin
subpath(pij ,pij +1, . . . , pij+1) of P , and the number of verticesm of P ′ is minimized.

To decide whether a line segment ofP ′ is a ∆-approximation of the corresponding subpath ofP , two error cri-
teria are commonly used: thetolerance-zonecriterion and theinfinite-beamcriterion. The first criterion produces
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compressed version that better captures the features of the original path, while the second gives a better
compression. According to the tolerance-zone criterion, all vertices of the approximated subpath ofP must be within
distance∆ from the approximating line segment ofP ′, while according to the infinite-beam criterion all vertices
the approximated subpath must be within distance∆ from the line supporting the approximating line segment.

Earlier algorithms for the min-# problem first compute the∆-approximation graphG∆ with vertex set{p1, . . . , pn}
and an edge for each∆-approximating segment. Then breadth-first search inG∆ yields a min-# path fromp1 to pn.
Chin and Chan [7] showed how to computeG∆—and thus solve the min-# problem—in O(n2) time and space
Chen and Daescu [8] managed to avoid the explicit computation ofG∆ by combining the computation of the∆-
approximating segments and the breadth-first search. This was achieved by an iterative procedure that fopi

incrementally determined the largestj such thatpipj is a∆-approximating segment. This iterative-incremental
gorithm needs only linear space. Its running time is O(n2) for the tolerance-zone criterion and O(n2 logn) for the
infinite-beam criterion.

For a different metric, namely theL1-metric, a subquadratic-time algorithm for the min-# problem has been
posed by Agarwal and Varadarajan [4]. Their algorithm is based on the divide-and-conquer technique, soph
data structures and a compact representation ofG∆. Time and space complexity of their algorithm are O(n4/3+ε),
whereε > 0 can be chosen arbitrarily small. However, the algorithm cannot be extended to the case of the E
metric.

Daescu and Mi [13] presented an output-sensitive query-based algorithm for the infinite-beam criterion.
gorithm runs in O(Fib(mib) n logn) time, whereFib(mib) � n is the number of vertices that can be reached fromp1

with at most(mib − 2) ∆-approximating segments according to the infinite-beam criterion, andmib is the number
of vertices on an optimal approximating path, again according to the infinite-beam criterion. While the asy
running time of this algorithm is the same as that of the algorithm by Chen and Daescu [8], experiments sho
for random paths the value ofFib(mib) is usually significantly smaller than the numbern of vertices on the input pat
[13].

We repeat the description of this algorithm here since only a slight modification is necessary to apply i
tolerance-zone criterion. The general structure of the algorithm is outlined in Algorithm 1. In the pseudo-coded(p, 	)

denotes the Euclidean distance of a pointp from a line	.
Algorithm 1 computes an arrays of integers where forj = 1, . . . , n the values[j ] is the number of vertices i

an optimal solution to the min-# problem on the subpath fromp1 to pj . At the start, the algorithm setss[1] = 0 and
s[j ] = ∞ for j = 2, . . . , n, and places the index 1 into an initially empty queueQ. Then, it repeats the followin
operations untils[n] is updated for the first time. Leti be the first index inQ. The algorithm removesi from Q and
finds (through the use of a dynamic binary search treeT that contains only unvisited vertices) the first indexj > i

such thats[j ] = ∞. Then, for eachpj ′ with j ′ � j ands[j ′] = ∞, the algorithm queries a geometric data struc
to determine the vertexpk with i < k < j ′ that is farthest from the linepipj ′ . If d(pk,pipj ′) � ∆, the algorithm sets
s[j ′] = s[i] + 1 and placesj ′ at the tail ofQ.

Since a∆-approximation segment according to the tolerance-zone criterion is also a∆-approximation segmen
according to the infinite-beam criterion, extending Algorithm 1 to the tolerance-zone criterion reduces to an
queries on indexed points, as formulated in problem FIP-halfstrip. More precisely, if the line segmentpij pij+1 of P ′,
for j ∈ {1, . . . ,mtz −1}, approximates the subpathP [ij , ij+1] = (pij ,pij +1, . . . , pij+1) of P according to the infinite
beam criterion, then all the vertices of the subpathP [ij , ij+1] are within distance∆ from the linepij pij+1. Let lj and
l′j denote the lines orthogonal topij pij+1 in pij andpij+1, respectively. If for each vertexpk of P , ij � k � ij+1, with
the property thatlj separatespk andpij+1 or l′j separatespk andpij , we have thatpk is within distance∆ from pij or
pij+1, respectively, then every vertex on the subpathP [ij , ij+1] is within distance∆ from the line segmentpij pij+1.
Clearly, this reduces to solving FIP-halfstrip, see Section 6. The result is an output sensitive, query-based a
for solving the min-# problem under the tolerance-zone criterion.

Theorem 8. Given a polygonal pathP = (p1,p2, . . . , pn) in the plane, the min-# problem under the tolerance-z
criterion can be solved inO(Ftz(mtz) n log3 n) time usingO(n log2 n) space, whereFtz(mtz) � n is the number o
vertices that can be reached fromp1 with at most(mtz − 2) ∆-approximating segments, andmtz is the number o
vertices on an optimal approximating path.
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1: T = balanced binary search tree;Q = queue
2: s = integer[1..n]; visited= Boolean[2..n]
3: Q.enqueue(1)
4: s[1] = 0
5: for j = 2 to n do
6: visited[j ] = false
7: s[j ] = ∞
8: T .insert(j)

9: end for
10: repeat
11: i =Q.dequeue()
12: j = T .search(i, s) {yields the smallestj > i such thats[j ] = ∞}
13: while there is a line	 throughpi with d(pi+1, 	), . . . , d(pj , 	) < ∆ do
14: if not visited[j ] then
15: if pipj is a∆-approximating segment according to the infinite-beam criterionthen
16: visited[j ] = true
17: T .delete(j )
18: s[j ] = s[i] + 1
19: Q.enqueue(j )
20: end if
21: end if
22: j = T .search(j, s)
23: end while
24: until visited[n]
25: return s

Algorithm 1. SIMPLIFY POLYGONALPATH(p1, . . . , pn;∆).

Proof. The algorithm is similar to the query-based algorithm in [13] (here Algorithm 1), except that now each
takes O(logn + log3 n) time instead of O(logn) time: in line 15 we first spend O(logn) time to decide whethe
some segmentpipj is a∆-approximating segment according to the infinite-beam criterion. If the answer is po
we now use Theorem 7 and spend additional O(log3 n) time to decide whetherpipj is a∆-approximating segmen
according to the tolerance-zone criterion. This changes the running time of Algorithm 1 from O(Fib(mib) n logn) to
O(Ftz(mtz) n log3 n). �
8. Batched farthest indexed point in halfplane

In this section we consider the problem BFIP-halfplane: given a sequenceS = (p1, . . . , pn) of points and a poin
p /∈ S, decide for eachi ∈ {1, . . . , n} whether there is a pointpf ∈ {p1, . . . , pi} that lies on the same side asp with
respect to the perpendicular bisector ofp andpi . If yes, report the pointpf farthest fromp that has the above propert

A version of BFIP-halfplane without the index restriction has been considered in [16]. There the problem o
puting the minimum-sum dipolar spanning tree (MSST) is considered. The MSST of a point setS is a tree with vertex
setS and two non-leaf nodesx, y ∈ S that minimizes|xy| + max{rx, ry}, whererx andry are the radii of two disks
centered atx andy whose union coversS. In the computation of the MSST the following subproblem shows
report for each pointpi ∈ S a point farthest from the fixed pointp /∈ S that lies on the same side asp with respect
to the perpendicular bisector ofp andpi . In [16] the problem is reduced to the problem of finding for eachpi ∈ S

the first disk in a sequence of disks that doesnot containpi . This problem has been addressed in [9] under the n
off-line ball exclusion search(OLBES). The authors set up a tree data structure with a space requirement of O(n logn)

and then query this structure with each point inS. This results in a total running time of O(n logn) for OLBES in the
plane. For dimensiond > 2 the problem is solved differently in O(n2−2/(�d/2�)+1) time. In [16], a version of OLBES
where all disks intersect a common point is solved in O(n logn) time and O(n) space by sweeping an arrangemen
circular arcs. The same problem is solved in [15] in O(n logn) time and space using a tree data structure and fract
cascading.

We are interested in the problem BFIP-halfplane since it adds a time component to the pure query prob
halfplane. We want to keep track on how the point farthest from the fixed pointp changes over time while we inse
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Fig. 8. The treeT for n = 13. Bold arrows indicate the search path for a pointq ∈ (D1 ∩ · · · ∩ D10) \ D11.

the points ofS one after the other and ignore all those points that lie in a halfplane determined by the newly i
point. We solve this problem by setting up a tree data structure similar to that in the proof of Lemma 2 in [15
however, we must solve a different OLBES problem in each query and thus need to modify our tree success

We need some notation. LetD(x,p) be the open disk centered atx that touchesp and leth(p,q) be the closed
halfplane that containsp and whose boundary is the perpendicular bisector ofp and q. Note thatx ∈ h(p,q) is
equivalent to|xp| � |xq|, which in turn is equivalent toq /∈ D(x,p). This is the basis of the following lemma that w
need to prove the correctness of our algorithm for BFIP-halfplane.

Lemma 9 [16]. Among the points inS ∩ h(p,q), x is farthest fromp if and only ifq /∈ D(x,p) andq ∈ D(x′,p) for
all x′ ∈ S with |px′| > |px|.

Now we are ready to give our algorithm for BFIP-halfplane. Letp1, . . . , pn be the sequence of input points. W
first sort then disksD(pi,p) in order of non-increasing radius. LetD1, . . . ,Dn be the resulting sequence. Thus
disk Dk in this sequence corresponds to some diskD(pi,p) and in generalk �= i. Let Dn+1 = ∅. We build a binary
treeT as follows. The leaves ofT correspond to the sequenceD1, . . . ,Dn+1, from left to right. Each inner nodev
stores the intersectionIv of the leaf descendants ofv (excludingDn+1). We label each nodev with a pair [av, bv]
encoding the setSv = {av, . . . , bv} of consecutive indices that correspond to the disks associated with the lea
the subtree ofT rooted atv. In Fig. 8 a tree withn = 13 is depicted. We buildT in a bottom-up fashion. Each inn
node has two children in the previous level, except possibly a level’s rightmost node, which can have a right
an earlier level, see the node with label[9,13] in Fig. 8. We queryT with the points inS, and the answer of a que
will correspond to the index of the first disk in the sequenceD1, . . . ,Dn+1 that doesnot contain the query point.

Unlike [9,15] we start with an empty skeleton ofT , i.e., all inner nodesv are labeled by[av, bv], but all leaves and
all intersectionsIv are set toR2. The order in which we query becomes crucial. We go through the pointsp1, . . . , pn ∈
S in order of increasing index. When we query with the pointpi , only the disksD(p1,p), . . . ,D(pi−1,p) have been
inserted inT . Before queryingT with pi we updateT by adding the new diskDk = D(pi,p) (recall that usually
k �= i) to the intersectionIv for each nodev on the path from the root to the leaf that corresponds toDk . Querying
T with pi amounts to following a path from the root to a leaf. In each inner nodev with left child 	, the testpi ∈ I	

is performed. Ifpi ∈ I	, the query continues with the right, otherwise with the left child ofv, see Fig. 8. The leaf a
the end of the query pathπ determines what our algorithm reports. LetDj be the disk corresponding to that leaf.
j � n, then we report thatpj is the point farthest fromp in {p1, . . . , pi} ∩ h(p,pi). Otherwise (i.e., ifj = n + 1) we
report that{p1, . . . , pi} ∩ h(p,pi) is empty. This algorithm yields the following.

Theorem 10. Given a sequenceS of n points and a pointp /∈ S, BFIP-halfplane can be solved inO(n log2 n) time
andO(n logn) space.

Proof. We first show the correctness of the above algorithm. Depending on the index of the diskDj we consider
two cases. The first case is thatj = n + 1. Thenπ is the rightmost root–leaf path. Consider the left children of
nodes onπ . The setsS	 that belong to these left children partition{1, . . . , n}. In other words, the intersection ofI	

over these children isD1 ∩ · · · ∩ Dn. Sinceπ is the rightmost root–leaf path, the containment queries in all n
on π were answered positively. Thuspi is contained in all disks currently inT , i.e.,pi ∈ D(p1,p) ∩ · · · ∩ D(pi,p).
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This means that none of the pointsp1, . . . , pi lies in the halfplaneh(p,pi). Otherwise Lemma 9 would guarantee th
pi /∈ D(pk,p) for the pointpk ∈ {p1, . . . , pi} farthest fromp in h(p,pi).

The second case isj � n. Again we consider the left children of the nodes on the query pathπ of pi . The setsS	

partition{1, . . . , j − 1} if we take only those left children	 into account that do not themselves lie onπ . Similarly to
above, the intersection ofI	 over these children isD1 ∩ · · · ∩ Dj−1. Thus,pi is contained in allDk with k < j that
are currently inT . On the other hand, sinceπ is not the rightmost root–leaf path,π contains at least one node th
is a left child of a node onπ . The last such left childv is the root of the subtree whose rightmost leaf correspo
to Dj . Thusv is associated with some setSv = {iv, . . . , j}, where 1� iv � j . Since we have already observed thatpi

is contained in allDk with k < j that are currently inT , butπ came tov via a “no”-branch (pi /∈ Iv), we now know
thatpi /∈ Dj . Let m be such thatDj = D(pm,p). Note thatpi /∈ D(pm,p) means thatD(pm,p) was inserted inT
before querying withpi , and thusm � i. Sincepi /∈ D(pm,p), andpi ∈ D(pr,p) for all r � i with |ppr | > |ppm|,
Lemma 9 yields thatpm is farthest fromp in {p1, . . . , pi} ∩ h(p,pi).

The running time is as follows. QueryingT takes O(log2 n) time since the height ofT is O(logn) and in each nod
of the query path the query point has to be located in the intersectionIv of some disks, which takes O(logn) time.
When we updateT by adding a new diskDj , we have to go from the root to the leaf that corresponds toDj . In each
node on this path we must computeIv ∩ Dj and update our data structure forIv . This can be done in O(logn) time
per node by a procedure detailed in the proof of Lemma 4 in [16]. Thus, each update also takes O(log2 n) time. Now,
the running time of O(n log2 n) is obvious. The space consumption is O(n logn) since a) each disk contributes only
intersections stored on the path from the root to “its” leaf, and b) a disk that contributes to some intersectionIv adds
at most one arc to the boundary ofIv , see Fact 2 of [16]. �

The definition of BFIP-halfplane and Theorem 10 can be generalized without much effort as follows. Ins
insisting that the separator ofp andpi splitsppi in a ratio of 1:1, any other ratio can be used as long as the sp
orthogonal.

9. Conclusions

We have presented solutions to some very basic farthest-point problems and have shown how they can b
solve other, more complex problems efficiently, such as simplifying polygonal paths or determining the point
from a query segment. Both these problems can be solved more efficiently if the solution of the underlying p
FV-halfplane can be improved. It is possible to reduce the query time to O(logn), e.g., by storing the farthest-poi
Voronoi diagrams of all�(n2) subsets of vertices that are consecutive on the given convex polygon. However, it
hard to achieve the same improvement under the condition that space consumption and preprocessing time
O(n logn).
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