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ABSTRACT
A common practice in system design is to treat features in-
tended to enhance performance and reliability as low pri-
ority tasks by scheduling them during idle periods, with
the goal to keep these features transparent to the user. In
this paper, we present an algorithmic framework that de-
termines the schedulability of non-preemptable low priority
tasks in storage systems. The framework estimates when
and for how long idle times can be utilized by low prior-
ity background tasks, without violating pre-defined perfor-
mance targets of user foreground tasks. The estimation is
based on monitored system information that includes the
histogram of idle times. This histogram captures accurately
important statistical characteristics of the complex demands
of the foreground activity. The robustness and the effective-
ness of the proposed framework is corroborated via extensive
trace driven simulations under a wide range of system con-
ditions and background activities, and via experimentation
on a Linux kernel 2.6.22 prototype.

Categories and Subject Descriptors: C.4.a [Design stud-
ies]: C.4 Performance of Systems; C.4.f [Reliability, avail-
ability, and serviceability]: C.4 Performance of Systems.

General Terms: Algorithms, Design, Management, Per-
formance, Reliability.

Keywords: Performance guarantee, low priority work, idle-
ness, continuous data histogram.

1. INTRODUCTION
A common practice in computer systems is to schedule

maintenance tasks in background during idle times [7]. These
background activities aim at improving system performance
and availability [22, 10, 23, 1, 2, 14, 19]. If background ac-
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tivities1 are instantaneously preemptable, then the perfor-
mance of foreground jobs is not affected because background
jobs are immediately stopped upon arrival of a new fore-
ground request. Unfortunately, non-preemptive background
activities are dominant in storage systems as tasks are com-
monly associated with the arm movement in a disk drive.
Specific examples of non-preemptable background activities
include disk scrubbing to detect media errors [19, 3], RAID
rebuilds in case of disk array failures [20, 14], disk-level data
mirroring [10].

Recently, in addition to these more traditional background
activities, another set of background activities is emerg-
ing. These background activities are persistent and although
with low priority, essential for the system operation, perfor-
mance, and reliability. Commonly, such background activi-
ties help to close the gaps between the hardware character-
istics and system-level requirements, therefore their on-time
and transparent completion is critical. Examples include
the garbage collection in emerging new storage devices such
as flash-based drives to address the “WRITE amplification”
problem [13]. If the garbage collection is not effective and
a WRITE request arrives to find no erased memory cell to
store the data, then the erasure process will need to complete
in foreground and penalize foreground tasks. Similarly, to
avoid silent data corruption, WRITE verification is a feature
deployed in disk drives [18]. The works in [11, 13, 18] argue
that background work is not something that can be always
postponed but for reliability and performance reasons it is
instead important to be completed early and effectively.

In this paper, we focus on the general problem of serv-
ing non-preemptable background jobs in storage systems, in
general, and disk drives, in particular. Because foreground
tasks are of high priority, background tasks are served only
when there are no foreground jobs in the system, i.e., during
system idle times. Yet, judicious scheduling of background
activities during idle times is critical because their non-
preemptive nature makes (potentially unfortunate) schedul-
ing decisions non-forgiving. Therefore, effective serving of
background tasks during idle intervals must meet two con-
flicting goals:

1. foreground performance degradation should be con-
tained within predefined targets;

1Throughout this paper we use the terms activities, tasks, jobs,
and requests interchangeably.
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2. background work should not be starved and its through-
put should be maximized.

Here, we define a general schedulability framework to meet
these two goals by determining when and for how long the
system can serve background jobs during idle times. This
framework is generic yet adaptable to system dynamics and
it works consistently well under a broad variety of system
conditions and background demands, dealing effectively with
the challenging problem of prescribed solutions that cannot
possibly apply in every environment. We stress that we do
not focus on the problem of exact background job schedul-
ing. The specific scheduling of background jobs, i.e., their
service order, is outside the scope of this work. We further
assume that there are no real-time requirements that the
background jobs must meet.

The core of the proposed algorithmic framework is the
histogram of idle times. The effective use of this histogram
contributes to the framework’s robustness in a variety of en-
vironments. This histogram is obtained online via simple
measurements and reflects the complex interaction of fore-
ground arrival intensities, variability, and burstiness of fore-
ground jobs, as well as different amounts (and variability)
of background jobs. The methodology does not provide al-
ways the optimal scheduling parameters (i.e., when and for
how long) background jobs should execute in idle intervals
but it proves consistently robust as the obtained parame-
ters are either among the best possible choices, or very close
to those. Furthermore, monitoring a compact set of simple
system metrics makes this approach pro-active rather than
reactive to performance targets, allowing for quick adjust-
ment to changes in the operational environment.

We evaluate the robustness of the algorithmic framework
via an extensive set of trace-driven simulations of disk drive
traces, that allow for exploring the effectiveness of the ap-
proach under a wide range of system conditions, includ-
ing vastly different amount of background work. Addition-
ally, an implementation of the framework as a Linux 2.6.22
system module further validates the simulation results and
demonstrates the robustness of the new methodology. Both
simulation and experimental results consistently maintain
foreground performance degradation within pre-defined tar-
gets while completing as much background work as possible.

This paper is organized as follows. Section 5 presents re-
lated work. Section 2 gives an overview of the algorithmic
framework and presents the detailed explanation of how the
framework works. Discussion on the versatility of the frame-
work in real world problems is given in Section 3. We vali-
date the effectiveness of the approach in Section 4 by simu-
lation and via implementation as a module of the IO device
driver in the Linux kernel. Conclusions and future work are
given in Section 6.

2. ALGORITHMIC FRAMEWORK
In this section, we present the new methodology that de-

termines when and for how long to serve low priority back-
ground jobs that are not instantaneously preemptable dur-
ing system idle times.

The execution of background tasks has been traditionally
non-work conserving [6], i.e., when the system becomes idle,
the execution of background jobs is delayed by some amount
of time, which we denote by I and refer to as idle wait. The
length I of the idle wait determines the balance between the

service of foreground and background jobs. If the idle wait
period is longer than most idle intervals, then foreground
performance is affected minimally, because the background
jobs are served only occasionally. On the contrary, if the idle
wait elapses fast, then the effect on foreground jobs may be
higher, because background jobs are served more often.

To avoid starvation of background work and any unde-
sirable degradation on foreground performance, we comple-
ment the idle wait with the estimation of the amount of
time T that background work is served during an idle period.
Equivalently, we determine the length of the idle wait period
I and the length of a background busy period T within an
idle interval. As a result, the schedulability of background
work is determined from the pair of parameters I and T , as
depicted in Figure 1.
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Figure 1: Three cases of idleness utilization: (a) no BG job
are served in an idle interval shorter than I ; (b) BG jobs are
served and FG jobs are delayed in an idle interval longer than
I and shorter than (I + T ); (c) BG jobs are served without
delaying FG ones for idle intervals longer than (I + T ).

Depending on the length of the idle intervals and the
amount of background work served, foreground jobs may get
delayed. We therefore classify the idle intervals into three
categories:

(a) Idle intervals that do not serve any background jobs
because they are shorter than I (see Figure 1(a));

(b) Idle intervals that serve background jobs, but experi-
ence a foreground arrival during the execution of background
work, because their length is between I and (I +T ). In this
situation, the background job that is in service continues
its service to completion, but the system stops serving ad-
ditional background jobs even if T has not elapsed yet (see
Figure 1(b));

(c) Idle intervals that serve background jobs for T units
of time and do not experience any foreground arrival in the
meantime, because they are longer than (I +T ). After serv-
ing background work for T units of time, the system remains
idle without serving additional background work until a fore-
ground job arrives (see Figure 1(c)).

Among all idle intervals, those of the (b) category are of
imminent importance, because they can cause foreground
performance degradation. As our goal is to contain fore-
ground delays within targets, we especially focus on this
case.
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2.1 Data Structure and Parameters
The framework that we propose here determines the (I, T )

pair using the length of idle intervals that are obtained via
system monitoring. The empirical distribution of idle in-
tervals is maintained in the form of a cumulative data his-
togram (CDH) which consists of a compact list of (tj , Cj)
pairs. The finite list of the CDH (tj , Cj) pairs indexed by
the histogram bin j, where tj is the smallest length of idle
intervals falling on the jth histogram bin, and Cj is the cor-
responding empirical cumulative probability of occurrence
Cj = Pr(idleinterval <= tj). The empirical distribution of
idle times incorporates foreground workload demands into
the decision making without including complex processes,
such as the foreground arrival and service processes.

Additional metrics necessary to determine the (I, T ) pair
are also obtained via system monitoring and include:

- SBG, the average service demands of background jobs,
- RT F G, the average foreground response time without

background jobs, which is estimated by monitoring the re-
sponse times of foreground jobs that are in the busy periods
without any background-caused delay, i.e., the proceeding
idle interval falls in the (a) and (c) categories of idle inter-
vals (see Figure 1), and

- W , the average wait time that the foreground requests
experience due to the execution of background jobs, which
is estimated by recording the time a foreground job arrives
in a system idle of foreground jobs and the time it actually
gets service (see Figure 1(b)).

The only user level input in our framework is the degra-
dation target D in foreground performance. Yet, we stress
that D may not be explicitly provided as a user input. For
example, the user input may be in the form of the required
amount of background work to be completed. In that case,
we find the (I, T ) pair that satisfies the user input, i.e, com-
pletes the required background work, with the smallest pos-
sible foreground degradation target D. We will return to
this point in Section 3.

The algorithmic framework first estimates the portion of
idle intervals that delay foreground requests, i.e., the idle
intervals that fall into the (b) category (see Figure 1). This
portion of idle intervals is denoted by E and its estimation is
central to our algorithmic framework, see Section 2.2. Once
E is estimated, the (I, T ) pair is derived based on the his-
togram of idle interval lengths, in Section 2.3.

2.2 Estimation of E

We define E to be the portion of idle intervals that are
utilized by background work which delays foreground jobs.
Once a foreground job is delayed with the amount of time W ,
the entire set of foreground jobs belonging in the same fore-
ground busy period will be delayed by the same amount W .
If we assume that all foreground busy periods have the same
number of foreground jobs, then E approximates the proba-
bility that a foreground job experiences a background-caused
delay. Hence, the average response time of foreground jobs
RT would be the expected foreground-only response time
RT F G, plus the average additional delay W attributed to
the background work, which occurs only E percent of the
time,

RT = RT F G + E · W. (1)

Our goal here is to express E via the monitored system
metrics RT F G, W , and the degradation target D. We relate

D with the expected foreground response time RT and the
average foreground-only response time RT F G as follows:

D =
RT − RT F G

RT F G
. (2)

Combining Eq. (1) with Eq. (2), we get

D =
RT F G + E · W − RT F G

RT F G
=

E · W
RT F G

, (3)

which can be re-written to express E as

E =
D · RT F G

W
. (4)

Because we use the degradation target D in foreground
performance in Eq. (4), the estimated E ensures that the
background-caused delay does not exceed D and does not
violate foreground performance targets. The estimation of
E is critical, because it represents the mapping of the user
input D on to our main data structure, i.e., the CDH of idle
interval lengths, and facilitates the estimation of the (I, T )
pair. The accuracy of E depends on the accuracy of the
monitored values for RT F G and W . In our evaluation, we
show that even if we use average monitored estimates, the
final output is consistently satisfactory.

2.3 Estimation of (I, T )

We use the parameter E estimated via Eq. (4) and the
histogram (CDH) of idle times to derive the (I, T ) pair. For
this, we scan the sorted list of the CDH (tj , Cj) pairs, for
intervals of length E. In practice, there may not exist an
interval with exact length E. Instead, for each (tj , Cj), we
find a (tj′ , Cj′) such that |Cj′ −Cj −E| = ε, where Cj′ > Cj

and ε is a small number (e.g., 0.05). Each such (tj , t
′
j) pair

represents one choice for (I, T ), which we index by i and
denote as (Ii = tj , Ti = t′j − tj). See Figure 2 for a high level
depiction. The result of the entire scanning process is a set
of (Ii, Ti) pairs.
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Figure 2: Transition from E to (Ii, Ti) in a cumulative data
histogram. Any interval of length E in the y-axis is mapped
uniquely onto an interval in the x-axis described by the pair
(Ii, Ti). Because E defines multiple intervals in the y-axis
(between 0 and 1), multiple (Ii, Ti) pairs exist.

2.3.1 Avoiding background starvation
If in the set of all (Ii, Ti) pairs there is no interval Ti which

is at least SBG long, then no background job can be served
and background jobs may experience starvation. To avoid
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starvation, we substitute E with a larger E′ value and es-
timate a new set of (Ii, Ti) pairs for E′ such that at least
one of the new Ti ≥ SBG. To prevent additional delays in
foreground performance after substituting E with E′, the
background jobs are served with probability E/E′ in any
eligible idle interval (i.e., interval longer than the idle wait
Ii). The transition from E to E′ is conservative with small
increments (e.g., 0.05) in order to delimit foreground degra-
dation and maintain it as close to its degradation target D
as possible.

2.3.2 Selecting among the (Ii, Ti) pairs
Because every (Ii, Ti) pair is chosen such that only E per-

cent of idle intervals delay foreground jobs, the foreground
performance target is met by any of the (Ii, Ti) pairs. The
final (I, T ) pair is selected such that as much as possible
outstanding background work is served as soon as possible.

Every (Ii, Ti) can serve in average Bi amount of back-
ground work measured in units of time2. We estimate Bi as
follows:

Bi = Ti ·Pr(idle > (Ii+Ti))+

�Ti/SBG�X

r=1

r·SBG ·(Cr−Cr−1), (5)

where Pr(idle > (Ii + Ti)) is the probability that an idle
interval is greater than (Ii + Ti) and C0 is the probability
that an idle interval is less than Ii. Idle intervals longer
than (Ii +Ti) can serve Ti background work. Thus, the first
term in Eq. (5) gives the amount of background work com-
pleted in these idle intervals. The second summation term
gives the amount of background work completed in idle in-
tervals longer than Ii but shorter than (Ii +Ti). In such idle
intervals, less than Ti background work will be served. Fig-
ure 3 demonstrates the estimation of the background work
to be completed in these idle intervals. The rth subinterval
of length SBG has probability Cr −Cr−1 and serves r ·SBG

background work, see Figure 3. An idle interval shorter than
Ii does not serve any background work, thus it is not repre-
sented in Eq. (5).

TI

 1

0

Pr ( idle > + )I i Ti

SBG

SBG2

SBG

C3
C 2
C1

C
3

ii

C
D

H

 0
idle time

Figure 3: Estimation of the BG work Bi that completes
during idle intervals if (Ii, Ti) is the schedulability pair.

Each (Ii, Ti) is augmented by the corresponding Bi and
the selection of the final (I, T ) is done according to the type
and amount of background work available in the system.

2Measuring work in units of time or number of jobs is qualitatively
equivalent, because one is derived from the other using only the
average background service time SBG.

Estimating the amount of available background work B is
system/feature dependent. Media scans may run contin-
uously [3] and the amount of work associated to them is
infinite, i.e., B = ∞.

Unlike background media scans, the work associated with
the majority of background features in storage systems de-
pends on the foreground workload. For example, WRITE
verification [18] and parity updates [11], generate background
work that depends linearly on the amount of WRITE fore-
ground traffic. In these cases, the monitored foreground
traffic is used to estimate the amount of background work.
For example, if an average of M WRITEs arrive in every
foreground busy period, then the amount of background
work associated with WRITE verification, where for each
foreground WRITE, a background READ is generated, is
B = M · SBG in average. Also, the amount of background
work associated with parity updates, where for each fore-
ground WRITE, a background READ and a background
WRITE are generated, is B = 2M · SBG.

Once B is estimated, the final pair (I, T ) is selected such
that I is the smallest among all possible (Ii, Ti) pairs, where
Bi > B. The condition to select the shortest idle wait Ii

enables the fastest possible background response time. If
B = ∞, then the final (I, T ) is the one with the maximum
estimated Bi.

2.3.3 Buffered background work
Some background features generate work that may need

buffer storage. An example is WRITE verification during
idle times [18]. Such background activities put additional
constraints on utilization of idle times, because the buffer
space is limited. If the background buffer is full, then the
future background work will be lost. In order to handle
buffered background work, the methodology described above
for the selection of (I, T ) is accordingly extended to account
for the lost background work.

Assume that the buffer holds at most N background jobs
and Md is the number of background jobs generated during
the dth foreground busy period. If Md > N , then Md − N
background jobs will be lost, because the buffer is full. If
we construct the data histogram of the all observed values
for Md, then we estimate the buffered background work B
to be completed per idle interval as follows.

B =

∞X

d=1

min(N, Md) · P [Md] · SBG,

where P [Md] is the probability of generating Md background
tasks in a busy period as computed in the data histogram of
the number of background jobs generated every idle period.

3. FRAMEWORK’S VERSATILITY
Our framework incorporates seamlessly very different work-

loads and types of background work into its decision making.
The flexibility and generality of our framework is associated
with the set of the system metrics it uses to generate its
output, i.e., the computation of the (I, T ) pair. Specifically,
we manage to capture accurately the penalty associated with
each background activity and the standalone foreground per-
formance.

The performance penalty of a background activity
ranges from a few milliseconds to several seconds in stor-
age systems. For example, the penalty of background media
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scans or parity updates is several milliseconds and is as-
sociated with positioning of the head on a location on the
media. The penalty associated with spinning down a disk
to conserve power is several seconds and is associated with
the time it takes to spin the disk back up. The penalty as-
sociated with flushing out the cache content is several hun-
dred milliseconds and is associated with completing several
WRITE requests. In our framework, the penalty of a back-
ground task is captured by the parameter W (see Eq. (4)),
which is estimated via system monitoring.

The characteristics of foreground workload, such as
the utilization of the system and the foreground service pro-
cess, are captured in our framework via the foreground-only
response time RT F G (see Eq.(4)). We remark that the per-
formance effect of self-similarity (or burstiness) in the work-
load is captured by the measured RT F G, therefore workload
burstiness is immediately reflected in the framework. Also,
the complex interaction between foreground arrival and ser-
vice processes is incorporated in the histogram of idle times.

To demonstrate the flexibility of our framework, we cal-
culate its output (I, T ) by emulating background tasks with
penalties ranging from 0.5 to 60 times the foreground ser-
vice time (using trace T1 from Table 1; this trace will be
described in the following section). We show the results in
Figure 4. The left y-axis gives the portion of idle intervals
that will be utilized according to the calculated (I, T ), while
the right y-axis indicates the length of I and (I + T ). Ob-
serve that as the penalty of the background work increases
the idle wait I increases and correspondingly, the portion of
idle intervals to be utilized decreases.
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Figure 4: The output of our framework as a function of the
background and foreground service times.

Specifically, if the foreground workload is sequential and
background tasks are media scans that move the disk head
away breaking the locality of the workload, then the penalty
of the background tasks is twice as much as the foreground
service time. While, if background activity would not move
the head away, then more than twice idle intervals, e.g., 13%
in Figure 4, can be utilized as the workload sequentiality is
not strongly compromised and the penalty in this case is
reflected on one foreground service time.

Changing Priorities: Although the background work
(or a portion of it) represents a low-priority activity, there
are cases when it must complete, even if it delays foreground
traffic. For example, if there are no erased memory cells in
a flash-based device then upon the arrival of a WRITE re-
quest the system needs to stop serving foreground requests
and complete the background activity of erasing previously

written cells. Similarly, if dirty parities are backlogged in
a disk that deploys intra-disk parity, then the priority of
updating the parities needs to increase to ensure their com-
pletion. Our methodology enables changing the priority of
the background activities by increasing the input parameter
D in Eq. (4).

If D is set to a new larger value, then the (I, T ) pair needs
to be recalculated. A larger D ensures a larger E, which
increases the portion of idle intervals that serve background
jobs, enabling more background work to complete (but also
causing more delay on foreground jobs). By adjusting D and
recalculating (I, T ), the relative priority of background and
foreground work may be changed throughout the lifetime of
the system, as appropriate.

4. ANALYSIS AND EVALUATION
Here, we present an evaluation of the framework devel-

oped in the previous sections. Initially, the evaluation is
based on trace-driven simulations. Later, we present results
from measurements conducted in an implementation in the
Linux 2.6.22 kernel.

4.1 Trace-driven Evaluation
We develop a trace-driven discrete event simulation model

for the evaluation. Because the focus of the methodology is
to determine when to start and stop serving background
jobs, our simulation aims at correctly modeling the inter-
action between foreground and background busy periods
rather than the specifics of scheduling each job inside a busy
period.

In our evaluation, we use a set of disk-level traces mea-
sured in a number of personal and enterprise-level systems.
Table 1 summarizes the main characteristics of the traces.
Each trace entry corresponds to a foreground job and records
its arrival and departure timestamps, the request type and
length, and the request location on the disk. Since the ar-
rival and departure times are recorded, the corresponding
busy periods due to foreground jobs and the idle periods are
fully defined in the traces. For the foreground request the
service order is captured in the traces, while for the back-
ground jobs, we opt to schedule them in a First-Come First-
Served (FCFS) order and expect results to be qualitatively
similar for other scheduling policies.

An important observation in Table 1 is the low average
utilization across all traces, which is expected to facilitate ef-
ficient utilization of idleness by background activities. Sim-
ilarly, the length of idle intervals indicates that multiple
background jobs may be able to fit into any idle interval.
With the exception of the PVR trace, all other traces expe-
rience high variability (i.e., CV > 1) in the length of idle
intervals, which is captured by the CDH of idle times. We
experimented with the entire set of traces in Table 1, but to
keep the presentation concise, we present here detailed re-
sults on traces T1 and T2, which we considered challenging
and representative. Trace T1 is selected because it is the
trace with the highest utilization and idle intervals with low
variability. Trace T2 is selected because it has the highest
utilization among traces with high variability in idle inter-
vals. We also note that there is significant burstiness in the
idle times of T2.

Figure 5 gives the empirical cumulative data histograms
(CDHs) of idle interval lengths for traces T1 and T2. The
tail of the distribution of the idle interval lengths for T2 is
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Trace System Length No. Mean Req. Mean Util Mean Idle CV
Requests Arrival Length Service (%) Length Idle

T1 PVR 40 min 38,832 62.85 ms 72 KB 10.68 ms 17.4 91.98 ms 0.98
T2 E-mail 25 hrs 1,606,343 69.20 ms 32 KB 5.74 ms 8.3 30.68 ms 6.16
T3 Code-Dev 12 hrs 483,563 88.06 ms 40 KB 6.34 ms 6.2 192.50 ms 8.49
T4 User Acc. 12 hrs 168,148 246.65 ms 48 KB 6.10 ms 2.0 632.73 ms 2.29
T5 Desktop PC 20 hrs 146,248 509.83 ms 20 KB 3.08 ms 1.1 2146.36 ms 8.62

Table 1: Overall characteristics of our traces.

longer than for T1, which implies that trace T2 has many
short idle intervals and some very long ones, while in trace
T1 most idle intervals are of similar lengths.
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Figure 5: CDH of idle times for traces T1 and T2.

We evaluate the performance of our methodology under
different amount of background work. Specifically, we ex-
periment with background work that is 10%, 40%, and 90%
of the foreground work, as well as the extreme case of having
“infinite” background work in the system. While foreground
busy and idle periods are determined by the traces, in our
model we set the service time of background jobs to be expo-
nentially distributed with a mean of 6.0 ms, which is similar
to the mean service time of foreground jobs in trace T1.

In the scenarios evaluated here, we aim to maintain back-
ground service transparent from the user. It is common
practice, to consider an additional 5%-10% slowdown in per-
formance as small enough to not be noticed by the system
user. Consequently, we set the degradation target D to 7%,
i.e., the middle point in the 5%-10% range. We have con-
ducted experiments with various values of D and results are
qualitatively similar to those reported here. In Section 4.2,
we present results for one of the most challenging cases by
setting the degradation target to D = 1% for the Linux
experiments. The metrics of interests are: (a) the average
relative delay of foreground jobs due to background work,
defined as (RT − RT F G)/RT F G, and (b) the number of
completed background jobs.

4.1.1 System performance
Table 2 shows the results for the four levels of background

work. We observe that in most scenarios the relative fore-
ground delay is well below the degradation target D. Under
trace T2, the system serves significantly more background
jobs than under trace T1, because the utilization of trace T1
is twice as high as the utilization of trace T2. If the back-
ground work is infinite, then the results in Table 2 show that
trace T1 can accommodate background work that is twice

as much as the foreground one and that trace T2 accom-
modates as much as six times more background work than
foreground one.

Trace BG Target FG Delay Completed BG
Work (Target D=7%) Reqs. Work

10% 1.4% 3,861 10%
T1 40% 2.0% 15,514 40%

90% 3.9% 34,953 90%
infinite 7.0% 74,234 190%
10% 3.2% 132,362 10%

T2 40% 6.8% 528,287 40%
90% 4.7% 1,190,208 90%

infinite 3.9% 7,862,813 610%

Table 2: FG delay, completed BG requests, and completed
BG work relative to the incoming FG work.

If the background work requires buffering, then the buffer
size is the determining factor for the performance of fore-
ground and background jobs. Here, the buffer size is set
to store at most 16 background jobs. Table 3 presents the
simulation results. Table 3 shows that some amount of the
background work is lost because of insufficient buffer. Gen-
erally, as the amount of buffered background work increases
(e.g., from 10% to 90%), the background drop rate increases.
For trace T2, the background drop rate increases faster than
for trace T1. Because of the high variability in idle interval
lengths, trace T2 has many short idle intervals that either do
not get utilized or serve only a few background jobs. This
causes the buffer to be flushed at a slow rate. Note that
we do not evaluate the case of infinite buffered background
work, this is unrealistic given the limited buffer space.

Trace BG FG Delay Completed Dropped
Work (Target D=7%) BG Num BGs

10% 3.7% 3,358 13%
T1 40% 6.6% 13,035 15%

90% 8.3% 26,778 23%
10% 3.0% 128,862 2%

T2 40% 5.3% 385,573 27%
90% 4.1% 613,157 48%

Table 3: FG and BG performance for buffered BG work.
The buffer holds 16 BG jobs.

The results in Table 3 indicate that our methodology does
not always meet the degradation target D. For example, for
90% background work and trace T1, our estimated (I, T )
yields a slowdown slightly above the target. As expected, the
methodology represents a heuristic rather than an optimal
solution.
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4.1.2 Optimality of the (I, T ) Pair
To evaluate the effectiveness of our methodology in uti-

lizing idleness, we perform a state space exploration, i.e.,
estimating the foreground and background performance for
any (I, T ) pairs. Figures 6 and 7 give the results of the state
space exploration analysis for traces T1 and T2, respectively.
We evaluate the cases of infinite background work in the first
column, background work that is 40% of the arriving fore-
ground work in the second column, and buffered background
work that is 40% of the foreground work in the third col-
umn. The first row in Figures 6 and 7 shows the background-
caused delay on foreground performance and the second row
presents the completed background work. In each plot, we
mark the pair generated by our approach with a diamond.
For comparison with common practices [6], we also mark
with a square the results for the pair (I = 0, T = ∞),
i.e., no idle wait, and with a circle the results for the pair
(I = 6, T = ∞), i.e., fixed idle wait equal to the average
background service demand.

Figures 6 and 7 clearly indicate that the pairs represent-
ing common practices provide a fixed solution independent
of the effect they have on foreground or background perfor-
mance (see the fixed position of the circle and square shapes
in all plots). The pair (I = 0, T = ∞) significantly de-
grades foreground performance, by more than 10% for both
traces, and confirms that idle wait is necessary in scheduling
background work. With an idle wait equal to the average
background service demand, the pair (I = 6, T = ∞) keeps
the background-caused delays low for several scenarios, in
particular for trace T1 with low variability in idle periods.
However, it fails to meet performance targets if the amount
of background work is large (e.g., the infinite case) or if idle
intervals are variable (e.g., trace T2).

Figures 6 and 7 indicate that there is a set of pairs (I, T )
that would satisfy the degradation target D = 7%. For
example, plots (a) and (d) in Figure 6, indicate that the idle
wait I should be at least 5 ms and the length of background
busy period T should be at most 40 ms. However, having T
shorter than 25-30 ms or I larger than 20 ms would result
in reduced levels of completed background work.

The pair (I, T ) estimated using our methodology is con-
sistently among the ideal choices that strike a good balance
between the completed background work and foreground
performance. Our results confirm that it is necessary not
only to idle wait but also to limit the amount of background
work completed in every idle interval (i.e., have T < ∞) to
sustain foreground performance at desired levels. Further-
more, controlling foreground performance by only changing
the idle wait length I (as in common practices) would result
in background work starvation.

4.1.3 Foreground response time distribution
One of the concerns associated with background work is

that it adds to the variability of foreground response time.
For the majority of background activities, the preemption
level is related to the disk head position. As a result, the
effect on the foreground response time tail is not expected to
be severe. Figure 8 captures the tail of foreground response
time distribution, by plotting the complimentary cumulative
distribution function (CCDF), for traces T1 and T2 under
the three types of background work.

If the trace has high variability in its idle intervals, e.g.,
T2, then the tail of the foreground response time is almost

not affected by the execution of background work. If the
trace has low variability in its idle intervals, e.g., T1, then
the effect in the tail is more noticeable but only for about
1% of foreground requests.

Spinning up and down a disk to conserve power repre-
sents a background activity that has preemptability penalty
around a few seconds and it is expected to affect the fore-
ground response time tail more than the background activi-
ties with low preemptability penalty that we evaluated here.
In this case, our methodology can be enhanced by exploit-
ing burstiness in the idle interval lengths to reduce the tail.
In depth evaluation of these scenarios is part of our future
work.

4.1.4 Prediction accuracy
Our methodology relies on monitoring of system previous

history to devise the current schedulability pair (I, T ). For
traces with idle times of low variability like T1, predicting
the immediate future using data from the immediate past re-
sults in undoubtedly good (I, T ) prediction. The results for
T1 are not reported here due to the limited space, but due to
its low variability, results are better than for T2. Trace T2
is more challenging because of its high variability. In such
cases, it is important to have a large monitoring window to
capture better the stochastic behavior of idle times and its
distribution tail.

Here, we split trace T2 into two parts (each correspond-
ing to about 12 hours of operation) and characterize each
subtrace individually as shown in Table 4. We use the mon-
itored parameters in the first part to determine the (I, T )
pair used in the second part, these results are presented in
the columns marked “training” in Table 5. The columns
marked “exact” in the table represent the results obtained
by estimating the (I, T ) pair for the second part using the
data from the second part (i.e., perfect knowledge of the
present and immediate future). Observe that the prediction
error, i.e., the difference between the “training” and “exact”
columns, is small and increases as the amount of background
work in the system increases (the highest error is for infinite
background work). We conclude that the metrics we select
for our estimation of the (I, T ) pair are robust to changes in
the system.

Idle Part1 Part2

Mean 159.0 ms 103.7 ms
CV 6.7 3.7

Table 4: Idle times mean and CV for two parts of trace T2.

FG Delay Completed BG Num
BG Work training exact training exact

10% of FGs 1.4% 1.3 % 60,513 60,513
40% of FGs 4.8% 4.3% 242,747 242,747
90% of FGs 7.5% 5.8% 545,264 545,263

infinite 8.4% 5.9% 2,756,096 2,220,666

Table 5: FG and BG performance for different amounts of
BG work for trace T2.

4.2 Linux Implementation
We prototyped our algorithmic framework as a module

of the Linux kernel 2.6.22 by modifying the Linux generic
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Figure 6: Trace T1. FG delay and completed BG work for any (I, T ) pair. Diamond shapes mark our solution. Square and
circle shapes mark common practices.

block layer and the IDE device driver. Note that the im-
plementation can be extended easily to work with the SCSI
device drivers as well. Table 6 gives the machine configura-
tion where we performed our measurements.

System Dual Intel Pentium 4 CPU 2.80GHz
1GB memory

OS Linux kernel 2.6.22
File System Ext3
IO scheduler Anticipatory
Disk Drive Seagate Barracuda 7200 rpm, 80 GB

Table 6: Specifications of the measurement system.

In our experiments, all user and system IO requests are
considered as foreground traffic. Background work is in-
jected in the queue of outstanding block-level requests at
the IDE device driver. Figure 9 gives a high-level schematic
description. The implementation emulates the case of infi-
nite background work.

The IDE device driver maintains the list of outstanding
foreground requests in the elevator queue and in the dis-
patch queue. Because the elevator queue feeds the dispatch
queue, we view them both as one big queue of outstand-
ing foreground requests, which we call the elevator queue
(see Figure 9). Background requests are queued separately
in the BG queue. For simplicity, we choose to have back-
ground jobs that are copies of foreground ones. The results
would be qualitatively the same for other types of back-
ground activities. We remark here that caching is disabled

6
Disk

5 − The interrupt handler sends the notification of the completion of a request.

2a − A new request enters elevator queue.
2b − A copy of the request enters BG queue.
2c − BG requests removed from elevator queue.
3 − Strategy routine schedules an FG/BG request from elevator queue.

1 − FileSystem makes a request.

4 − If the elevator is empty, then a request is drawn from BG queue.

6 − Data is ready. Disk drive raises an interrupt.

Interrupt Handler

Make_Request

Queue
BG

3

2b

1

Elevator

2a2c

5
4

3

Strategy Routine

Figure 9: Schematic description of our prototype. The
solid lines capture the flow of FG jobs and the dashed lines
capture the flow of BG jobs.

in our experiments to ensure that the background requests
are served by the disk and not by the system cache.

We modified the service process at the Linux generic block
layer and the IDE device driver to handle two modes, i.e.,
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Figure 7: Trace T2. FG delay and completed BG work for any (I, T ) pair. Diamond shapes mark our solution. Square and
circle shapes mark common practices.

foreground and background. We also modified the kernel to
keep track of the current operation mode in the system and
the time a transition between the two modes occurs. The
(I, T ) pair is made available to the entire set of modules in
the Linux generic block layer and stored at the /proc/sys
directory for user space accessibility.

Any enqueued request (either foreground or background)
is dequeued via the “strategy routine”, which for the IDE
device driver is ide do request. The block layer module pro-
vides to the “strategy routine” a mechanism, which is sup-
ported by a set of interrupt handlers, e.g., ide dma intr,
task in intr, or task out intr, that enables serving background
jobs after the idle wait period I has elapsed, with only little
additional modification.

If the elevator queue is empty upon the notification from
the interrupt handler of a foreground request completion,
then a background request is taken from the BG queue and
placed in the elevator queue and released to the strategy
routine from the interrupt handlers after I elapses. The BG
queue feeds the elevator queue until a foreground request
arrives or T elapses. If during the service of a background
request, a foreground request arrives, then the background
job in service completes. After that, for simplicity, the eleva-
tor queue is flushed of any remaining background requests.

For each IO request that arrives at the elevator queue and
for each request served from the background queue, statis-
tics are logged using the klog utility. We compute the fore-
ground response time with and without background jobs,
background jobs service demands, and the empirical distri-
bution of idle intervals. We stress that the overhead to keep

these statistics is small and does not interfere with the sys-
tem performance. For example, the CDH of idle times, the
largest data structure we maintain, is at most a list of 1000
pairs of floating point numbers.

We focus our evaluation on two scenarios: video streaming
and Linux kernel compilation. We consider these two sce-
narios representative, since they generate idle intervals with
very different characteristics. Specifically, video streaming
yields idle times that are almost deterministic and kernel
compilation yields idle times that are highly variable.

Video streaming: This workload consists of playing
back a 10 minute movie. The foreground IO workload is
dominated by read requests. The average request service
time is 25 ms and the average response time of 35 ms. The
mean idle time of a foreground-only workload is 135 ms and
its coefficient of variation is 0.48, which indicates that idle
intervals have low variability (see Figure 10(a) for the empir-
ical CDH). The injected background work consists of read
requests with an average service time of 9 ms. For these
experiments, we consider the challenging case of setting a
very small degradation target D = 1%.

We assess the quality of our (I, T ) pair by measuring sys-
tem performance under any (I, T ) pair. Plots (b) and (c)
in Figure 10 present the foreground delay and the number
of completed background jobs, respectively. Foreground per-
formance degradation is severe (dark region in Figure 10(b)),
if I is set at a value between 50-165 ms or is set to zero, be-
cause such I values utilize ineffectively many idle intervals,
represented by the abrupt jumps in the CDH of Figure 10(a).
The amount of completed background work decreases as I
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Figure 8: CCDFs of the FG response time with and without BG work for traces T1 and T2.
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Figure 10: Video streaming workload. Plots (b) and (c) capture system performance for any pair (I, T ). Diamond shapes
mark our solution. Square and circle shapes mark common practices, i.e., (I = 0, T = ∞) and (I = 25, T = ∞), respectively.

increases and T decreases, with the desired region being the
upper left corner in Figure 10(c). Our estimated pair of
I = 1 ms and T = 90 ms shows the robustness of our
methodology by being located in the best region of both
surface plots in Figure 10.

Compilation: In this workload, compiling the Linux ker-
nel takes in average 10 to 15 minutes. The foreground IO
workload consists of a mix of short requests with an average
service time of 9 ms and average response time of 11.2 ms.
The average idle time (if only foreground traffic is present)
is 130 ms and the coefficient of variation 2.68, which means
that the idle intervals have high variability (see the CDH
in Figure 11(a)). The injected background work consists of
similar requests as the foreground traffic with the same aver-
age service time. For our estimation, we set the degradation
target D = 1%.

The CDH figure of idle intervals in Figure 11(a) indicates
that there is a large portion (almost 60%) of small idle inter-
vals in the range of 10 ms to 20 ms, which if utilized would
degrade severely foreground performance. The rest of idle
intervals (approximately 40%) are long and can be used for
serving background work.

Similarly to the video streaming workload, we measure the
performance of any pair (I, T ) and present the foreground
delay and the number of completed background jobs, re-
spectively, in Figures 11(b) and (c). For this workload, our
approach estimated I = 76 ms and T = 28 ms and we in-
dicate our estimation with a diamond in Figures 11(b) and
(c).

We observe that for this workload, the degradation target
is reached only in the middle range of I and bottom range
of T (see Figure 11(b)). The pair (I = 76, T = 28) that
we estimate is right at the area where the degradation tar-
get is satisfied with the maximum possible background work
completed.

We conclude that our framework proves to be robust in
identifying accurately the schedulability pair (I, T ) in sys-
tems with different characteristics, e.g., video streaming with
low variability and kernel compilation with high variability
in idle intervals. Although the methodology requires to mon-
itor various metrics in the system, they are obtained easily
by utilizing counters already in the Linux generic block layer
and by minor additions in it. More importantly, they do not
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Figure 11: Linux compilation workload. Plots (b) and (c) capture system performance for any pair (I, T ). Diamond shapes
mark our solution. Square and circle shapes mark common practices, i.e., (I = 0, T = ∞) and (I = 9, T = ∞), respectively.

incur any overhead in either memory or computing require-
ments for the system.

5. RELATED WORK
Systems that serve both foreground and background tasks

can be viewed as systems that serve tasks of multiple priori-
ties, see [21, 16] and references within for analytic results and
see [8] and references within for priority scheduling aiming
at performance virtualization in storage systems. As it be-
comes more common for systems to operate 24/7, idle times
may offer the only time window to complete maintenance
work [7, 10, 22, 1, 2]. Storage systems depend heavily on
background activities to deploy features that enhance per-
formance and availability. For example, detection of latent
sector errors, a possible cause for data loss [3], is routinely
done via background media scans. Recently, several fea-
tures that enhance the data integrity of disk drives such as
WRITE verification [18] and intra-disk parity [11] are also
designed to use idle times. Also garbage collection in solid
state drives to address the hardware idiosyncrasies of han-
dling the WRITE traffic [13, 12] is most efficient when com-
pleted in background. This makes the problem of effective
scheduling of background jobs during idle times in storage
systems of imminent importance [7, 6], distinguishing it from
the more general problem of priority scheduling.

Various studies in the literature have shown that in sys-
tems, periods of high utilization may be interleaved with
idle times [7, 17]. Golding et. al. in their seminal paper [7]
identified categories of useful idle-time operations in stor-
age systems (e.g., required work that can be delayed such as
RAID rebuilds, work that will be probably requested later
such as disk read-ahead, shifting work within resources to
reduce disk traffic) and outlined features of an effective idle
detector focusing on predicting the start time of an idle in-
terval as well as the idle period duration.While idle times
offer an opportunity to serve background tasks, the main
performance pitfall relates to cases where background jobs
cannot be preempted instantaneously. In these cases, fore-
ground performance may be significantly affected and accu-
rate prediction of the idle period start time and its duration
becomes critical.

In [7] the authors identify several policies for predicting
the idle start time and its duration, and perform an ex-
haustive combinatorial search to determine the best (and
worst) set of policies for a specific set of traces. The results
show that the task of combining the best start time and
duration policies is a challenging one, especially when adap-
tive predictors are employed.In [6] the authors conclude that

effective scheduling of non-preemptive background tasks is
done using a non-work-conserving approach by using a sim-
ple fixed delay in the execution of a background job dur-
ing an idle interval. This technique avoids using short idle
intervals to serve long background jobs, thus limits poten-
tially severe degradation in foreground performance. In [15]
the authors take advantage of burstiness in idle periods to
improve prediction of the duration of successive idle inter-
vals.Adaptively determining idle times has been also pro-
posed in mobile devices for power-saving by spinning-down
their disks [5, 9].

In [8], an arrival curve based approach is used to provide
QoS guarantees. This approach may be also used to allo-
cate spare system capacity to background jobs. In [4], the
authors present a reactive, closed-loop approach to schedule
low priority jobs based on continuous monitoring of the per-
formance of low priority processes, whose progress is used
to manage the degradation of performance of high-priority
processes. The proposed progress-based regulation could be
also employed to interleave background and foreground jobs
in storage systems.

The algorithmic framework that is presented in this paper
is an open-loop approach and is most closely related to the
techniques presented in [7, 6, 15]. Here we present an algo-
rithmic framework that rigorously quantifies the schedula-
bility of background activities by determining two impor-
tant parameters, i.e., when and for how long the system
should serve non-instantaneously preemptable background
jobs with strictly lower priority than foreground ones. While [7,
6] discuss general issues related to utilization of idle inter-
vals and present guidelines and tools that can be effective in
the process, they do not provide a generally applicable al-
gorithm that can work effectively with different workloads.
Our framework bases it decision mainly on the histogram of
idle times avoiding any need to monitor the complex arrival
and service processes [7] or multiple performance metrics
that feed to computationally expensive statistical prediction
techniques [4]. Unlike the methodology laid out in [7], which
uses different techniques to predict when the idle busy period
starts and when it ends, our framework determines simul-
taneously both parameters, increasing the overall accuracy
and efficiency.

6. CONCLUSIONS
This paper proposes a methodology that decides when

and for how long during idle times in storage systems, non-
preemptive background jobs can be served such that two
conflicting goals are met: (1) degrade foreground perfor-
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mance by no more than a predefined target, and (2) avoid
background work starvation. The only input parameter in
the framework is in the form of a foreground performance
degradation target. The rest of the necessary information is
obtained by on-line monitoring of a compact set of system
metrics, with the most important one being the empirical
distribution of idle times.

The choice to use the empirical distribution of idle times
proves to be an important one that allows our methodology
to incorporate accurately the complex interaction between
the arrival and service processes of foreground traffic. An ex-
tensive set of trace-driven simulation experiments and mea-
surements in a prototype on the Linux 2.6.22 kernel, show
that our approach meets the performance targets by finding
a solution that is among the best while balancing the two
conflicting goals.

In the future, we intend to deploy our framework to evalu-
ate in-depth specific system architectures and features that
rely on effective service of background work. An example
is to power-off disks in a storage system with the goal of
reducing power consumption.
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