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Abstract—In this paper, we propose a new approach for
the development of load control policies in autonomic multi-
tier systems. We control system load in a completely new way
compared to existing policies: we leverage on the autocorrelation
of service times and show that autocorrelation can be used to
forecast future service requirements of requests and adaptively
control system load. To the best of our knowledge, this is the first
direct application of autocorrelation of service times to autonomic
load control.

We propose ALOC and D ALOC, two autocorrelation-driven
policies that drop a percentage of the load in order to meet
pre-defined quality-of-service levels in a distributed system. Both
policies are easy to implement and rely on minimal assumptions.
In particular, D ALOC is a fully no-knowledge measurement-
based policy that self-adjusts its load control parameters based
only on policy targets and on statistical information of requests
served in the past. We illustrate the effectiveness of these new
policies in a distributed multi-server setting via detailed trace
driven simulations. We show that if these policies are employed
in the server with a temporal dependent service process, then
end-to-end response time, across all servers, reduces up to 80%
by only dropping at most 13% of the incoming requests. Using
real traces, we also show that, in the constrained case of being
able to drop only from a portion of the incoming workload, our
policy still improves request response time by up to 30%.

Keywords: autocorrelated flows, autonomic systems, self-
adaptive policies, load control, distributed systems

I. INTRODUCTION

Recent work in Web systems, such as Internet servers

[21], multi-tier architectures [4], and online Data Stream

Management Systems (DSMSs) [7], has drawn attention to the

problem of defining effective load control techniques to keep

a system responsive under a variety of overload conditions,

e.g., Internet flash crowds, large data arrival streams triggered

by environmental sensors. We here focus on the fundamental

issue of performing load control when the system cannot

proactively inspect the incoming workload and decide which

requests are the most important or cost-effective to serve.

For example, a Web server that operates in a virtualized

environment is often forced to shed work arbitrarily because

it is unable to preventively inspect the performance effects

of its predicted workload [21]. Therefore, it is important to

define effective low-overhead strategies that autonomically

control the incoming load based on the server past history.

In this paper, we study the problem of load control under

the assumption that there is no knowledge of the incoming

workload characteristics. We examine the feasibility of driving

the system load control by the temporal dependent character-

istics of the past processed requests, which can be determined

with minimal computational effort. In particular, we focus

on servers accepting requests from an open environment, but

having locally a limited buffer size to host requests waiting to

be served; these systems, which include among other multi-

tier Web systems, are commonly modeled as closed queuing

systems [11], [20], [12].

In computer systems, temporal dependence in service of one

of the queues is a characteristic that significantly degrades

performance in addition to well-known facts like workload

variability [3], [13]. For example, in systems that operate using

the standard multi-tiered paradigm, temporal dependence has

been located in the service process of the front server [13]

or of the back-end database [12] and is an effect of the

hardware/software configuration of the system. Such temporal

dependence in one server of the entire system results in

dramatic end-to-end degradation in response times [13].

In this paper, we show that temporal dependence can be ex-

ploited to forecast future service requirements of requests and

we use this prediction as an additional criterion for resource

allocation. The structure of temporal dependence in service can

be described and quantified via the autocorrelation function

(ACF) [2]. The ACF essentially captures the “ordering” of

random values in a time series. High positive ACF values

imply strong temporal locality: a value of the random variable

in the time series has a high probability to be followed

by another variable of the same order of magnitude, while

negative ACF values imply the opposite. Intuitively, ACF can

be used to quantify burstiness in service times and to forecast

service requirements in the near future [2].

Autocorrelated flows have been identified as an important

traffic characteristic in communication networks [15] and have

fueled much research over the past two decades. From a

queueing perspective, it has been shown that dependence

in the arrival process of a single queue results in dramatic

performance degradation [6], [1]. The presence of autocor-

relation has been only recently identified as prevalent in

a variety of settings [16], [13], [9], [18]. The analysis of

systems in presence of autocorrelated service is particularly

challenging: autocorrelation in the service process of one of

the queues affects request burstiness throughout the system and

significantly degrades end-to-end system performance [13].

In this paper, we propose to use autocorrelation to selec-



tively drop requests that are most harmful to performance. We

design a new policy, called ALOC, for the autocorrelation-

driven load control in autonomic systems. The static version

of this policy assumes no knowledge of the length of queued

jobs, but requires a priori knowledge of the autocorrelation

function of the service process. ALOC is triggered when the

queue length grows beyond a certain threshold and the last

served job was long. Using an autocorrelation-based heuristic,

ALOC drops some jobs from the queue to improve the

round-trip times of other requests. Detailed simulations using

synthetically generated workloads illustrate the effectiveness

of this heuristic policy for load control: dramatic reductions

to end-to-end average response times up to 80% with a drop

rate upto 13% only.

We also propose a dynamic version of the ALOC policy

called D ALOC that is truly a no knowledge policy, i.e., it

does not assume any a priori knowledge of the autocorrelation

function or of the queue length threshold that triggers selective

job drop. This policy successfully measures autocorrelation

in an online fashion and self-adjusts its triggering parameter

according to the measured performance and autocorrelation

strengths. The effectiveness and robustness of D ALOC is

shown via detailed experimentation using synthetically gener-

ated workloads as well as actual traces measured at the disk

level of a streaming system.

The stated goals and outline of this work can therefore be

summarized as follows:
• to discuss the performance effects due to an autocor-

related service process in systems, which motivates the

development of the ALOC policy (Section II),

• to develop the ALOC and D ALOC policies which

reduce load on an autocorrelated queue based on online

monitoring of the system and evaluate its performance

via simulation with synthetic traces (Section III),

• to validate the effectiveness and robustness of the new

proposed policies via trace-driven simulations using real

traces (Section IV).

In Section V, we summarize our findings and outline future

work.

II. MOTIVATING EXAMPLE

The performance of many real systems, such as multi-tiered

systems, can be accurately described in terms of closed queue-

ing systems [11]. Closed models have been intensively studied

in performance evaluation, but they are usually very hard to

evaluate or optimize when the workloads have time-varying

characteristics. In the next sections, we focus on the latter

issue of optimizing the performance of real systems where

service times exhibit temporal dependence. Under temporal

dependence, consecutive service times cannot be assumed

independent of each other (e.g., a long service time is more

likely to be followed by another long service time) resulting

in burstiness which consistently degrades performance. We

propose in this section a motivating example to show the

negative effects of temporal dependence in systems.
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Fig. 1. Queue-length and service times measured in the simulation
case study. In shaded areas, jobs are completed with slow rate µ0.
Samples of the duration Ak for k = {0, 1} are shown below the
main diagram.

We investigate how temporal dependence affects system

performance in a closed system. Throughout the example, we

quantify temporal dependence by the autocorrelation function

(ACF) of service times. Let {Xt} be a stationary time se-

ries of identically distributed random variables, where t =
0, 1, 2, . . . ,∞. The autocorrelation function ρj is the sequence

of correlation coefficients:

ρj = E[(Xt−j − µ−1)(Xt − µ−1)]/σ2, (1)

where µ−1 is the mean and σ2 is the variance of {Xt};

the subscript j is called the lag and denotes the number of

observations that separate Xt−j and Xt. The values of ρj are

in the range [−1, 1]. In most cases, ρj approaches zero as j
increases. Qualitatively, ρj indicates the “similarity” in size

between two elements spaced by j lags, which is different

from zero only if the process has temporal dependence.

To understand the effect of autocorrelation on systems, we

have simulated a closed system with two tandem queues and

focused on transient performance measures at the autocor-

related resource. The model has two first-come first-served

queues in tandem (e.g., a multi-tiered system), where a con-

stant number of N = 50 jobs cyclically receive service from

the two resources. Resource 1 has exponentially distributed

service times with mean rate λ = 1; resource 2 has an

autocorrelated service process that is represented by a Markov-

modulated Poisson process with two states (i.e., an MMPP(2)

process) [17]. Thus, queue 2 has temporal dependence in

the service times and we are interested to investigate how

this affects the overall system performance. We remark that

MMPP(2) processes have been successfully used to model the

service process under temporal dependent workloads in multi-

tiered systems [12].

The MMPP(2) service process at queue 2 is a two-state

continuous-time Markov chain where some jumps are associ-

ated to service completion events. Essentially, the chain spends

in state i, i ∈ {0, 1}, a time that has exponential distribution

f(x) = µie
−µix and upon jumping out of i the system



completes job service with a certain probability, otherwise

the job remains in service. The advantage of the MMPP(2)

over other models is that an MMPP(2) can easily represent

service times with high variability and temporal dependence

[2]. The MMPP(2) considered in the case study is defined by

the following parameters:

• state 0 has slow service rate µ0 = 0.1 job/sec;

• state 1 has fast service rate µ1 = 12 job/sec;

• the jumping probabilities between the two states {0, 1}
are selected such that the service times have mean service

rate µ = 1, squared coefficient of variation CV 2 = 20,

and autocorrelation starting at lag-1 with ρ1 ≈ 0.50,

see [5] for techniques for defining an MMPP(2) with

predefined moments and lag-1 autocorrelation.

Figure 1 plots service times and queue-lengths at the autocor-

related resource 2 as a function of simulation time. Initially, the

temporal dependent service process serves jobs with the fast

rate µ1 which results in a small queue-length. Just before point

A, the service switches to the slow state with large service

times, and jobs progressively accumulate in resource 2, until

a new jump restores the fast service rate and flushes the jobs

back to resource 1 (point B).

Let Ak, for k ∈ {0, 1}, be the expected time duration of the

MMPP(2) process successively completing service in state k.

Points C and D in Figure 1 illustrate the practical difference

between strong and weak temporal dependence. Point C rep-

resents the outcome of jumps typically found in processes with

high temporal dependence: the duration Ak of consecutively

large (resp. small) service times is sufficiently long to allow

a complete accumulation (resp. flushing) of the jobs. Point D
shows instead the opposite effect which is easily found in a

process with weak autocorrelation: the absence of temporal

dependence leads to an irregularly alternating sequence of

large and small service time that keeps the jobs in the system

switching between the resources. Whenever behaviors of this

type occur frequently, such as in models without temporal

dependent service, the performance of the system improves

compared to the highly-correlated case because the load on

average is more equally shared by the resources [13]. In

the highly-correlated case, instead, a single resource becomes

highly-congested and slows down the entire system.

From the last observation, one can infer that the durations

Ak have a strong impact on system performance and their

online modification could be beneficial to control load. In

a practical implementation, if we abstract the system in

operation as here (i.e., evolving between “fast” and “slow”

states), then we can use the idea of reducing Ak to better

balance the load among the two queues, thus improving overall

system performance. This is the underlying principle of the

load control scheme defined below. In the next section, we

introduce and study policies that alter the duration of the states

associated with the longest processing times, thus blocking the

performance effect of congestion periods, e.g., such as of the

congestion starting at point C in Figure 1.

III. AUTOCORRELATION-GUIDED LOAD CONTROL

In this section, we propose a load control policy to improve

the overall system performance. For the rest of the paper, we

assume that load control by dropping requests is an acceptable

practice for the application under consideration. For example,

the MPEG video coding schemes store the necessary infor-

mation to decode the video redundantly in multiple frames.

Consequently, under heavy load, some of the frames can be

dropped, up to a certain percentage, without compromising the

overall quality of service perceived by the user. Furthermore,

the quality of service perceived by the user depends on the

device that is playing the digital video. If it is a low resolution

device (such as a handheld), then the percentage of video

frames that can be dropped without affecting the quality of

viewing is higher than if the video is watched on a high-

definition television.

The proposed load control policy is driven by autocorre-

lation that reduces the average durations of “slow” service

periods. The duration of slow periods can be reduced by

dropping longer (relatively to other) requests from the queue

of the autocorrelated server. Note that reducing the duration

associated to short requests also reduces autocorrelation and

may thus improve performance. However, the performance

impact of short jobs is typically small compared to that of

long jobs and this makes the practice of dropping small jobs

less interesting than for large jobs. Indeed, this drop does

not necessarily correspond to an interruption of the service,

but can be implemented in the real system in less invasive

ways: e.g., an HTTP session processed by an overloaded Web

server may be redirected to another server in the Web farm or

have its latency artificially degraded to the benefit of the other

concurrent sessions [21]. Our scheme is more effective than

other methods, e.g., random drop, since we effectively forecast

which jobs in the queue are long, thus become candidates to

drop.

First, we present a static load control policy, called ALOC,

which requires a priori knowledge of the autocorrelation

function at the server process and of a user-defined parameter

for controlling the load at the autocorrelated server. ALOC

does not require a priori knowledge of the request size.

Then, we present a related dynamic version, called D ALOC,

which also does not assume any a priori knowledge and

dynamically adapts its load control parameter based on online

measurement, policy targets, and statistical information of past

workloads.

A. ACF-Guided Prediction

Dropping effectively the most harmful requests for perfor-

mance depends on the prediction accuracy of future job sizes.

Henceforth, we do not assume a priori knowledge of any job

size, i.e., the system knows the size of a job only after it

completes execution. The aim of the prediction is as follows: if

size prediction is done effectively, long jobs can be accurately

identified and removed from the queue so that the duration A0

of the slow state decreases, yielding an improvement of the

average response times due to the factors discussed before.



High-variance workload characteristics have been observed

often in the literature [3], [8], [16], therefore our implicit

assumption that jobs can be classified into long or short indeed

applies to real systems. Here we assume that a job is long if its

service time is larger than µ−1(1+ k ·CV ), where µ−1 is the

mean job size, CV is the coefficient of variation and k, e.g.,

k = 3, is a given constant; the results presented throughout the

paper are qualitatively similar for various choices of k ≥ 1.

We now describe how we can use the autocorrelation

function to predict job sizes. Let us assume that the last served

job was long, i.e., its size was greater than µ−1(1 + k · CV )
for a given k, and suppose that we wish to forecast the size

of the j-th job in queue (the job j = 1 is the one immediately

entering service after the long job just completed). If the

service process has a positive ACF coefficient ρj , 0 < ρj ≤ 1,

then there is similarity in size between the completed long

job and the j-th job in queue, therefore we forecast the j-th

job as long1. Operationally, we cast a random number with

uniform distribution in [0, 1], if the result is less than or equal

to ρj , then we assume that the j-th job is long, otherwise

it is short. That is, we assume that ρj is a measure of the

conditional probability for a job to be large given that the

last served job was large. Although ρj does not indicate the

exact conditional probability that the j-th job is long given

the current completed job is long, ρj quantitatively describes

that conditional probability and thus can be used to effectively

predict the size of jobs in queue.

A negative or zero ρj implies high probability that the j-th

job significantly differs in size from the long job and therefore

it is likely to be forecasted as short. Since in our analysis

negative and zero autocorrelations lead to identical forecasting,

we set ρj = 0 whenever the measured lag-j autocorrelation is

negative.

B. ALOC: Static Version

The high level idea of ALOC is as follows. After a long

job is completed, the queue is scanned to find other long

jobs probabilistically, according to their position j in the

queue and the value of the corresponding autocorrelation

coefficient ρj . All jobs that have been estimated as long are

then dropped from the queue; indeed, if some jobs are known

to be indispensable for the application they can be tagged

as “undroppable” and be left in queue; we discuss this issue

in Section IV. If we drop jobs based on autocorrelation then

the estimated-short jobs remaining in queue are now more

clustered, which elongates the duration A1 at the expense of

the congested state duration A0 (i.e., the system should on

average behave similarly to the part of Figure 1 before point

C).

In order to control and maintain load reduction at a mini-

mum, we introduce a queue length threshold QT for dropping

requests, where 0 < QT/N ≤ 1. Thus ALOC starts dropping

requests only when the last completed request is long and

1See [2] for an overview of autocorrelated-based forecasting and other
possible use of autocorrelation to predict future values in a time series.
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Fig. 2. Illustration of ALOC’s operations. The most-recent served job is
larger than 1

µ
(1 + k · CV ) and the current queue length exceeds QT = 5.

Dark bars represent requests to be kept in the queue, light gray bars represent
requests to be dropped, and blank bars represent requests yet to be considered
by the policy. Figure 2(a) shows the policy stopping when four jobs have been
dropped from the queue and the current queue length reaches QT . Figure 2(b)
shows another possibility that the policy scans the entire waiting queue and
only three jobs are estimated long ones and dropped.

the queue length at the autocorrelated server is higher than

QT . Therefore, if the system is under-utilized and QT is not

reached, then no request is dropped and all long requests are

still served. Note also that since the policy is triggered only

after a long job is executed, the policy avoids starvation of

long jobs.

We use an example to describe ALOC. In the example,

QT = 5 and there are 9 jobs waiting in the queue as shown

in Figure 2. Upon completion of a long job, ALOC is triggered

because the current queue length is greater than QT . ALOC

starts to probabilistically predict the size of the jth waiting

job for j = 1, 2, . . . , 9. For instance, if ρ1 = 0.40, then

we interpret this value as a 40% probability that the job in

position 1 is similar to the last completed job, i.e., it is a long

job. We therefore cast a random number in [0, 1] and if the

result is less than or equal to 0.40 the job in position 1 is

dropped from the queue. A similar approach can be used to

estimate the job service requirement for the j-th job in queue

using the ρj autocorrelation coefficient, see light gray and dark

bars in Figure 2 for an example of possible outcome of the

forecasting. The policy has two stopping conditions: a first

case is when enough estimated-long jobs have been dropped

from the queue, and the current queue length has been reduced

to the threshold value QT , see Figure 2(a). Alternatively, the

policy may exhaust the waiting queue predicting that only

estimated-short jobs wait in the queue with the current queue

length still exceeding QT , see Figure 2(b). At the end of one

round, the first job waiting in the current queue is admitted

for service. ALOC is not triggered again before completion

of another long job.

Figure 3 gives the pseudo-code for ALOC, which assumes a

priori knowledge of the autocorrelation coefficients ρj , for 1 ≤
j < N , of the service process, and the queue length threshold

QT . In order to specify a fully autonomic load control policy,

the controller must be able to estimate these values online. We

introduce in Section III-D D ALOC, the dynamic version of



1. initialize variables
a. initialize index of the ACF queue: i← I;
b. initialize ACF values of the service stream at queue i:

ρj for all 1 ≤ j ≤ N ;
c. initialize threshold QT ← R ·N , for a given 0 < R ≤ 1;

2. for every job completion at queue i do
a. check if service time of current request is long and the

current queue length exceeds QT ;
b. if yes, start dropping

I. initialize the index of jobs: j ← 1;
II. for job j, generate a random number s ∈ [0, 1]

if s < ρj , then assume the job is long and drop it;
else assume the job is short and keep it;

III. if the current queue length reaches QT ,
then go to step 2;
else j ← j + 1 and go to step 2-b-II;

c. else, go to step 2;

Fig. 3. Description of ALOC. All input parameters are determined off-line.

QACFQEXP
µλ

Customer Service Provider

Job Population = N

Fig. 4. A closed system with two queues QEXP and QACF modeling
a media streaming system.

ALOC which is able to do online estimation of all parameters.

C. Performance of ALOC

We use simulation to evaluate the performance of ALOC

in a system of two tandem first-come-first-served (FCFS)

queues QEXP and QACF with mean service rates λ and µ,

respectively, see Figure 4. This abstraction can be used to

model a media streaming system, e.g., an Internet service

provider streaming video and audio to customers such as

personal computers, personal video recorders, game consoles,

and mobile phones. We remark that the observations given

in this section readily apply to systems with more than two

queues.

Here, QACF is the device with an autocorrelated service

process, which is drawn from an MMPP(2) with mean rate

µ = 1 and squared coefficient of variation CV 2 = 20. QEXP

is evaluated in two configurations:

• Experiment 1: QEXP is one order of magnitude faster

than QACF ;

• Experiment 2: QEXP is two orders of magnitude faster

than QACF
2.

That is, the service times of QEXP are exponentially dis-

tributed with mean rates λ = 10 and λ = 100 in Experiment

1 and Experiment 2, respectively.

2Experiments with varying relative speed up to three and four orders of
magnitude of the two devices yield qualitatively similar results and are not
reported here due to limited space. The rationale behind considering different
orders of magnitude in the service times is that this situation is typical when
the service provider needs to read content from the disk.
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In order to qualitatively analyze the effect of autocorrelation

on policy performance, we also conduct experiments with

MMPPs having different autocorrelation at QACF for both

Experiment 1 and Experiment 2, but always such that they

have the same mean, CV 2, and higher moments of the job

sizes. We thus obtain three service processes with different

autocorrelations: (1) ACF1 with ρ1 = 0.47 decaying to zero

after lag 1500; (2) ACF2 with ρ1 = 0.46 decaying to zero

beyond lag = 240; and (3) ACF3 with ρ1 = 0.45 decaying to

zero beyond lag = 100. Figure 5 shows the ACF for the three

service processes.

1) Comparison with Random Dropping: To compare the

effectiveness of ALOC, we compare it with a policy where re-

quest drop is done randomly. The random policy continuously

drops from the head of the waiting queue with probability set

as same as the overall dropping ratio of ALOC. For ALOC

we set N = 500 and QT = 490, i.e., 98% of N . Figure 6

presents the average response times for Experiment 1 and

Experiment 2. The relative improvement in round trip times is

marked above each bar in the figure. Round trip times when all

jobs are admitted without load control are plotted as a baseline

comparison (NoDrop bars).

In the two experiments, drop ratios of ALOC are equal to

0.08, 0.10, and 0.13 for ACF1, ACF2, and ACF3, respectively.

Counterintuitively, the drop ratio for strong autocorrelated ser-

vice process (e.g., ACF1) is lower than that for the weak one,

e.g., ACF3. This is because with strong ACF, the prediction
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of long jobs becomes more accurate, which increases the

throughput of the autocorrelated queue and thus decreases

the queue length. As the result of this, the trigger condition,

i.e., the queue length being beyond QT , occurs less often.

Consequently, the policy drops less jobs but improves the

performance more with stronger ACF.

Figure 6 shows that across all experiments, ALOC dramati-

cally improves expected response times compared to a random

drop policy. Parsimonious selection of the request to be denied

service results in significant improvements when compared to

the random policy. In Experiment 1 with ACF1, the random

policy results in a response reduction of about 35% from

the baseline case. ALOC further reduces average response

time by 84% relative to the baseline case. Performance trends

persist for ACF2 and ACF3, but performance gains slightly

reduce as the strength of ACF decreases. This can be explained

by the fact that forecasting becomes less effective when the

autocorrelations are smaller, and job size is thus harder to

predict. Similar trends persist in Experiment 2 where ALOC

presents additional performance improvements as the speeds

of the two devices differ now by two orders of magnitude.

The higher the difference in the devices speed, the better

the performance improvement of ALOC in comparison to

dropping randomly.

2) Sensitivity to Queue Length Threshold QT : We quantify

the performance effect of the pre-defined threshold QT used

to trigger request dropping at the QACF queue. We investigate

the effectiveness of a choice of QT by computing the related

average drop ratio and the relative improvement of response

time. Reported statistics are only for those requests that

complete work in both queues.

Figure 7 presents performance measures as a function of

QT for Experiment 1 and Experiment 2 by using ALOC. The

population in the model is set to N = 500. QT ranges from

100% of N , i.e., no drop since ALOC is never triggered,

to 10% of N , i.e., we drop requests when the queue length

in QACF is equal to 50. From the figures we see that as

QT decreases, the drop ratio increases quickly (see Figure 7

(a) and (c)), but there is a point beyond which the drop

ratio stabilizes. This happens because the smaller the QT , the

larger the proportion of large jobs that are denied service at

QACF . When QT becomes too small, the policy becomes

very aggressive: most long jobs are dropped and only few

long jobs remain in the queue to be dropped. Therefore, the

drop ratio stabilizes because the queue is almost empty of long

jobs. Across both experiments, the position of the knee of the

drop ratio curve depends on the strength of the autocorrelation

function. The stronger the autocorrelation, the lower the value

of QT for which the knee appears.

The performance effect as a function of QT values is

illustrated in Figure 7 (b) and (d). The plots show that excellent

performance improvements can be achieved by triggering

ALOC infrequently with large QT values, which also results

in desirable smaller drop ratios. In Figure 7 (b) and (d),

a large QT equal to 490 results in dramatic performance

improvements while containing the drop ratio at a minimum

across all experiments.

For completeness, we have also conducted sensitivity anal-

ysis under different job populations, e.g., N = 100 and N =
300. Our results can be summarized as follows. Drop ratios
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and relative performance gains with different populations are

qualitatively the same as those for N = 500. Drop ratios are

lower in less populated models while relative gains in response

times remain high.

3) Round Trip Time Distribution: We analyze the tail per-

formance and plot in Figure 8 the complementary cumulative

distribution function (CCDF) of round trip times and of

response times at QEXP and QACF for Experiment 1 with

ACF2 . Results for ACF1 and ACF3 are remarkably similar

to those reported in this figure. The figure shows that ALOC

significantly improves the tail of the response times at QACF

and consequently the response times. The tails of response

times at QEXP of all three policies are almost identical.

Figure 9 also depicts the ACFs in the departure process of

QACF (i.e., arrivals to QEXP ). The random policy achieves

a small reduction in the autocorrelation function compared

to the original one (labeled as “NoDrop” in the figure).

ALOC’s ability to selectively deny service of jobs in the

queue that cause autocorrelation is shown in the figure: the

departure process curve that corresponds to this policy shows

autocorrelation that is significantly reduced.

D. D ALOC: Dynamic Policy

This version of the policy does not require any a priori

knowledge of either autocorrelation coefficients or queue

length threshold QT . D ALOC computes the autocorrelation

coefficients online, allowing for changes in the workload

characteristics over time and self-adjusts QT such that target

performance parameters are met.

For each server, D ALOC evaluates its mean service time,

its coefficient of variation, and the autocorrelation coefficients

of the service process when a job is completed at that

particular server, using a modified version of Welford’s one-

pass algorithm [22]. The definition of ACF at lag j given in

Eq. 1 can be rewritten as follows:

ρj = (E[Xt−jXt]−E[Xt−j + Xt] · µ
−1 + (µ−1)2)/σ2, (2)

where µ−1 and σ2 are respectively mean and variance of the

sequence and

E[Xt−jXt] = E[Xt−j−1Xt−1]

+
Xt−jXt − E[Xt−j−1Xt−1]

t
E[Xt−j + Xt] = E[Xt−j−1 + Xt−1]

+
Xt−j + Xt − E[Xt−j−1 + Xt−1]

t
.

Once a job with service time of Xt is completed, the values

of E[Xt−jXt] and E[Xt−j + Xt] are updated and autocor-

relation ρj is recalculated using Eq. 2. If the autocorrelation

coefficients in a specific server are positive, then D ALOC

determines that this server is the source of autocorrelation in

the traffic flows of the entire system. Consequently, the load

reduction is triggered at that server.

1. initialize threshold QT ← N ;
2. initialize the maximum allowable drop ratio D;
3. for every C requests do

a. upon each job completion at queue i,
I. calculate ACFs using Eq. (2): ρj for all 1 ≤ j ≤ N − 1;
II. if the service process at queue i is autocorrelated,

then drop using the same scheme of ALOC;
b. at the end of an updating window of C requests

I. calculate current drop ratio d and compare with D;
II. adjust QT using Eq. (3);

Fig. 10. Description of D ALOC. All policy parameters are computed on-
line.

To dynamically adjust QT , we use an updating window of

C requests that have been served. In the experiments presented

here C is set to 3000. The value of QT is initialized to N .

For every batch of C requests, D ALOC compares the current

request drop ratio d with the maximum allowable drop ratio

D. If the current drop ratio exceeds D, then QT is increased

to reduce the frequency of dropping requests. If the drop

ratio d is below D, then QT is reduced to drop requests

more aggressively. The following equation illustrates how QT
changes by a value that is proportional to the difference

between the drop ratio d and the allowable drop ratio D:

QT =

{

QT + (N − QT ) · d−D
1.0−D

if d > D

QT − (QT − 0) · D−d
d−0.0

if d ≤ D
(3)

Upon updating QT , the new threshold for the next C requests

in the autocorrelated server. Figure 10 gives the pseudo-code

for D ALOC.

E. Performance of D ALOC

In this section, we evaluate the effectiveness of D ALOC.

The simulation environment is the same as in Section III-C.

For all experiments presented here, we set the maximum

allowable drop ratio equal to 0.06, 0.08, 0.10, or 0.13. Fig-

ure 11 presents the average response times as a function of

drop ratio in Experiment 1 and Experiment 2 under both

D ALOC and ALOC policies. Round trip times when all jobs

are admitted are also plotted as a baseline comparison. Here,

ALOC is parameterized such that the ideal QT is selected
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Fig. 12. CCDFs of response times under drop ratios of 0.0 (i.e., no drop), 0.06, 0.08, 0.10, and 0.13, for Experiment 1, where the service times of QACF

are drawn from ACF2. N = 500.

to achieve the pre-defined drop ratio while achieving best

performance. At the beginning of the simulation, D ALOC

initializes QT = 500 (i.e., no drop), but it gradually changes

this value such that the average drop ratios are maintained

below the corresponding pre-defined allowable drop ratio.

The experiments depicted in Figure 11 indicate that

D ALOC’s performance is very close to ALOC’s. This means

that D ALOC is truly effective, especially because for each

ALOC bar in Figure 11, the value of QT is selected by

exhaustive searching so that ALOC achieves the best response

values.

Figure 12 illustrates the CCDF of response times under

drop ratios of 0.0 (i.e., no drop), 0.06, 0.08, 0.10, and 0.13

for Experiment 1 with ACF2 in the service stream at QACF .

The figure clearly shows that both ALOC and D ALOC

significantly improve the tail of response times. The tail of

D ALOC is close to that of ALOC, and the gap between these

two tails diminishes as the drop ratio increases. In summary,

Figures 11 and 12 argue for D ALOC’s effectiveness and

robustness with respect to different autocorrelation strengths

in the service process of QACF , different target drop ratios,

and relative speeds of QEXP and QACF .

IV. TRACE DRIVEN EVALUATION

The majority of Internet-based media streaming systems can

be modeled as a closed queueing system, see Figure 4. In such

a model, the first queue represents the device which receives

the streaming media, e.g., a personal computer and other

consumer electronic devices and the second queue represents

the server that has stored the media content, e.g., movies, songs

and games.

In this section, we use actual traces measured at the disk

level of a streaming system to evaluate how ALOC and

D ALOC perform in a practical setting. The traces record,
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Fig. 15. CCDFs of response times using the real traces. N = 200.

in high resolution, both arrival and departure times of each

request. Further details on these traces and their representa-

tiveness can be found in [16].

The mean service time recorded in the trace is 1.09 ms and

CV is equal to 2.47. Figure 13 presents the autocorrelation

function for the disk service process in this trace. At the

first queue in our model, service times are drawn from an

exponential distribution with mean service time equal to 0.01

ms, i.e., the first server is two orders of magnitude faster to

view the content than the server that reads the content from

the disk. The population N in the system is set to 200 and the

sample space is equal to 1,043,259 requests. We remark that,

for increased values of the population N , the autocorrelation of

disk request sizes would be the same since in queueing models

the service process is commonly assumed to be independent

of N .

To investigate policy robustness, we add an additional

restriction by marking some requests as “undroppable”. In

particular, we focus on trace data where the transmitted

files are MPEG video streams. MPEG video streams com-

press raw frames specifically into three kinds of pictures:

(1) I(ntra-coded)-pictures, which are independent of others,

(2) P(redictive-coded)-pictures, which depend on the pre-

vious I- or P- pictures for being displayed correctly, and

(3) B(idirectionally predictive-coded)-pictures, which need the

information from the previous and the following I- or P-

pictures for motion compensation [10]. I-pictures are the

most important pictures and thus cannot be dropped, while a

limited drop of a P- or B- pictures is acceptable. We therefore

investigate the effectiveness of D ALOC under the restriction

that some requests are undroppable (i.e., I-pictures). This

variation of D ALOC is called “Dyn-Mark”.

We show response times using the actual traces as a service

process of the streaming server for random, ALOC, D ALOC,

and “Dyn-Mark” policies. Figure 14 plots the average response

time for the various policies when 7%, 12%, and 16% of

the total requests are dropped. Additionally, ALOC is tuned

such that it achieves its best performance for the target drop

ratio. The relative performance improvement of the various

policies compared to a no drop policy is consistent with the

results presented in the previous section: as the drop ratio

increases, the response times significantly decrease. D ALOC

self-adjusts its configuration parameters and achieves closely

as good response times as the carefully tuned ALOC. The

restriction of dropping certain requests in Dyn-Mark results

in a slight degradation in performance improvements, but

nevertheless significant gains in comparison to no drop.

Figure 15 plots the tails of the response time distribution for

all policies. Results are consistent with those reported in the

synthetic trace, further arguing for the robustness of D ALOC

even with drop restrictions.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed ALOC and D ALOC,

two autonomic load control policies that use for the first

time autocorrelation measured in service times as a criterion



to selectively drop queued requests and control load in a

distributed system. Using autocorrelation, both policies are

able to effectively guess the future service requirements of

incoming jobs at a server and drop the load according to this

forecasting information.

Using simulations, we have shown that ALOC and

D ALOC are able to reduce end-to-end system response times

for different workload intensities, levels of autocorrelation,

and target drop ratios. Experiments on synthetic traces show

that the response time improvement of ALOC and D ALOC

typically varies between 50% and 80%. On a real trace where

some requests are marked as high priority requests and at the

extreme case as “undroppable”, both policies are still very

effective, with a response time improvement between 15% and

30%. These results promote ALOC and D ALOC as easy-to-

implement policies for load control in autonomic systems. In

the future, we plan to study the behavior of systems where

multiple resources have autocorrelated service times.
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