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Abstract

Temporal dependence within the workload of any com-
puting or networking system has been widely recognized
as a significant factor affecting performance. More specif-
ically, burstiness, as a form of temporal dependency, is
catastrophic for performance. We use the autocorrelation
function in a workload flow to formalize burstiness and
also to characterize temporal dependence within a flow. We
present results from two application areas: load balancing
in a homogeneous cluster environment and capacity plan-
ning in a multi-tiered e-commerce system. For the load bal-
ancing problem, we show that if autocorrelation exists in
the arrival stream to the cluster, classic load balancing poli-
cies become ineffective and solutions that focus on “unbal-
ancing” the load offer superior performance. For the case
of multi-tiered systems, we show that if there is autocor-
relation in the flows, we observe the surprising result that
in spite of the fact that the bottleneck resource in the sys-
tem is far from saturation and that the measured through-
put and utilizations of other resources are also modest, user
response times are very high. For multi-tired systems, this
underutilization of resources falsely indicates that the sys-
tem can sustain higher capacities. We present analysis of
the above phenomena that aims at the development of bet-
ter scheduling policies under autocorrelated flows.

1. Motivation

Burstiness is expressed by the dependence structure of
the request flows in the various system components. This
dependence structure is described and quantified via theau-
tocorrelation function(ACF). Autocorrelation is used as a
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statistical measure of the relationship between a random
variable and itself [1]. Consider a stationary time series of
random variables{Xn}, wheren = 0, . . . ,∞, in discrete
time. The autocorrelation function (ACF)ρX(k) shows the
value of the correlation coefficient for different time lags
k > 0:

ρX(k) = ρXt,Xt+k
=

E[(Xt − µ)(Xt+k − µ)]

δ2
,

whereµ is the mean andδ2 is the common variance of
{Xn}. The argumentk is called the lag and denotes the
time separation between the occurrencesXt andXt+k. The
values ofρX(k) may range from -1 to 1. IfρX(k) = 0,
then there is no autocorrelation at lagk. In most cases,
ACF approaches zero ask increases, implying that the fur-
ther in time the two occurrences of the random variable are,
the higher the probability that they are independent of each
other. The decay rate of the ACF distinguishes the time se-
ries as short-range dependent (SRD) or long-range depen-
dent (LRD). The ACF essentially captures the “ordering” of
random values in the time series. High positive ACF values
imply strong temporal locality: a value of the random vari-
able in the time series has a high probability to be followed
by another a value of the random variable in the time series
has a high probability to be followed by another variable
of the same order of magnitude, while negative ACF values
imply the opposite.

To illustrate the magnitude of the performance effects of
autocorrelation in open systems, i.e., systems with an in-
finite waiting queue, we parameterize a simple queueing
model of a single server. The arrival process is drawn from a
Markov Modulated Poisson Process (MMPP). We selected
a Markovian-Modulated Poisson Process (MMPP), a spe-
cial case of the Markovian Arrival Process (MAP) [3], to
model autocorrelated service times because it is analytically
tractable. Its basic building block is a simple exponential
but it can be easily parameterized to have dependence in
its structure. The MMPP that is used here is parameterized



such that it results in three levels of dependence as illus-
trated in Figure 1(a): no ACF (i.e., arrivals are indepen-
dent), short-range dependence (SRD), and long-range de-
pendence (LRD).

The PDFs of these three arrival processes are identical
(i.e., all their moments are the same), but what distinguishes
them is theorder of samplingfrom the PDFs, which intro-
duces autocorrelation in the sample. The service process
is a simple exponential distribution and the queueing dis-
cipline first-come-first-serve. Inter-arrival times are scaled
so that we examine the system performance under differ-
ent utilization levels. Figure 1(b)-(c) presents performance
measures for the three different arrival processes as a func-
tion of server utilization. The effect of ACF on system per-
formance is tremendous: the higher the ACF, the worse the
system performance, which can worsen as much as 3 orders
of magnitude when comparing to the case with no ACF ar-
rivals. This figure shows the important performance effects
of autocorrelation in queueing.

In this research, we have explored the effect of auto-
correlated flows inopen systems(i.e., systems with infinite
queue capacities) andclosed systems(i.e., systems with fi-
nite queue capacities). For the open system case, we have
developed analytic techniques that allow for modeling the
departure process of a queue with autocorrelated flows, thus
allow for queue-by-queue analysis. These results will not
be presented here, instead we refer the interested reader
to [2, 10, 13]. Load balancing in a homogeneous cluster
with infinite buffers is a case of an open system. In Sec-
tion 2 we summarize the performance effects of autocorre-
lated flows for load balancing and the design of new poli-
cies. In Section 3 we present another application area: ca-
pacity planning in multi-tiered systems that effectively op-
erate like closed systems, where we present experimental
as well as modeling results. Finally, Section 4 outlines our
future work.

2. Load Balancing

We present an application of the effect of autocorrelation
to a classic problem: scheduling and load balancing in a
cluster environment. Size-based policies have been shown
to successfully balance load and improve performance in
homogeneous cluster environments where a dispatcher as-
signs a job to a server strictly based on the job size (see
[12] and references within). While the success of size-based
policies is based on avoiding the unfavorable performance
effects of having short jobs been stuck behind long jobs
[12], we have shown that their effectiveness quickly dete-
riorates in the presence of job arrivals that are characterized
by correlation in their dependence structure [11, 6].

We give an overview of these observations using trace-
driven simulations. The service process is obtained from

traces of the 1998 World Soccer Cup Web site,1 that have
been used in several studies to evaluate the performance in
load balancing policies in clustered web servers. Trace data
were collected during 92 days, from 26 April 1998 to 26
July 1998. Here, we use part of the June 24th trace (10 mil-
lion requests), that corresponds to nearly ten hours of oper-
ation and we extract the file size of each transfered request.
Because the Web site contained only static pages, the size
of the requested file is a good approximation of the request
service time. In the trace used for our experiments, the aver-
age size of a requested file is 5059 bytes and its coefficient
of variation (CV) is 7.56.

Unfortunately, we cannot use the arrival process of the
World Cup trace data because it is not detailed enough:
arrival timestamps of requests are provided in seconds, so
multiple requests arrive within one second periods. To ex-
amine the effect of autocorrelation in the arrival process,we
use instead a 2-state MAP, which, with appropriate param-
eterization, allows for changingonly the ACF while main-
taining the same PDF. The ACF of the three arrival pro-
cesses that we use is illustrated in Figure 2(a). This allows
for sensitivity analysis with respect to autocorrelation in the
arrival stream. We compare the performance of the follow-
ing policies: ADAPTLOAD, a size-based policy that does
not requirea priori knowledge of the service time distri-
bution and has been shown to be effective under changing
workload conditions [12], theJoin Shortest Weighted Queue
(JSWQ) policy,Join Shortest Queue(JSQ), andRound Rob-
bin (RR).

ADAPTLOAD constructs the histogram of all requests
and partitions it in equal areas, i.e., representing equal work
for each server, while preserving the fact that requests of
the same size fall within the same partition. ADAPTLOAD

self-adjusts the area boundaries by predicting the incoming
workload based on the histogram of the lastK requests. In
JSWQ the length of each queue in the system is weighed by
the size of queued requests, therefore each incoming request
is routed to least loaded server. With JSQ when a request
arrives, it is assigned to a server with the smallest waiting
queue. With the round-robin (RR) algorithm, requests are
routed to servers in a rotated order.

We evaluate the effect of autocorrelated inter-arrival
times on the performance of load balancing policies by an-
alyzing the average response time (i.e., wait time plus ser-
vice time), the average slowdown (i.e., the ratio of the ac-
tual response time of a request to its service time ), and the
mean system utilization. Figure 2 plots performance results
for the four load balancing policies. The figure shows that
correlation in the arrival process degrades overall system
performance for all four policies. For example, the overall
performance under independent arrivals (NOACF) is two
orders of magnitude better than under SRD inter-arrivals,

1Available from the Internet Traffic Archive at http://ita.ee.lbl.gov .
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Figure 1. (a) ACF of the arrival process at the queue, (b) aver age response times (wait plus service
times), and (c) average waiting queue length for different s erver utilization levels. Because of the
scale used in the figure and because of the difference of the th ree curves, the performance measures
with no ACF look flat. With no ACF for utilization equal to 0.9, queue length is equal to 152 as
expected, but this number is dwarfed in comparison to the LRD and SRD numbers.
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Figure 2. Average response time (a) and average utilization (b) of the four load balancing policies
under different degrees of autocorrelation in the arrival s tream.

and three orders of magnitude better than under LRD inter-
arrivals, despite the fact that average system utilizations
are exactly the same for all experiments, i.e., the average
utilizations are about62%, see Figure 2(c). Most impor-
tantly, the figure also shows that ADAPTLOAD outperforms
other policiesonlyunder independent inter-arrivals, see Fig-
ure 2(b). Under autocorrelated arrival processes, ADAPT-
LOAD’s performance is comparable to the three other poli-
cies, showing that separating requests according to their
sizes is not sufficient to improve performance.

Based on the above observations, we use the same his-
togram information as ADAPTLOAD but re-set the partition
boundaries by shifting to neighboring servers a percentage
R of the work assigned to each server. This is based on
the observation (see also Figure 1) that in order to achieve
similar performance levels under autocorrelated arrivals, the
system utilization must be lower than under independent ar-
rivals Naturally, performance improvements depend on the
degree of load unbalancing that is introduced by the shifting
percentageR. A good choice ofR can result in significant
performance improvements, but an unfortunate choice may
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Figure 3. Average response time for the origi-
nal ADAPTLOAD, the policy with static shifting
ratio R, and a dynamic version that adjusts R
in an on-line fashion.

also result in poor performance. We have developed an on-
line version of this policy that monitors workload as well
as the effectiveness of load balancing. Its performance is
now independent of the choice ofR. By observing past ar-
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Figure 4. TPC-W experimental environment (left) and autoco rrelation flows in various marked points
of the system under the the default browsing mix with 384 emul ated browsers (right).

rival and service characteristics as well as past performance,
it self-adjusts its configuration parameters. Figure 3 shows
the average response time of this on-line policy in compari-
son to various static versions with fixed shifting percentages
R, showing that unbalancing load in a cluster server un-
der autocorrelated arrivals results in significant performance
gains. Key to this solution was the detection of autocorre-
lation in the arrival process. For more details, we refer the
interested reader to [11, 6].

3. Capacity Planning of Multi-tiered Systems

In computer systems, in contrast to the open systems ex-
ample illustrated above, there is always an upper bound on
the total number of jobs or outstanding requests that exist
in the system at all times, a bound that is dictated by the
finite buffers in the system. This upper bound makes the
system operate like a closed system, i.e., a system with a
finite queue, and performance deterioration due to autocor-
related flows is more contained.

Multi-tiered systems, a prevalent architecture of today’s
web sites, is an example of closed systems because the
hardware imposes a limit on the number of simultaneous
connections. Capacity planning and workload characteri-
zation in such systems aims at identifying bottlenecks and
the conditions which trigger them and aid the development
of resource management policies to improve performance
or provide service level provisioning. In our preliminary
work [5], we observed that burstiness in the service process
of anyof the tiers (queues) may result in very high user re-
sponse times even if the bottleneck resource in a system is
not highly utilized, while measured throughput and utiliza-
tions of all other resources are also modest. When bursti-
ness is not considered, this underutilization may falsely in-
dicate that the system can sustain higher capacities.

In collaboration with researchers at Seagate Research
we have built an e-commerce server according to the TPC-
W [8] e-commerce benchmark to identify the presence of

autocorrelation in different tiers of the system. A high-level
overview of the experimental set-up is illustrated in Fig-
ure 4, which also shows the flow of requests. The workload
generation modules are done using the TPC-W specifica-
tions that do not introduce any correlation in the flows. Au-
tocorrelation is nonetheless observed in various flows in the
system as shown in the right graph of Figure 4. According
to our analysis, the origin of these autocorrelated flows is
the service process in the front server (details can be found
in [5]).

3.1. Theory: Autocorrelation in Systems

In closed systems, because of the limited buffers, we
expect that the performance effects of autocorrelation are
more contained in comparison to open systems. To better
understand the observed behavior of our TPC-W experi-
ments, we use the simplest closed queuing system (see Fig-
ure 5) that resembles the topology of a two-tiered applica-
tion. Autocorrelation in the arrival or service processes di-
rectly implies that the system is not product-form [4], there-
fore one can only use simulation for its analysis. We as-
sume that a fixed number of jobs circulate in the queuing
network, known as themultiprogramming level(MPL). We
assume that server 2 is the bottleneck device and that server
1 is twice as fast as server 2. We have done two experi-
ments. In the first experiment (baseline case), the service
processes in server 1 and 2 have no ACF. In the second ex-
periment, only the service process of the bottleneck server2
has ACF. Parameterization was done in such a way that the
stochastic processes in the two experiments have the same
PDF (therefore means and higher moments are identical) –
only the autocorrelation function is different for server 2.
We measured the autocorrelation of the flows in the system
and naturally no autocorrelation was detected in the first ex-
periment, while ACF propagated from server 2 in theentire
flow in the second experiment.

This propagation has a tremendous effect on perfor-
mance. Figure 5(b)-(d) compares performance measures of
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Figure 5. A closed system with 2 queues and performance measures: (b) mean queue length, (c)
mean utilization, and (d) mean system throughput. Performa nce measures are presented for two
systems: one with no ACF in the service processes for server 1 and server 2 (baseline case, where
classic queueing theory analytic models apply) and one wher e only the bottleneck queue (server 2)
has autocorrelated service times (existing analytic model s do not apply).

the two experiments. Round-trip times are not shown due
to lack of space, but as expected, in the experiment with
ACF they are consistently higher than the first experiment.
Counter-intuitively for experiment 2, the expected utiliza-
tion of each queue decreases, including the expected utiliza-
tion at the bottleneck device, which is also reflected in the
mean queue length of all servers. Furthermore, with exper-
iment the system throughput remained consistently lower
than experiment 1.Existing analytic models would predict
the performance shown in experiment 1, but would be far
off from the performance of experiment 2.

3.2. New Analytic Models: Approximate
Lumpability

We have developed a new analytic model that can cap-
ture the behavior of the two queue closed system shown in
Figure 5 for the case where the second queue (bottleneck
server) has an autocorrelated service process. To aid the
development of a model, we used an Markov Modulated
Poisson Process of order 2, MMPP(2), to model the service
process in the second server. The process of the first server
is a simple exponential.

The use of MMPP(2) allows for defining two
“macrostates” in the system, that capture the temporal de-
pendency of the MMPP(2) service process. An approxi-
mate solution for the Markov chain of the closed network
may be obtained by first analyzing the performance of each
macrostate in isolation, and then weighting the results ac-
cording to the fraction of time spent in each macrostate.
This approach is based on classicdecompositionarguments,
and provides accurate results whenever the behavior of the
system in a macrostate is largely independent of the dy-

namics inside the other macrostates. This is not the case
though for the MMPP(2) case: temporal dependency in the
macrostate exists due to autocorrelation, therefore decom-
position does not work well.

We obtained accurate estimates of the mean through-
put under heavy-load conditions using approximate lumpa-
bility. This allows to exploit the special structure of the
MMPP(2) process to refine the solution obtain with decom-
position. In particular, we derived a single-step approxima-
tion on themeanutilization of the MMPP(2) server by ma-
nipulating the core equations of Takahashi’s iterative exact
method [7]. A description of our method is given in Al-
gorithm 1. Our technique requires a single-iteration, and
requires to compute the macrostate probability terms by
global balance. We approximate these terms by first remov-
ing the related states in the Markov chain, then heuristically
solving the resulting symmetric Markov chain, and finally
computing the result by a single global-balance equation for
each macrostate. The symmetric Markov chain is solved by
first approximating the innermost states of the chain with
the closed-form solution of a network where only the bot-
tleneck stations are considered in each macrostate, and then
solving the reduced chain by global balance. We limited in
experimentation the maximum size of the reduced chain to
50 states, so that a global balance solution can be obtained
in negligible time. The results of our technique compared
to decomposition are shown in Figure 6. As we see, our
method is able to capture the evolution of throughput for a
heavy-loaded system, while decomposition is unable to fol-
low the throughput growth as the network enters in heavy-
load conditions (i.e., increased MPLs).
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Algorithm 1 Single-Step Analysis of Mean Utilization by
Approximate Lumpability.

1: Uk
p

def
= joint probability thatQp is busy and the

MMPP(2) process is in statek ∈ {0, 1}

2: Ũk
p

def
= unscaled joint probability thatQp is busyand

the MMPP(2) process is in statek

3: π̃k
p

def
= unscaled joint probability thatQm is emptyand

the MMPP(2) process is in statek
4: Initialize U0

p andU1
p using decomposition as in [9]

5: Ũ0
p ←

(
P1,0U

1
p

P0,1U0
p + P1,0U1

p

)
U0

p

6: Ũ1
p ←

(
P0,1U

0
p

P0,1U0
p + P1,0U1

p

)
U1

p

7: Computẽπk
p by global balance fork ∈ {0, 1}

8: Compute the normalizing constantG ← Ũ0
m + Ũ1

m +
π̃0

p + π̃1
p

9: NormalizeUk
p ← Ũk

p /G, k ∈ {0, 1}
10: Return by Little’s Law the mean throughputX =

(U0
p + U1

p )/Sp.
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Figure 6. Comparison of throughput approx-
imation of decomposition and approximate
lumpability with respect to the exact steady-
state solution.

4. Future Work

We have identified autocorrelation as an important
stochastic characteristic in flows for both closed and open
systems. Our future work spans several dimensions. On the
theoretic side, we will focus on generalizing the approxi-
mate lumpability algorithm for networks composed of more
than 2 queues. On the application side, we will continue
working on new policies in multi-tiered systems especially
focusing on the development of new admission control poli-

cies that depend on on-line detection of the degree of au-
tocorrelation in flows. We have also started exploring the
development of policies at the storage system level (where
strong autocorrelation flows have been observed by our in-
dustrial partners) to improve storage system reliability,as
well as scheduling policies at the disk level that are oblivi-
ous to all other specific knowledge of the workload that are
sometimes impossible to know a priori (e.g., at the driver
level execution times of reads and writes are rarely known
before their execution).
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