
Load Unbalancing to Improve Performance under Autocorrelated Traffic ∗

Qi Zhang Ningfang Mi
Computer Science Dept.

College of William and Mary
Williamsburg, VA 23187

{qizhang,ningfang}@cs.wm.edu

Alma Riska
Seagate Research

1251 Waterfront Place
Pittsburgh, PA 15222

alma.riska@seagate.com

Evgenia Smirni
Computer Science Dept.

College of William and Mary
Williamsburg, VA 23187

esmirni@cs.wm.edu

Abstract

Size-based policies have been shown to successfully bal-
ance load and improve performance in homogeneous clus-
ter environments where a dispatcher assigns a job to a
server strictly based on the job size. While the success of
size-based policies is based on separating jobs to different
servers according to their sizes by avoiding the unfavorable
performance effects of having short jobs been stuck behind
long jobs, we show that their effectiveness quickly deterio-
rates in the presence of job arrivals that are characterized
by correlation in their dependence structure. We propose
a new policy that still strives to separate jobs to servers
according to their sizes, but this separation is biased by the
effort to reduce the performance loss due to autocorrelation
in the streams of jobs that are directed to each server. As a
result of this effort, not all servers are equally utilized (i.e.,
the load in the system becomes unbalanced) but the perfor-
mance benefits of this load unbalancing are significant. The
proposed policy can be usedon-line, i.e., it does not assume
any knowledge neither of the correlation structure of the
arrival stream, nor of the job size distribution in the sys-
tem. Via detailed trace-driven simulation we quantify the
performance benefits of the proposed policy and we show
that it can effectively self adjust its configuration parame-
ters to improve performance under continuously changing
workload conditions.
Keywords: load balancing, autocorrelated arrivals, highly
variable service times, self adaptive policies.

1 Introduction

In the past few years there has been a renewed interest
in the development of load balancing policies for clustered
systems with a single system image, i.e., systems where a

∗This work was partially supported by the National Science Founda-
tion under grants CCR-0098278, ACI-0090221, and ITR-0428330, and by
Seagate Research.

set of homogeneous hosts behaves as a single host. Jobs (or
requests) arrive at a dispatcher which then forwards them to
the appropriate server.1 While there exists no central wait-
ing queue at the dispatcher, each server has a separate queue
for waiting jobs and a separate processor, see Figure 1. The
dispatching policy is critical for system performance and
strongly depends on the stochastic characteristics of the jobs
that request service as well as on the performance measures
that the system strives to optimize.

Prior research has shown that the job service time dis-
tribution is critical for the performance of load balancing
policies in such a setting [10, 9]. If job service times are
highly variable, including job service times that are best
characterized using heavy-tailed distributions, then poli-
cies that balance the load in the system by usingonly the
size of each incoming job to determine the server that will
be dispatched to, have been shown optimal if the perfor-
mance goal is to minimize the expected job completion
time, job waiting time, and job slowdown [7, 19]. Several
types of clustered systems can take advantage of size-based
policies, e.g., locally-distributed Web server cluster archi-
tectures [2, 19], content-distribution networks and media-
server clusters [18, 4], and large storage systems.
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Figure 1. Model of a clustered server.

Nonetheless, size-based solutions are not adequate if the

1In this paper we are using the terms “jobs” and “requests” interchange-
ably.



arrival streams in the dispatcher areautocorrelated. Indeed,
conventional wisdom has it that the arrival process in Inter-
net servers is not independent and it is an effect of the self-
similar nature of the network traffic [16]. Furthermore, au-
tocorrelated flows in the arrival process has been observed
in systems including multi-tiered systems [13], large stor-
age systems [8], an effect that has been shown to be detri-
mental for performance [6]. To alleviate the negative effects
of autocorrelation, traffic shaping has been used by drop-
ping, reordering, or delaying selected requests [17, 5, 1].

In this paper, we show that size-based load balancing
policies cease to be effective if the workload arrival pro-
cess is autocorrelated. We show that as autocorrelation in
the arrival process increases, the performance benefits of
size-based policies diminish. Based on our observations, we
propose a size-based load balancing policy that aims at re-
ducing the performance degradation due to autocorrelation
in each server, while maintaining the property of similar
job sizes been served by the same server. This new policy,
called D EQAL, strives to equally distribute work guided
by autocorrelation and load, and effectively unbalances the
load in the system: not all servers are equally utilized any
more, but overall system performance increases dramati-
cally. D EQAL does not assume anya priori knowledge of
the job service time distribution nor any knowledge of the
intensity of the dependence structure in the arrival streams.
By observing past arrival and service characteristics as well
as past performance, it self-adjusts its configuration param-
eters. To the best of our knowledge this is the first time that
dependence in the arrival process becomes a critical aspect
of load balancing.

This paper is organized as follows. Section 2 motivates
our work by showing that autocorrelation and high variabil-
ity characterize the workload in storage systems. In Sec-
tion 3 we compare the performance of a size-based policy
with several classic policies in the presence of autocorre-
lated arrival flows in the system. The proposed on-line size-
based policy is presented in Section 4 and its performance
is evaluated via simulation. Section 5 summarizes our con-
tributions and outlines future work.

2 Motivation

In this section we present data that have been measured
on a real system to confirm dependence in the arrival stream
as well as high variability in the service process. We present
data measured in various storage clusters [14]. In stor-
age clusters the existence of caches at various levels con-
tributes to highly variable inter-arrivals and service times.
The cache hierarchy together with resource distribution fur-
ther results in burstiness in the request arrival process.

Throughout this paper we use the autocorrelation func-
tion (ACF) as a metric of the dependence structure of a

time series (either request arrivals or services) and the co-
efficient of variation (CV) as a metric of variability in a
time series (either request arrivals or services). Consider
a stationary time series of random variables{Xn}, where
n = 0, . . . ,∞, in discrete time. The autocorrelation func-
tion (ACF) ρX(k) and the coefficient of variation (CV) are
defined as follows

ρX(k) = ρXt,Xt+k
=

E[(Xt − µ)(Xt+k − µ)]

δ2
, CV =

δ

µ
,

whereµ is the mean andδ2 is the common variance of
{Xn}. The argumentk is called the lag and denotes the time
separation between the occurrencesXt andXt+k. The val-
ues ofρX(k) may range from -1 to 1. IfρX(k) = 0, then
there is no autocorrelation at lagk. If ρX(k) = 0 for all
k > 0 then the series is independent, i,e., uncorrelated. In
most cases ACF approaches zero ask increases. The ACF’s
decay rate distinguishes processes as short-range dependent
(SRD) or long-range dependent (LRD).

In Figure 2(a), we present the ACF of arrivals at storage
systems supporting (dedicatedly) various applications. As
expected, for different applications the dependence struc-
ture of the arrivals is different and it is a result of multi-
ple factors including the architecture of the storage system,
the file system running on top of the storage system, and
the I/O path hierarchy together with the resource managing
policies at all levels of the I/O path. However, indepen-
dently of all these factors and with only few exceptions, all
measurements show that arrivals at the storage system are
correlated.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60

Time (hrs)(a) (b)

Database
E−mail

Software Development
User Accounts

Web Server
0

Interarrivals
Service

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n 
(C

V
)

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  100  200  300  400  500  600  700  800  900  1000

Lag(k)

A
C

F

Figure 2. (a) ACF of the arrival process at the
storage subsystem for various applications.
(b) CV of inter-arrivals and service times at
the Web server storage subsystem.

We focus now only on the storage system that supports
a Web server and evaluate the variability of both request
inter-arrivals and request service times. The trace data do
not contain the explicit service times at the storage system
but the request response time, i.e., the sum of waiting in
the queue and service time for each request. Nonetheless,
for the results that we report here, the system operates un-
der very low load with essentially only one outstanding re-
quest most of the time in the system. Therefore, the request



completion time closely approximates the request service
time. Note that by approximating the service times with the
response times in this fashion enables us to accurately esti-
mate the mean and CV of service times, but it does not allow
accurately estimate the dependence structure of the service
process. Hence, throughout the paper, we assume that the
service process in each server is independent. Figure 2(b)
plots the CV of inter-arrivals and service times over one
hour intervals for the duration of the trace, i.e., 66 hours.
Note that inter-arrivals are more variable than the service
times but both processes have high variability.

Using the data from the storage system of the Web server,
we parameterize a simple MMPP/H2/1 queuing model to
analyze the effect of the autocorrelation in the inter-arrival
process on performance. The arrival process is drawn from
a 2-stage MMPP process with mean inter-arrival time equal
to 13.28 ms and CV equal to 5.67, as derived by the arrival
process of the Web server presented in Figure 2(b).2 The
service process is drawn from a 2-stage hyperexponential
(H2) distribution with mean service time equal to 3 ms and
CV equal to 1.85, respectively. Inter-arrival times are scaled
so that we examine the system performance under different
utilization levels. We also present experiments with dif-
ferent MMPPs such that we maintain the same mean and
CV in the arrival process, but we change its autocorrelation
structure so that there is no autocorrelation (ACF=0, for all
lags), short-range dependence (SRD) with ACF starting at
0.47 at lag=1 but decaying to 0 at lag=300, and long-range
dependence (LRD) with ACF starting at 0.47 at lag=1 but
reaching 0.05 beyond lag=700.
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Figure 3. (a) response time, and (b) slow-
down as a function of system utilization when
inter-arrivals are independent (no ACF), hav-
ing short range dependence (SRD), and hav-
ing long-range dependence (LRD).

Figure 3 presents performance measures for the
MMPP/H2/1 queuing model as a function of system utiliza-
tion. We measure performance (here and throughout the
paper) by reporting on response time which is the sum of
the request service time and its waiting time in the queue,

2We selected a Markovian-Modulated Poisson Process (MMPP),a spe-
cial case of the Markovian Arrival Process (MAP) [12], to model autocor-
related service times because it is analytically tractable. Its basic building
block is a simple exponential but it can be easily parameterized to show
dependence in its structure.

queue length which is the total number of requests in the
server queue including the one in service, and the request
slowdown which is the ratio of the response time of a re-
quest to its service time. The effect of ACF on system per-
formance is tremendous: the higher the ACF, the worse the
system performance, which can worsen as much as 3 orders
of magnitude when comparing to the case with no ACF ar-
rivals.3 It is not only variability in the arrival and service
processes that hurt performance, but more importantly the
dependence structure in the arrival process. In the next sec-
tion, we present performance results that show how the de-
pendence structure in the arrival process can become critical
for the performance of load balancing policies.

3 Autocorrelation Effects on Load Balancing
Policies

In this section, we use trace driven simulation to examine
the performance impacts of autocorrelated arrivals in load
balancing policies in the simple cluster depicted in Figure1.
We assume that the number of nodes is equal to four.4
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Figure 4. (a) ACF for the three arrival pro-
cesses used in the simulation and (b) Aver-
age request size for every 10000 requests in
the ten million sample space.

The service process is obtained from traces of the 1998
World Soccer Cup Web site,5 that have been used in several
studies to evaluate the performance in load balancing poli-
cies in clustered web servers [19, 15]. Trace data were col-
lected during 92 days, from 26 April 1998 to 26 July 1998,
see [3] for more details. Here, we use part of the June 24th
trace (10 million requests), that corresponds to nearly ten
hours of operation and we extract the file size of each trans-
fered request. Because the Web site contained only static
pages, the size of the requested file is a good approximation
of the request service time. In the trace used for our experi-
ments, the average size of a requested file is 5059 bytes and

3Because of the scale used in the figure and because of the difference of
the three curves, the performance measures with no ACF look flat. With no
ACF for utilization equal to 0.9, queue length is equal to 152as expected,
but this number is dwarfed in comparison to the LRD and SRD numbers.

4Experiments with larger number of nodes have been also done but
results are qualitatively the same and are not reported heredue to lack of
space.

5Available from the Internet Traffic Archive at http://ita.ee.lbl.gov .



its coefficient of variation (CV) is 7.56. Figure 4(b) plots the
average request size for batches of 10,000 requests for the
duration of the trace, and shows that the average transfered
size varies across time.

Unfortunately, we cannot use the arrival process of the
World Cup trace data because it is not detailed enough: ar-
rival timestamps of requests are provided in seconds, as a
result there aremultiplerequests that arrive within one sec-
ond periods. To examine the effect of autocorrelation in the
arrival process, we use a 2-stage MMPP, which with appro-
priate parameterization allows for changingonly the ACF
while maintaining the same mean andCV , that are equal to
1 and 4.5, respectively. The ACF of the three arrival pro-
cesses that we use here is illustrated in Figure 4.

3.1 Load Balancing Policies

We compare the performance of the following policies:
ADAPTLOAD, a size-based policy that does not requirea
priori knowledge of the service time distribution and has
been shown to be effective under changing workload condi-
tions [19], theJoin Shortest Weighted Queue(JSWQ) pol-
icy [19], Join Shortest Queue(JSQ) [11], andRound Robbin
(RR). The policies are summarized as follows:

• ADAPTL OAD: In a cluster withN server nodes,
ADAPTLOAD partitions the possible request sizes into
N intervals,{[s0 ≡ 0, s1), [s1, s2), . . . [sN−1, sN ≡
∞)}, so that if the size of a requested file falls in the
ith interval, i.e.,[si−1, si), this request is routed to
serveri, for 1 ≤ i ≤ N . These boundariessi for
1 ≤ i ≤ N are determined by constructing the his-
togram of request sizes and partitioning it in equal ar-
eas, i.e., representing equal work for each server, as
shown by the following equation:

∫ si

si−1

x · dF (x) ≈
S̄

N
, 1 ≤ i ≤ N, (1)

whereF (x) is the CDF of the request sizes and the
amount of total work is̄S. By sending requests of sim-
ilar sizes to each server, the policy improves average
job response time and average job slowdown by avoid-
ing having short jobs been stuck after long jobs in the
queue. For a transient workload, the value of theN−1
size boundariess1, s2, . . . , sN−1 is critical. ADAPT-
LOAD self-adjusts these boundaries by predicting the
incoming workload based on the histogram of the last
K requests. In our simulations, we set the value ofK
equal to10000.

• JSWQ: The length of each queue in the system is
weighed by the size of queued requests, therefore each
incoming request is routed to least loaded server.

• JSQ: When a request arrives, it is assigned to a server
with the smallest waiting queue. If multiple servers
have the same queue length, then a server is selected
randomly from this group of servers.

• RR: In the round-robin algorithm, requests are routed
to servers in a rotated order.

3.2 Performance Analysis

Using trace-driven simulation we compare the perfor-
mance of the four policies. In all our experiments, we con-
sider a cluster of four homogeneous back-end servers that
serve requests in afirst-come-first-serve(FIFO) order.

We evaluate the effect of autocorrelated interarrival times
on the performance of load balancing policies by analyz-
ing the response time (i.e., wait time plus service time), the
average queue length (i.e., the total number of jobs in the
server, both waiting and in service), the average slowdown
(i.e., the ratio of the actual response time of a request to its
service time ), and the mean utilization. Figure 5 plots per-
formance results for the four load balancing policies in the
three different experiments. The figure shows that correla-
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Figure 5. Performance metrics under four
load balancing policies: (a) average re-
sponse time, (b) average queue length, (c) av-
erage slowdown, and (d) average utilization.

tion in the arrival process degrades overall system perfor-
mance for all four policies. For example the overall perfor-
mance under independent arrivals (NOACF) is two orders
of magnitude better than under SRD interarrivals, and three
orders of magnitude better than under LRD interarrivals, de-
spite the fact that average system utilizations are exactlythe
same for all experiments, i.e., the average utilizations are
about62%, see Figure 5(d).6 Most importantly, the fig-
ure also shows that ADAPTLOAD outperforms all policies
under independent interarrivalsonly, see Figure 5(a)-(c).

6Per server utilizations for all experiments remain the same, and equal
to about 62%, but are not reported here due to lack of space.



Under correlated arrival processes, ADAPTLOAD’s perfor-
mance is comparable to the three other policies, essentially
showing that separating requests according to their sizes is
not sufficient.

4 Unbalancing Load to Improve Perfor-
mance

In this section, we propose an enhancement to the
ADAPTLOAD policy that accounts for dependence in the ar-
rival process by relaxing ADAPTLOAD’s goal to balance the
work among all nodes of the cluster. The proposed policy
strives to judiciouslyunbalancethe load among the nodes
by moving jobs from the nodes with a strongly correlated
arrival process to nodes with weaker correlation in their
inter-arrival times. First we present a static version of the
policy where the load of the severs with correlated interval
times is reduced by a static percentage while the load of
servers with no autocorrelation in their arrival process in-
creases. Then, we present a dynamic version of the same
policy where measured workload characteristics and policy
performance measures guide load unbalancing in the sys-
tem to improve overall system performance.

4.1 S EQAL: Static Policy

Recall that ADAPTLOAD is based on the idea that given
that in anN -server cluster the amount of total work is̄S,
then the best performance is achieved if requests are as-
signed to the servers such that each server servesS̄/N of
the work, i.e., load is well balanced across all servers. As-
sociating the request size with the work a server has to do,
ADAPTLOAD equally distributes the work among servers
by determining boundaries of request sizes for each server.
These boundariessi for 1 ≤ i ≤ N are determined by con-
structing the histogram of request sizes and partitioning it
in equal areas, i.e., representing equal work for each server,
as shown by Eq. (1).

S EQAL uses the same histogram information, but sets
the new boundariess′i by weighting the work assigned to
each server as a function of the degree of correlation in
the arrival process based on the observation that in order
to achieve similar performance levels under autocorrelated
arrivals, the system utilization must be lower than under in-
dependent arrivals.

We introduce a shifting percentage vectorp =
(p1, p2, · · · , pN ), so that the work assigned at serveri is
now equal to(1 + pi)

S̄
N

for 1 ≤ i ≤ N . Note thatpi can
take both negative and positive values. A negativepi indi-
cates that the amount of work assigned at serveri should
be less than the equal share ofS̄/N . A positive pi indi-
cates that the amount of work assigned at serveri should be
higher than the equal share ofS̄/N . Because the shifting

Size

Shifted boundaries 

Assume N=4 servers

s’  = 00 s’1 s’2 s’3 oos’  =4

to server 4

to server 1

to 
server 

2 to server 3

s1

Old
s2

Old
s3

Old

Figure 6. S EQAL’s high level idea to recalcu-
late boundaries under autocorrelated inter-
arrival times.

percentagepi simply shifts the amount of work from one
server to another it should satisfy the equation

∑N

i=1 pi = 0
for 1 ≤ i ≤ N . The following equation formalizes this new
load distribution:

∫ si

si−1

x · dF (x) ≈ (1 + pi)
S̄

N
, 1 ≤ i ≤ N. (2)

Figure 6 gives an illustration of the high level idea of this
new policy.

First, we statically define the values ofpi for 1 ≤ i ≤ N ,
by letting p1 be equal to a pre-determined corrective con-
stantR , 0% ≤ R < 100%, and then by calculating the
rest of the shifting percentagespi for 2 ≤ i ≤ N using
a semi-geometric increasing method, as described by the
algorithm in Figure 7. Because the first server is usually
the one that serves the small requests and has strong au-
tocorrelated inter-arrival times, the shifting percentage p1

is negative, i.e.,p1 = −R. For example, if we define
R = 10% then the shifting percentages for a 4-server clus-
ter arep1 = −10%, p2 = −1.67%, p3 = 3.33% and
p4 = 8.34%. ForR = 20% the shifting percentages are
twice as high as in the case ofR = 10%. i.e.,p1 = −20%,
p2 = −3.34%,p3 = 6.67%, andp4 = 16.67%.

4.1.1 Arrival process with short/long-range depen-
dence

We evaluate the performance of SEQAL using the short
range dependent arrival process used in Section 3. First,
we quantify the effect of the corrective constantR that we
use to generate the values of the shifting percentagespi

for 1 ≤ i ≤ N by computing the average slowdown and
average response time of requests under SEQAL for dif-
ferent values ofR. We present our findings in Figure 8.
R = 0% corresponds to the the original ADAPTLOAD, i.e.,
no shifting of boundaries. Figure 8(a) shows that the aver-
age slowdown of all requests improves asR increases (i.e.,
the boundaries are shifted to the left compared to the orig-
inal ADAPTLOAD). We observe that the best performance



1. initialize variables
a. initialize a variable:adjust← −R
b. initialize the shifting percentages:

pi ← 0 for all 1 ≤ i ≤ N
2. for i = 1 to N − 1 do

a. addadjust to pi: pi ← pi + adjust
b. for j = i + 1 to N do

equally distributeadjust to the remaining servers:
pj ← pj −

adjust
N−i

c. reduceadjust to half: adjust← adjust/2

Figure 7. Setting the shifting percentages pi

for S EQAL.

is achieved forR = 80% (i.e., p1 = −80%). However,

(a) (b)
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Figure 8. Average slowdown and average re-
sponse time as a function of the corrective
constant R under SRD inter-arrival times.

Figure 8(b) indicates that the best performance for response
time is achieved whenR = 40%. Therefore, a good cor-
rective constant isR = 40%, where average slowdown
improves by 75.1%. Average response time improves by
41.9% when compared to the original ADAPTLOAD.

We present the per server performance in Figure 9. Per
server utilizations shown in Figure 9(d) verify that the shift-
ing percentagespi indeed imbalance work across the clus-
ter. AsR increases, the utilization of the first two servers
decrease while the utilizations of the last two servers in-
crease. The last server’s utilization is now the highest in
the cluster. Reducing utilization in the first server reduces
its request slowdown, as shown in Figure 9(a), but the ex-
tra work that is now assigned to servers 3 and 4 do not in-
crease their slowdown significantly for small values ofR.
ForR = 90%, slowdown at server 4 becomes very high, al-
most twice as high as for server 1 under the original ADAPT-
LOAD. The average per-server queue length behaves simi-
larly to the average slowdown (see Figure 9(c)). The aver-
age response time displayed in Figure 9(b) shows that small
R values decrease average response time of the first server
and increase the response time of the last server. If the por-
tion of additional requests served by the last server is small,
then the contribution of the last server performance values

(c)
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Figure 9. Per server performance measures:
(a) average slowdown, (b) average response
time, (c) average queue length and (d) aver-
age utilization as a function of the corrective
constant R with SRD inter-arrival times. The
order of bars for each policy reflect the server
identity.

to the overall performance degradation is not significant. As
R increases, more jobs are assigned to higher servers, which
counterbalances the benefits of decreased utilization at the
first servers.

The performance results of the long range dependent ar-
rival are not presented here due to limited space. But we
dind that the peroformance trends are similar as with the
SRD case though they are more exaggerated.

4.2 D EQAL: On-line Policy

In the previous section we gave a first proof of concept
that load imbalancing can be beneficial for performance in
clusters with autocorrelated inter-arrival times and heavy
tailed service requests, but performance improvements de-
pend on the degree of load imbalancing that is introduced
by the corrective constantR. A good choice ofR can re-
sult in significant performance improvements, but an unfor-
tunate choice may also result in poor performance. Here
we present an on-line version of the policy that monitors
the workload as well as the effectiveness of load balancing,
and its performance is now independent of the choice ofR.
Based on continuous monitoring, the policy readjusts the
degree of load imbalancing on-the-fly while aiming at im-
provingbothaverage response time and average slowdown.

We use an updating window ofC requests that have been
served by the cluster.C must be large enough to allow
for statistically significant performance measurement but
also small enough to allow for quick adaptation to transient
workload conditions. In the experiments presented hereC
is set to 300K. The policy starts by settingR to zero, i.e.,
no load shifting is proposed beyond the computed ADAPT-



1. initialize
a. setR← 0
b. k ← 0

2. everyC requests
a. compute the current performance metricsAvgsld(k)

andAvgnres(k)
b. if (k = 0)

then I. Correct left
II. go to3.

c. if Avgnres(k)−Avgnres(k−1)
Avgnres(0) > Avgsld(k)−Avgsld(k−1)

Avgsld(0)

then I. Correct right
II. go to3.

d. if (Avgsld(k) > Avgsld(k − 1) or
Avgnres(k) > Avgnres(k − 1))

then Correct reversely
elseCorrect continuously

3. Computepi using the algorithm of Figure 7
4. k ← k + 1
5. goto2.

Figure 10. D EQAL: dynamically adjusting R.

LOAD intervals. For every batch ofC requests, we com-
pare the relative performance improvement/decline in com-
parison to the previous batch ofC requests.7 The two per-
formance measures that we examine are the average slow-
down (Avgsld) and the average normalized response time
(Avgnres), which is defined as follows:

Avgnres(k) =
average response time in the kth batch

average file size in the kth batch
.

Then, according to the comparison of the values of average
slowdown and normalized response times, we readjustR by
a small valueadj, which in our experiments is set to 10%
(i.e., 10% of the load is shifted left or right in the histogram
of Figure 6 in order to recalculate the interval boundaries).
The following four corrective actions can be taken:

• Correct left: R← R + adj.

• Correct right: R← R− adj.

• Correct continuously: If the previous adjustment is
“correct left”, then correct left. If the previous adjust-
ment is “correct right”, then correct right.

7Monitoring ACF, its changes, and comparing it with the ACF ofother
processes on-line is very challenging. We are not aware of anefficient
way to do that. Currently we opt to compare and monitor its effects, i.e.,
performance metrics. Monitoring effectively ACF could be afocus of the
future work.

• Correct reversely: If the previous adjustment is “cor-
rect left”, then correct right. If the previous adjustment
is “correct right”, then correct left.

The algorithm in Figure 10 describes how the corrective
constantR is dynamically adjusted everyC requests. Once
a new value forR is set, the corrective factorspi are com-
puted according to the algorithm of Figure 7. Finally, the
per server job size boundaries are computed according to
Eq. (2) using the recalculatedpi.

4.2.1 Performance of DEQAL

In this section, we evaluate the effectiveness of DEQAL.
As in the previous sections, each experiment is driven by
the WorldCup 10 million request trace, the boundaries of
ADAPTLOAD are computed everyK = 10K requests,
while the adjustment of the corrective factors for DEQAL
happens everyC = 300K requests,
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Figure 11. Average slowdown and aver-
age response time for the original ADAPT-
LOAD, S EQAL with various values of R, and
D EQAL, under (a)-(b) SRD and (c)-(d) LRD
traffic.

We compare the original ADAPTLOAD, S EQAL with
various values of its corrective constantR, and D EQAL.
Note that in the dynamic policy, we start with a value of
R = 0, which indicates that we rely on the adaptive al-
gorithm to find the best value ofR. Results are presented
in Figure 11. Under SRD arrivals, the on-line policy (la-
beled “D EQAL”) is comparable to the best performing
S EQAL, whereR is set to a set of static values. DEQAL
manages to adjustR such that both slowdown (Figure 11(a))
and response time (see 11(b)) are improved. Similar behav-
ior is observed also under the more challenging LRD traf-
fic. The dynamic policy achieves average slowdown (Fig-
ure 11(c)) and response time (see Figure 11(d)) that are sev-
eral times better than the original ADAPTLOAD.

Figures 12(a) and (b) show how the value of the correc-
tive constantR changes over time under SRD and LRD ar-
rivals, respectively. Observe how quicklyR, that starts from
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Figure 12. Corrective constant R as a func-
tion of time (measured in processed re-
quests) for C = 300K under (a)SRD and (b)
LRD traffic.

0, converges toward the best performing for SRD arrivals.
For the LRD case convergence is slower. A large value of
adj would help find the corrective constantR faster.

5 Conclusions

In this paper, we evaluate the performance of sized-based
load balancing policies for homogeneous clustered servers
under correlated arrivals. We show that under correlated ar-
rivals sized-based policies, which have been shown to suc-
cessfully balance load and improve performance when ser-
vice demands are highly variable, are now ineffective.

Our experiments show that if the arrival process is corre-
lated, then it is not enough for a size-based policy to equally
distribute the work among the servers in the cluster – if the
arrival streams to individual servers are correlated, thenper-
formance significantly degrades. We propose a new size-
based load balancing policy, called DEQAL, that strives
to distribute the work such that the load to each sever is
proportional to the correlation structure of the arrival pro-
cess to that server and still separates jobs to servers accord-
ing to their sizes. As a result of this effort, not all servers
are equally utilized (i.e., load in the system becomes unbal-
anced) but this imbalance results in significant performance
benefits. DEQAL does not require any prior knowledge of
the correlation structure of the arrival stream or of the job
size distribution. Using trace-driven simulation, we show
that D EQAL is an effective on-line policy: by monitor-
ing performance measures it self-adjusts its parameters to
transient workload conditions.
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