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Abstract

Size-based policies have been known to successfully bal-
ance load and improve performance in homogeneous clus-
ter environments where a dispatcher assigns a job to a
server strictly based on the job size. We first examine how
size-based policies can provide service differentiation and
complement admission control and/or priority scheduling
policies. We find that under autocorrelated arrivals the ef-
fectiveness of size-based policies quickly deteriorates. We
propose a two-step resource allocation policy that makes
resource assignment decisions based on the following prin-
ciples. First, instead of equally dispatching the work among
all servers in the cluster, the new policy biases load bal-
ancing by an effort to reduce performance loss due to au-
tocorrelation in the streams of jobs that are directed to
each server. As a second step, an additional, per-class
bias guides resource allocation according to different class
priorities. As a result, not all servers are equally utilized
(i.e., the load in the system becomes unbalanced) but per-
formance benefits are significant and service differentiation
is achieved as shown by detailed trace-driven simulations.

1 Introduction

We focus on load balancing in clustered systems with a
single system image, i.e., systems where a set of homoge-
neous hosts behaves as a single host. Jobs (or requests) ar-
rive at a dispatcher which then forwards them to the appro-
priate server.1 While there exists no central waiting queue at

∗This work was partially supported by the National Science Founda-
tion under grants CCR-0098278, ACI-0090221, and ITR-0428330, and by
Seagate Research.

1Throughout this exposition we are using the terms “jobs” and “re-
quests” interchangeably.

the dispatcher, each server has a separate queue for waiting
jobs and a separate processor, see Figure 1. Prior research
has shown that the job service time distribution is critical for
the performance of load balancing policies in such a setting
and that size-based policies, i.e., policies that aim at balanc-
ing load based on the size of the incoming jobs, perform
well if the goal is to minimize the expected job completion
time, job waiting time, and job slowdown [6, 15, 7, 8].
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Figure 1. Model of a clustered server.

In this paper, we focus on clustered systems as those de-
picted in Figure 1 that accept two classes of priority jobs,
i.e., high and low priority jobs.2 Content-distribution net-
works and media-server clusters that provide streaming of
high quality audio and video from a central server configu-
ration are an example of a centralized system where size-
based policies provide good balancing solutions [13, 4].
Storage systems which deploy mirroring for enhanced per-
formance and data availability are another case of a clus-
tered system where load balancing based on the job size is
beneficial. In both of the above examples, the stream of re-
quests from the system’s end-users is considered high prior-
ity and served within the delay constraints placed by the re-
spective applications, while the set of system-level activities

2In this paper, we focus on a system with two priority classes, for rea-
sons of presentation simplicity. The presented algorithms can be easily
extended to several job classes.



that aim at maintaining the cluster and enhancing its per-
formance and availability (via data movement, mirroring,
profiling, prefetching) are considered low priority. In such
systems, because the streams of requests for the two differ-
ent priority classes are generated by different processes or
applications, their characteristics, i.e., arrivals and service
demands, are expected to be different too.

Performance differentiation in such systems can be
achieved either via admission control, priority scheduling,
or both [5, 3, 10, 2, 16, 9, 12]. The proposed methodologies
are often based on feedback control theory, constraint opti-
mization, and preferential scheduling that target at minimiz-
ing queuing delays. In this paper, we focus on the problem
of performance differentiation in a clustered server from
the perspective of load balancing only, i.e., we do not con-
sider admission control or priority scheduling to improve on
the performance of priority classes. Admission control and
priority scheduling, although instrumental for performance
differentiation, are outside the scope of this work. Instead,
the work presented here can be used as complementary to
admission control and priority scheduling, because the re-
sults shown can be considered as lower bounds to perfor-
mance, i.e., performance of high priority jobs can only im-
prove if admission control and/or priority scheduling is also
deployed.

We focus on a clustered system that accepts two classes
of jobs and aim at adjusting size-based load balancing poli-
cies to account for performance differentiation. If the arrival
stream at the dispatcher of both priority classes or either of
the two classes is autocorrelated (i.e., bursty), then the ef-
fectiveness of size-based policies deteriorates and policies
that “unbalance” the load such that there is a performance
bias toward correlated servers become desirable. We fur-
ther show that when considering performance differentia-
tion, additional per-class load unbalancing that simply fa-
vors the higher priority class is not sufficient.

Based on our observations, we propose a two-step size-
based load balancing policy that aims at reducing the per-
formance degradation due to autocorrelation in each server,
while maintaining the property of serving jobs of similar
sizes by each server. This new policy, called DIFFEQAL,
strives to differentiate services but equally distribute work
guided by autocorrelation and load. DIFFEQAL measures
autocorrelation of each priority stream in an online fashion
and appropriately unbalances load at the cluster aiming at
meeting the following two goals: first, the entire load, irre-
spective of job type, is “shifted” from one server to the next
such that the effect of autocorrelation in job performance
is minimized and second, per-class load is further “shifted”
such that the performance of the high priority class benefits
from this shift. This new policy, appropriately unbalances
load so that it strikes a balance between two (in some cases)
conflicting goals: load is “shifted” such that high priority

jobs are moved into less utilized servers, while each server
serves requests of as similar size as possible. DIFFEQAL
does not assume any a priori knowledge of the job service
time distribution of the two priority classes, nor any knowl-
edge of the intensity of the dependence structure in their
arrival streams. By observing past arrival and service char-
acteristics, the policy adjusts its configuration parameters in
an online fashion. To the best of our knowledge this is the
first time that load balancing considers both dual-priority
jobs and dependence in the arrival process as critical char-
acteristics for performance aiming at performance differen-
tiation. The closest work in the literature is the one by Aron
et. al. [2] where the problem of load balancing and perfor-
mance isolation in clustered servers like the one depicted in
Figure 1 is addressed by mapping it into an equivalent con-
strained optimization problem. Our contribution here can
be viewed as a mechanism to complement admission con-
trol and/or priority scheduling via load balancing.

This paper is organized as follows. Section 2 presents
background material and analyzes the performance of size-
based policies for dual-priority services. The performance
effect of autocorrelation in the arrival streams of the two
priority classes for the proposed off-line size-based policies
is examined in Section 3. The on-line size-based policy is
presented in Section 4. Section 5 summarizes our contribu-
tions.

2 Background

In this section we give an overview of the performance
effect of autocorrelated traffic in a single queue. We also
give a quick overview of EQAL [14], a size-based load bal-
ancing policy that have been previously proposed.

2.1 Autocorrelation (ACF)

Throughout this paper we use the autocorrelation func-
tion (ACF) as a metric of the dependence structure of a
time series (either request arrivals or services) and the co-
efficient of variation (CV) as a metric of variability in a
time series (either request arrivals or services). Consider
a stationary time series of random variables {Xn}, where
n = 0, . . . ,∞, in discrete time. The ACF, ρX(k), and the
CV are defined as follows

ρX(k) = ρXt,Xt+k
=

E[(Xt − µ)(Xt+k − µ)]
δ2

, CV =
δ

µ
,

where µ is the mean and δ2 is the common variance of
{Xn}. The argument k is called the lag and denotes the time
separation between the occurrences Xt and Xt+k. The val-
ues of ρX(k) may range from -1 to 1. If ρX(k) = 0, then
there is no autocorrelation at lag k. If ρX(k) = 0 for all
k > 0 then the series is independent, i.e., uncorrelated. In
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Figure 2. ACF of the inter-arrivals (a), response time (b) and queue length (c) as a function of system
utilization when inter-arrivals are independent (no ACF) or have positive autocorrelation (ACF).

most cases ACF approaches zero as k increases. CV values
less than 1 indicate that the variability of the sample is low
and CV values larger than 1 show high variability.

Autocorrelated arrivals are observed in different levels
of real systems, such as the incoming traffic to e-commerce
Web servers [1], or the arrivals at storage systems support-
ing (dedicatedly) various applications [14]. Using the data
from the storage system of a Web server described in [14],
we parameterize a simple MMPP/H2/1 queuing model to
analyze the effect of the autocorrelation in the inter-arrival
process on performance. The arrival process is drawn from
a 2-stage MMPP process with mean inter-arrival time equal
to 13.28 ms and CV equal to 5.67.3 The service process
is drawn from a 2-stage hyper-exponential (H2) distribu-
tion with mean service time equal to 3 ms and CV equal to
1.85. Inter-arrival times are scaled so that we examine the
system performance under different utilization levels. We
also present experiments with different MMPPs such that
we maintain the same mean and CV in the arrival process,
but we change its autocorrelation structure so that there is
no autocorrelation (ACF=0, for all lags), or there is posi-
tive autocorrelation with ACF starting at 0.47 at lag=1 but
decaying to 0 at lag=500 (see Figure 2(a)).

Figure 2 presents performance measures for the
MMPP/H2/1 queuing model as a function of system utiliza-
tion. We measure performance by reporting on response
time (see Figure 2(b)) which is the sum of the request ser-
vice time and its waiting time in the queue, and queue length
(see Figure 2(c)) which is the total number of requests in
the server queue including the one in service. Observe that
system performance deteriorates by 3 orders of magnitude
when comparing to the case with no ACF arrivals.4 Hence,
it is not only variability in the arrival and service processes

3We selected a Markovian-Modulated Poisson Process (MMPP), a spe-
cial case of the Markovian Arrival Process (MAP) [11], to model autocor-
related inter-arrival times because it is analytically tractable.

4Because of the scale used in the figure and because of the difference
of the two curves, the performance measures with no ACF look flat. With
no ACF for utilization equal to 0.9, queue length is equal to 152, but this
number is dwarfed in comparison to the queue length with autocorrelated
arrivals.

that hurts performance, but more importantly the depen-
dence structure in the arrival process.

2.2 EQAL

In prior work, a size-based policy EQAL that does not
require a priori knowledge of the service time distribution
has been shown to be effective under correlated traffic con-
ditions [14]. EQAL accounts for dependence in the ar-
rival process by relaxing traditional load balancing goal to
balance the work among all nodes of the cluster and has
demonstrated superior performance under correlated traf-
fic [14]. The policy is summarized as follows:

• EQAL: In a cluster with N server nodes, EQAL
partitions the possible request sizes into N intervals,
{[s0 ≡ 0, s1), [s1, s2), . . . [sN−1, sN ≡ ∞)}, so that
if the size of a requested file falls in the ith interval,
i.e., [si−1, si), this request is routed to server i, for
1 ≤ i ≤ N . These boundaries si for 1 ≤ i ≤ N
are determined by constructing the histogram of re-
quest sizes and by weighting the work assigned to
each server with the degree of autocorrelation in the
arrival process, which is based on the observation that
in order to achieve similar performance levels under
autocorrelated arrivals the system utilization must be
lower than the utilization under independent arrivals.
A shifting percentage vector p = (p1, p2, · · · , pN) is
defined in EQAL so that the work assigned at server
i is equal to (1 + pi) S̄

N for 1 ≤ i ≤ N , provided

that
∑N

i=1 pi = 0 for 1 ≤ i ≤ N . Here S̄ is the
amount of total work arriving the cluster. The values
of pi for 1 ≤ i ≤ N are statically defined by let-
ting p1 be equal to a pre-determined corrective con-
stant R, 0 ≤ R < 100%. The rest of the shifting
percentages pi, for 2 ≤ i ≤ N , are calculated using a
semi-geometric increasing method [14]. The follow-
ing equation formalizes this new load distribution:

∫ si

si−1

x · dF (x) ≈ (1 + pi)
S̄

N
, 1 ≤ i ≤ N, (1)



where F (x) is the CDF of the request sizes. Note
that when R = 0, EQAL is a special size-based load
balancing policy ADAPTLOAD [15], which aims at
partitioning the total work equally. For a transient
workload, the value of the N − 1 size boundaries
s1, s2, . . . , sN−1 is critical. EQAL self-adjusts these
boundaries by predicting the incoming workload based
on an exponentially discounted history of the last K
requests.5 In our simulations, we set the value of K
equal to 10000.

We evaluate EQAL under the correlated traffic by ana-
lyzing the response time (i.e., wait time plus service time),
and the request slowdown (i.e., the ratio of the actual re-
sponse time of a request to its service time). In all our
experiments, we consider a cluster of four homogeneous
back-end servers that serve requests in a first-come-first-
serve (FIFO) order.6 The inter-arrivals of the low priority
class have an ACF structure which is the same as the one
in Figure 2(a), while the high priority class has independent
arrival process. Both arrival processes have the same CV of
4.47. Both service processes are independent and have the
same mean, but different CVs that are set to 1.87 and 10 for
low priority and high priority classes, respectively.
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Figure 3. The average response time (a) and
the average slowdown (b) of EQAL by differ-
ent R under correlated arrivals.

Figure 3 shows system performance under this correlated
traffic in the cluster. Both average slowdown and average
response time reduce as the shifting ratio increases, but a
turning point exists where shifting more work to subsequent
servers adversely affects average response time. The best
performance is achieved when the shifting ratio of EQAL is
40%.

Despite of its good performance under correlated ar-
rivals, EQAL treats all requests equally, i.e., without distin-
guishing job priorities. In the following section, we present
a two-step load balancing policy that provides service dif-
ferentiation for the two classes of jobs.

5For more details on the way the policy self-adjusts its boundaries to
changing workload conditions, we direct the readers to [14].

6Experiments with larger number of nodes have been also done but
results are qualitatively the same and are not reported here due to lack of
space.

3 Two-step Resource Allocation Policy

In this section, we propose an enhancement to EQAL,
to account for dependence in the arrival process and pro-
vide service differentiation by relaxing their basic goal to
balance work among all nodes of the cluster. The proposed
policy strives to judiciously unbalance the load among the
nodes by moving jobs from the nodes with a strongly cor-
related arrival process to the nodes with weaker correla-
tion in their inter-arrival times, and unfairly shift per-class
loads such that high priority jobs are moved into less uti-
lized servers. In the following sections, we first present
an off-line version of the policy where we assume a pri-
ori knowledge of the dependence structure in the arrival
streams. Then, we present an on-line version of this pol-
icy where past arrival and service characteristics guide the
adjustment of configuration parameters to improve overall
system performance.

3.1 Off-line DIFFEQAL

Recall that with appropriate shifting parameters, EQAL
gives the optimal overall performance for both average re-
sponse time and average slowdown. However, EQAL does
not provide performance differentiation because it only uses
one histogram for both classes of jobs.

Size
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Figure 4. DIFFEQAL’s high level idea for
recalculating boundaries under autocorre-
lated inter-arrival times and different priority
classes.



Step 1.1 initialize variables
a. initialize a variable adjust adjust← −R
b. initialize the shifting percentages pi ← 0 for all 1 ≤ i ≤ N

Step 1.2 for i = 1 to N − 1 do
a. add adjust to pi pi ← pi + adjust
b. for j = i + 1 to N do

equally distribute adjust to the remaining servers pj ← pj − adjust
N−i

c. reduce adjust to half adjust← adjust/2
Step 2.1 initialize variables for per class

a. initialize a variable adjustc adjustc ← −Rc for c ∈ {high, low}
b. initialize the shifting percentages pc

i ← 0 for all 1 ≤ i ≤ N
Step 2.2 for i = 1 to N − 1 do

a. add adjustc to pc
i pc

i ← pc
i + adjustc

b. for j = i + 1 to N do
equally distribute adjustc to the remaining servers pc

j ← pc
j − adjustc

N−i

c. reduce adjustc to half adjustc ← adjustc/2

Figure 5. The algorithm for setting the shifting percentages pi and pc
i for dual-priority classes in

DIFFEQAL.

Off-line DIFFEQAL consists of two steps, as depicted
in Figure 4. The first step of DIFFEQAL is equivalent to
EQAL, i.e., it moves (both high and low priorities) jobs
from the servers with a strongly correlated arrivals to the
servers with weakly correlated arrivals. As a second step,
an additional, per-class bias guides load balancing accord-
ing to different class priorities. We introduce a per-class
corrective factor vector pc, where c ∈ {high, low}, so that
we have the following equation for the work of class c as-
signed at server i:

∫ sc
i

sc
i−1

x · dF c(x) ≈ (1 + pc
i )S̄

c
i , 1 ≤ i ≤ N, (2)

where F c(x) is the CDF of the request sizes of class c and
S̄c

i is the amount of the work belonging to class c, which
is assigned to server i after the first step. Note that pc

i

can take both negative and positive values and that equation∑N
i=1 pc

i = 0 should be satisfied for each class.
We statically define the values of pi for 1 ≤ i ≤ N , by

letting p1 be equal to a pre-determined corrective constant
R, where 0 ≤ R < 100%, and then by calculating the rest
of the corrective factors pi for 2 ≤ i ≤ N using a semi-
geometric increasing method, as described by the algorithm
in Figure 5, Step 1. Note that R equal to 0 performs best
under independent traffic, while R > 0 outperforms under
correlated traffic [14]. Because most requests are for small
files and the first server receives most of requests, the ACF
of its arrival process is very similar to the original ACF of
the arrival process at the dispatcher. It follows that the cor-
rective parameter p1 is usually negative, i.e., p1 = −R. For

example, if we define R = 10% then the corrective param-
eters for a 4-server cluster are p1 = −10%, p2 = −1.67%,
p3 = 3.33% and p4 = 8.34%.

In order to favor high-priority jobs while improving over-
all system performance, we continue to determine the val-
ues of the per class corrective factors pc

i (c ∈ {high, low}),
by letting pc

1 be equal to a pre-determined corrective con-
stant Rc, where 0 ≤ Rc < 100%, and then by calculating
the rest of the corrective parameters pc

i for 2 ≤ i ≤ N ,
using the same semi-geometric increasing method as for
computing pi (see the algorithm in Figure 5, Step 2). Note
that adjusting both Rlow and Rhigh concurrently makes sys-
tem performance less predictable. Consequently, we fix one
class boundaries and control the performance differentia-
tion by shifting the other one only. For example, we fix the
parameters of the high priority class, resulting in Rhigh = 0
and phigh

i = 0, for 1 ≤ i ≤ N . Because the first server is
usually the one that exhibits strongly correlated arrivals, the
corrective parameter plow

1 is negative, i.e., plow
1 = −Rlow,

to ensure that most high-priority small jobs are served at
servers with lower utilization.

3.2 Performance Evaluation of the off-line
DIFFEQAL

We evaluate DIFFEQAL using arrivals of two
classes, where potentially each class has different inter-
arrival/service time distributions. The policy effectiveness
is examined by using both independent and correlated
arrivals. In all our experiments, the entire system utilization



is 50%.7 The total sample space is 10 million requests.

I. No ACF in the arrivals of both classes

The first set of experiments examines independent ar-
rivals. In all experiments, the autocorrelated structure and
CV of inter-arrival times for both classes are the same, i.e.,
ACF = 0 for all lags and CV = 4.47, but the mean arrival
rates are different, which results in a per-class load ratio of
dual classes equal to 70% (low priority) over 30% (high pri-
ority).8 The mean service times of these two classes are also
the same, but we use different CVs to illustrate the effect of
service variability on system performance.
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Figure 6. Average per-class response time
and request slowdown of DIFFEQAL by differ-
ent Rlow under independent arrivals. R in the
first step is set as 0. The low priority class
has CV equal to 1.87 and the high priority
class has CV equal to 10.

Figure 6 gives the performance results when the low pri-
ority class has a CV of only 1.87, but the high priority class
requests are highly variable with a CV equal to 10.9 Un-
der this setting, the best overall performance following the
first step in DIFFEQAL, is for R = 0, which is effectively
EQAL with R = 0 [14]. Therefore, in this set of exper-
iments, we set corrective constant R in Figure 5 Step 1
as zero. Without considering performance differentiation,
dual classes have similar performance results. We then fur-
ther shift the low priority class jobs to the latter servers as
described in the second step of DIFFEQAL. Note that for
Rlow = 0, DIFFEQAL becomes identical to EQAL. By in-
creasing the shifting percentage Rlow, the average response

7Experiments under light and heavy loads are also evaluated and pro-
vide qualitatively similar results as that under medium load.

8Throughout this paper, we use this load ratio for all the experiments.
Other ratios give qualitatively the same results so that we do not report
them here due to lack of space.

9In all the experiments, we use a CV equal to 10 as a high variance, and
a CV equal to 1.87 as a low variance.

time and the average slowdown of the high priority class
keep decreasing (see Figure 6(c)-(d)). For instance, when
Rlow = 90%, the values of the average response time and
the average slowdown are equal to 8.5 and 12.8, respec-
tively, which are about 66% and 22% of those under EQAL
with R = 0. This improvement however negatively affects
the performance of the low priority class, whose average
response time increases by 2 times (see Figure 6(a)), but
its average slowdown improves by 60% (see Figure 6(b))
as a result of DIFFEQAL’s shifting. Note that small jobs,
which have large chance for huge slowdown values, are still
served in the first server. On the other hand, the incremental
response time of comparatively fewer large jobs served in
the last server may only increase their slowdown slightly.

Experiments use the same ACF in the inter-arrival
streams of both jobs were also done and the performance
differentiation trends are qualitatively the same as those ex-
periments with independent arrivals.

Observation 1 If both priority classes have the same ar-
rival process with or without autocorrelation, then shifting
the size boundaries of the low priority class improves aver-
age response time and average slowdown of the high prior-
ity class. Such improvement is more significant and more ef-
fective when high priority jobs have highly variable sizes. 10

II. Low priority class has correlated arrival process;
high priority class has independent arrival process

We now consider the correlated experiments, where the
inter-arrivals of the low priority class have an autocorre-
lated structure as the one in Figure 2(a), the arrivals for
high priority class are independent, and the high priority
requests have higher variable service times. Under this set-
ting, EQAL gives the best performance when R = 40%
(see Figure 3).

We thus set R value in the first step of DIFFEQAL equal
to 40% when both priority classes or either of the two
classes is autocorrelated. Figure 7 illustrates the perfor-
mance differentiation achieved by DIFFEQAL as a function
of different Rlow values. Note DIFFEQAL with Rlow = 0
and R = 40% is effectively EQAL with R = 40%. Due
to its correlated inter-arrivals, the low priority class has
worse performance even without per-class shifting. Both
of its average response time and average slowdown are 2
times higher than the high priority performance. As Rlow

increases, the average response time of the high priority
class keeps constant till Rlow = 40%, but its average slow-
down keeps decreasing to 36%. When Rlow = 60%, aver-
age response time increases by 15%, but average slowdown
reaches its ideal value with 77% improvement.

10Experiments with low priority class having CV equal to 10 and the
high priority class having CV equal to 1.87 have also been done but the
improvement is less effective and we do not reported them due to lack of
space.
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Figure 7. Average per-class response time
and request slowdown of DIFFEQAL by dif-
ferent Rlow under correlated low priority ar-
rivals. R in the first step is set as 40%. The
low priority class has CV equal to 1.87 and
the high priority class has CV equal to 10.
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Figure 8. The CDFs of per-class response
time and request slowdown of EQAL for dif-
ferent R and DIFFEQAL for different Rlow un-
der correlated low priority arrivals. The low
priority class has CV equal to 1.87 and the
high priority class has CV equal to 10.

We then look into the cumulative probability function
(CDF) of per-class results to better understand the per class
policy behavior. Figure 8 gives the CDFs of response time
and slowdown for both classes. The higher the line, the bet-
ter the policy performs. Across all graphs in Figure 8, the
EQAL for R = 0 performs worst. DIFFEQAL with vari-
ous corrective constants Rlow provides better slowdown for
the high priority jobs than EQAL with R = 40% does (see
Figure 8(d)). Additionally, DIFFEQAL also provides better
slowdown for the low priority class except for Rlow = 80%

(see Figure 8(b)). Although Rlow = 60% does not give the
best average response time for the high priority class, it im-
proves the response time of most requests as shown in Fig-
ure 8(c). Compared with no per-class shifting,(i.e., the line
labeled “R = 40%”), 12% more of the total high priority re-
quests have response time less than 50 under Rlow = 60%.
Its higher average response time can be explained by its
long tail of the CDF of response times, but admission con-
trol or priority scheduling can further improve on the tail
performance.

III. High priority class has correlated arrival process;
low priority class has independent arrival process

This set of experiments considers the cases where ACF
exists in the high priority class. Other parameters are kept
the same as in the previous experiment. Again the ideal
EQAL is for R = 40%. We thus set R value in the first
step of DIFFEQAL equal to 40%. The results are displayed
in Figure 9. The best high priority performance is achieved
under the most aggressive shifting, Rlow = 90%. Note that
after the high priority class is favored by shifting low pri-
ority jobs to the latter servers, the high priority class still
performs worse than the low priority class even under the
best Rlow, showing that shifting only is not sufficient to
maintain the acceptable performance. In this case, admis-
sion control may be the only way to improve performance.
Indeed, experiments that dropped all low priority requests
show that performance improvements are still incremental.
It is the ACF structure of the high priority class that causes
performance degradation.

Step 1 in DiffEqAL with R = 40% 

(c) High priority response time

(a) Low priority response time (b) Low priority slowdown

(d) High priority slowdown
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Figure 9. Average per-class response time
and request slowdown of DIFFEQAL by dif-
ferent Rlow under correlated high priority ar-
rivals. R in the first step is set as 40%. The
low priority class has CV equal to 1.87 and
the high priority class has CV equal to 10.
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Figure 10. Average per-class response time
and request slowdown of DIFFEQAL by dif-
ferent Rhigh under correlated high priority ar-
rivals. R in the first step is set as 40%. The
low priority class has CV equal to 1.87 and
the high priority class has CV equal to 10.
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Figure 11. The CDFs of per-class response
time and request slowdown of EQAL with dif-
ferent R and DIFFEQAL for different Rhigh un-
der correlated high priority arrivals. The low
priority class has CV equal to 1.87 and the
high priority class has CV equal to 10.

By focusing on the effect of autocorrelation structure, we
now opt to shift the class with more autocorrelated arrivals,
i.e., the high priority class. As shown in Figure 10(c), the
average response time of the high priority class is kept sta-
ble till Rhigh = 40%, and then it increases quickly, as con-
firmed also by the CDF results shown in Figure 11. When
Rhigh = 20%, 24.7% of the high priority requests have
response times less than 20, while for Rhigh = 40%, this
percentage increases to 51%.

Comparing Figures 9 and 10, we conclude that shift-

ing the high priority class gives better performance when
stronger ACF exists in the high priority class. Also note
that although the two classes still have different variation in
their service times, this does not affect which class to shift.

Observation 2 When the two classes have different ACF
structures, always shifting the one with a stronger ACF
yields better performance.

4 On-line service differentiation via load bal-
ancing

In the previous section, we confirmed that by further un-
balancing load of low-priority jobs in a system that deploys
a size-aware load balancing policy, the performance of the
high-priority class improves. However, if the autocorrela-
tion structure of arrivals of the high priority class is stronger
than the autocorrelation in arrivals of the low priority class,
then unbalancing the load of the high-priority class is more
beneficial both for overall and per-class performance than
simply unbalancing the load of the low-priority class only.
Consequently, autocorrelation is identified as more impor-
tant for performance than service time variation. When the
ACF structure of the arrivals of the two classes of jobs is
substantially different, identifying which class should be
unbalanced for better performance becomes critical. Here,
we propose a new on-line version of DIFFEQAL which
does not assume any a priori knowledge of the workload
characteristics. Our prediction is based on monitoring past
arrival and service processes. By observing past arrival and
service characteristics, the policy measures the autocorrela-
tion of each priority stream and then adjusts its configura-
tion parameters, e.g., corrective factors for both classes, in
an online fashion.

The policy updates its parameters for every C jobs
served by the cluster. C must be large enough to allow for
effective ACF measurement but also small enough to allow
for quick adaptation to transient workload conditions. In
the experiments presented here C is set to 100K. The policy
starts by setting corrective constants R, Rhigh and Rlow,
to zero, i.e., the load is equally distributed into each server
of the cluster. After every C jobs, the policy computes the
ACF of each priority class using the observed inter-arrival
times of jobs within the batch. The measured ACF is used
as prediction for batch of the next C jobs. Based on the
predicted ACF per priority class, the policy resets the cor-
rective constants R, Rhigh and Rlow to the appropriate pre-
determined values shift, shifthigh, and shiftlow, respec-
tively. In our experiments we set shift, shifthigh, and
shiftlow equal to 40%, 20% and 40%, respectively. The
following four scenarios of ACF in the arrivals of the prior-
ity classes are considered:



1. neither priority class is autocorrelated:
• R← 0
• Rhigh ← 0, Rlow ← shiftlow

2. two priority classes have similar ACF:
• R← shift
• Rhigh ← 0, Rlow ← shiftlow

3. low priority class has stronger ACF:
• R← shift
• Rhigh ← 0, Rlow ← shiftlow

4. high priority class has stronger ACF:
• R← shift
• Rlow ← 0, Rhigh ← shifthigh

Corrective factors pc
i , where 1 ≤ i ≤ N and c ∈

{high, low}, are computed using the algorithm of Fig-
ure 5. Once all the corrective factors are computed, the per
server and per class job size boundaries are calculated us-
ing Eq. (1) and (2). The online part of the load balancing
algorithm is described in Figure 12.

1 initialize
a. set R← 0
b. set Rc ← 0 for c ∈ {high, low}

2 every C requests
a. compute the ACF of each priority class
b. if neither priority class has ACF

then R← 0
else R← shift

c. if high priority class has stronger ACF
then I. Rlow ← 0

II. Rhigh ← shifthigh

else I. Rhigh ← 0
II. Rlow ← shiftlow

3. compute pi and pc
i for 1 ≤ i ≤ N using Figure 5

4. every K requests
compute per server per class job size boundaries using
Eq. (1), Eq. (2) and the pi, pc

i computed in 3.
5. goto 2.

Figure 12. Reseting of the corrective con-
stants R, Rhigh and Rlow in on-line fashion.

4.1 Performance of On-line DIFFEQAL

In this section, we evaluate the effectiveness of on-line
DIFFEQAL. As in the previous sections, each experiment
is driven by the 10 million request trace consisting of 7
million low priority requests and 3 million high priority re-
quests. The CV of the service time of low priority class is
set to 1.87 and the CV of the service time of the high prior-
ity class is equal to 10, the boundaries are computed every
10K requests, and the resetting of corrective constants R,
Rhigh and Rlow for on-line DIFFEQAL is triggered every

C = 100K requests. Additionally, in this trace, the auto-
correlation of each class stream alternates as follows: in the
first 2 million requests only the low priority class is autocor-
related, then in the next 2 million requests only the high pri-
ority class is autocorrelated. The on-line DIFFEQAL policy
alternates R = shift, Rlow = shiftlow and Rhigh = 0
with R = shift, Rlow = 0 and Rhigh = shifthigh.
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(a) Low priority response time

(c) High priority response time

(b) Low priority slowdown

(d) High priority slowdown
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Figure 13. Average per-class response time
and request slowdown for EQAL with R = 0,
EQAL with R = 40%, off-line DIFFEQAL with
R = 40%, Rhigh = 0 and Rlow = 40%, off-
line DIFFEQAL with R = 40%, Rlow = 0 and
Rhigh = 20%, and on-line DIFFEQAL under
mixed autocorrelated traffic.

We compare the overall performance of on-line DIFFE-
QAL with those of EQAL for R = 0 and R = 40%, off-line
DIFFEQAL with Rlow = 40% , and off-line DIFFEQAL
with Rhigh = 20%. Note that R is equal to 40% for all
DIFFEQAL experiments. The results are presented in Fig-
ure 13. Consistent to the performance results shown in the
previous sections, the effectiveness of EQAL with R = 0,
i.e., equally load balancing policy, quickly deteriorates un-
der correlated traffic while EQAL with R = 40% achieves
significant performance improvement. Although EQAL for
R = 40% achieves the fastest average response time for
both classes, off-line DIFFEQAL achieves the smallest av-
erage request slowdown for both classes. The on-line DIF-
FEQAL balances the average response time and the average
request slowdown, i.e., both are close to the optimal results.

In Figure 14, the CDFs of per-class response time and
request slowdown are shown. These CDFs further con-
firm that the on-line DIFFEQAL achieves better per-class
performance than EQAL for most requests, especially for
small requests. Using on-line DIFFEQAL, about 65% of
high-priority requests have response time less than 50 and
about 50% of low-priority requests have less response time
than 50. Most importantly, the on-line DIFFEQAL policy
achieves the best performance differentiation, with a clear
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Figure 14. The CDFs of per-class response
time and request slowdown for EQAL with
R = 0, EQAL with R = 40%, and on-line DIF-
FEQAL under mixed autocorrelated traffic.

performance bias toward the high-priority class.

5 Conclusion

We presented a size-aware load balancing policy that, in
addition to distributing the load among servers of a clus-
ter, differentiates service for different priority classes. The
new policy, call DIFFEQAL, incorporates into its decision
making salient workload characteristics, such as the ACF in
arrivals and the variability in service demands, as well as
the workload user- or system-defined priority. While DIF-
FEQAL allocates cluster resources aiming at service differ-
entiation between different priority classes, it can be used as
complementary to admission control or priority scheduling
mechanisms in the system.

DIFFEQAL aims at meeting two conflicting goals: un-
balance work across servers under correlated arrivals while
aiming at reducing the per-server demand variability and
distinguish the different priority classes in the cluster work-
load, i.e., improve on high priority class performance but
maintain low-priority class performance. DIFFEQAL dif-
ferentiates service by further unbalancing the load of the
classes that exhibit correlated arrivals.

We also present an on-line version of DIFFEQAL, which
monitors the workload and successfully predicts the corre-
lation structure of future arrivals, and finally adjusts its pa-
rameters based on these predictions. Our simulation eval-
uation indicates that under highly changing workloads the
on-line DIFFEQAL adapts its parameters well to incoming
workload and performs nearly as a static policy with a pri-
ori workload knowledge. Our future work is to improve
the adaptiveness of DIFFEQAL aiming at self-adjusting its
parameters to transient workload conditions by monitoring
performance measures.
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