
Anomaly? Application Change? or Workload Change?
Towards Automated Detection of Application Performance Anomaly and Change∗

Ludmila Cherkasova1, Kivanc Ozonat1, Ningfang Mi2 Julie Symons1, Evgenia Smirni2
1 HPLabs, Palo Alto & 2 College of William and Mary, Williamsburg

lucy.cherkasova@hp.com, kivanc.ozonat@hp.com, ningfang@cs.wm.edu, julie.symons@hp.com, esmirni@cs.wm.edu

Abstract

Automated tools for understanding application behavior
and its changes during the application life-cycle are essen-
tial for many performance analysis and debugging tasks. Ap-
plication performance issues have an immediate impact on
customer experience and satisfaction. A sudden slowdown
of enterprise-wide application can effect a large population
of customers, lead to delayed projects and ultimately can re-
sult in company financial loss. We believe that online perfor-
mance modeling should be a part of routine application mon-
itoring. Early, informative warnings on significant changes
in application performance should help service providers to
timely identify and prevent performance problems and their
negative impact on the service. We propose a novel frame-
work for automated anomaly detection and application change
analysis. It is based on integration of two complementary
techniques: i) a regression-based transaction model that re-
flects a resource consumption model of the application, and ii)
an application performance signature that provides a compact
model of run-time behavior of the application. The proposed
integrated framework provides a simple and powerful solution
for anomaly detection and analysis of essential performance
changes in application behavior. An additional benefit of the
proposed approach is its simplicity: it is not intrusive and is
based on monitoring data that is typically available in enter-
prise production environments.

1 Introduction

Today’s IT and Services departments are faced with the dif-
ficult task of ensuring that enterprise business-critical applica-
tions are always available and provide adequate performance.
As the complexity of IT systems increases, performance man-
agement becomes the largest and most difficult expense to con-
trol. We address the problem of efficiently diagnosing essen-
tial performance changes in application behavior in order to
provide timely feedback to application designers and service
providers. Typically, preliminary performance profiling of an
application is done by using synthetic workloads or bench-
marks which are created to reflect a “typical application be-
havior” for “typical client transactions”. While such perfor-
mance profiling can be useful at the initial stages of design
and development of a future system, it may not be adequate
for analysis of performance issues and observed application
behavior in existing production systems. For one thing, an ex-
isting production system can experience a very different work-

∗This work was completed in summer 2007 during N. Mis internship at
HPLabs. E. Smirni is partially supported by NSF grants ITR-0428330 and
CNS-0720699, and a gift from HPLabs.

load compared to the one that has been used in its testing envi-
ronment. Secondly, frequent software releases and application
updates make it difficult and challenging to perform a thorough
and detailed performance evaluation of an updated application.
When poorly performing code slips into production and an ap-
plication responds slowly, the organization inevitably looses
productivity and experiences increased operating costs.

Automated tools for understanding application behavior and
its changes during the application life-cycle are essential for
many performance analysis and debugging tasks. Yet, such
tools are not readily available to application designers and
service providers. The traditional reactive approach is to set
thresholds for observed performance metrics and raise alarms
when these thresholds are violated. This approach is not ade-
quate for understanding the performance changes between ap-
plication updates. Instead, a pro-active approach that is based
on continuous application performance evaluation may assist
enterprises in reducing loss of productivity by time-consuming
diagnosis of essential performance changes in application per-
formance.

With complexity of systems increasing and customer re-
quirements for QoS growing, the research challenge is to de-
sign an integrated framework of measurement and system mod-
eling techniques to support performance analysis of complex
enterprise systems. Our goal is to design a framework that en-
ables automated detection of application performance changes
and provides useful classification of the possible root causes.
There are a few causes that we aim to detect and classify:

• Performance anomaly. By performance anomaly we
mean that the observed application behavior (e.g., current
CPU utilization) can not be explained by the observed ap-
plication workload (e.g., the type and volume of trans-
actions processed by the application suggests a different
level of CPU utilization). Typically, it might point to ei-
ther some unrelated resource-intensive process that con-
sumes system resources or some unexpected application
behavior caused by not-fully debugged application code.

• Application transaction performance change. By trans-
action performance change we mean an essential change
(increase or decrease) in transaction processing time, e.g.,
as a result of the latest application update. If the detected
change indicates an increase of the transaction process-
ing time then an alarm is raised to assess the amount of
additional resources needed and provides the feedback to
application designers on the detected change (e.g., is this
change acceptable or expected?).

It is also important to distinguish between performance
anomaly and workload change. A performance anomaly is in-
dicative of abnormal situation that needs to be investigated and

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 452 DSN 2008: Cherkasova et al.

resolved. On the contrary, a workload change (i.e., variations
in transaction mix and load) is typical for web-based appli-
cations. Therefore, it is highly desirable to avoid false alarms
raised by the algorithm due to workload changes, though infor-
mation on observed workload changes can be made available
to the service provider.

The rest of the paper is organized as follows. Section 2
introduces client vs server transactions. Section 3 provides
two motivating examples. Section 4 and Section 5 introduce
two complementary techniques as an integrated solution for
anomaly detection and application performance change. Sec-
tion 6 presents a case study to validate the proposed techniques.
Section 7 describes related work. Finally, a summary and con-
clusions are given in Section 8.

2 Client vs Server Transactions

The term transaction is often used with different meanings.
In our work, we distinguish between a client transaction and a
server transaction.

A client communicates with a web service (deployed as a
multi-tier application) via a web interface, where the unit of
activity at the client-side corresponds to a download of a web
page. In general, a web page is composed of an HTML file and
several embedded objects such as images. This composite web
page is called a client transaction.

Typically, the main HTML file is built via dynamic con-
tent generation (e.g., using Java servlets or JavaServer Pages)
where the page content is generated by the application server
to incorporate customized data retrieved via multiple queries
from the back-end database. This main HTML file is called
a server transaction. Typically, the server transaction is re-
sponsible for most latency and consumed resources [6] (at the
server side) during client transaction processing.

A client browser retrieves a web page (client transaction)
by issuing a series of HTTP requests for all the objects: first
it retrieves the main HTML file (server transaction) and after
parsing it, the browser retrieves all the embedded, static im-
ages. Thus, at the server side, a web page retrieval corresponds
to processing multiple smaller objects that can be retrieved ei-
ther in sequence or via multiple concurrent connections. It is
common that a web server and application server reside on the
same hardware, and shared resources are used by the applica-
tion and web servers to generate main HTML files as well as
to retrieve page embedded objects.

Since the HTTP protocol does not provide any means to
delimit the beginning or the end of a web page, it is very dif-
ficult to accurately measure the aggregate resources consumed
due to web page processing at the server side. There is no
practical way to effectively measure the service times for all
page objects, although accurate CPU consumption estimates
are required for building an effective application provisioning
model. To address this problem, we define a client transaction
as a combination of all the processing activities at the server
side to deliver an entire web page requested by a client, i.e.,
generate the main HTML file as well as retrieve embedded ob-
jects and perform related database queries.

We use client transactions for constructing a “resource
consumption” model of the application. The server transac-
tions reflect the main functionality of the application. We use
server transactions for analysis of the application performance

changes (if any) during the application life-cycle.

3 Two Motivating Examples

Frequent software updates and shortened application de-
velopment time dramatically increase the risk of introducing
poorly performing or misconfigured applications to production
environment. Consequently, the effective models for on-line,
automated detection of whether application performance devi-
ates of its normal behavior pattern become a high priority item
on the service provider’s “wish list”.

Example 1: Resource Consumption Model Change.
In earlier papers [20, 21], a regression-based approach is in-
troduced for resource provisioning of multi-tier applications.
The main idea is to use a statistical linear regression for ap-
proximating the CPU demands of different transaction types
(where a transaction is defined as a client transaction). How-
ever, the accuracy of the modeling results critically depends
on the quality of monitoring data used in the regression analy-
sis: if collected data contain periods of performance anomalies
or periods when an updated application exhibits very different
performance characteristics, then this can significantly impact
the derived transaction cost and can lead to an inaccurate pro-
visioning model.

Figure 1 shows the CPU utilization (red line) of the HP
Open View Service Desk (OVSD) over a duration of 1-month
(each point reflects an 1-hour monitoring period). Most of
the time, CPU utilization is under 10%. Note that for each
weekend, there are some spikes of CPU utilization (marked
with circles in Fig. 1) which are related to administrator sys-
tem management tasks and which are orthogonal to transaction
processing activities of the application. Once provided with
this information, we use only weekdays monitoring data for
deriving CPU demands of different transactions of the OVSD
service. As a result, the derived CPU cost accurately predicts
CPU requirements of the application and can be considered
as a normal resource consumption model of the application.
Figure 1 shows predicted CPU utilization which is computed
using the CPU cost of observed transactions. The predicted
CPU utilization accurately models the observed CPU utiliza-
tion with an exception of weekends’ system management peri-
ods. However, if we were not aware of “performance anoma-
lies” over weekends, and would use all the days (i.e., including
weekends) of the 1-month data set – the accuracy of regression
would be much worse (the error will increase twice) and this
would significantly impact the modeling results.

Observed Predicted

 0 5 10 15 20 25 30 35

 30

 25

 20

 15

 10

 5

 0

Time (day)

U
til

iz
at

io
n

(%
)

Figure 1. CPU utilization of OVSD service.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 453 DSN 2008: Cherkasova et al.

Example 2: Updated Application Performance Change.
Another typical situation that requires a special handling is the
analysis of the application performance when it was updated
or patched. Fig. 2 shows the latency of two application trans-
actions, Tr1 and Tr2, over time (here, a transaction is defined
as a server transaction). Typically, tools like HP (Mercury) Di-
agnostics [13] are used in IT environments for observing laten-
cies of the critical transactions and raising alarms when these
latencies exceed the predefined thresholds. While it is useful
to have insight into the current transaction latencies that im-
plicitly reflect the application and system health, this approach
provides limited information on the causes of the observed la-
tencies and can not be used directly to detect the performance
changes of an updated or modified application. The latencies
of both transactions vary over time and get visibly higher in the
second half of the figure. This does not look immediately sus-
picious because the latency increase can be a simple reflection
of a higher load in the system.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

tr
an

s
la

te
nc

y
(m

s)

time (mins)

Tr1
Tr2

Figure 2. The transaction latency measured by HP (Mercury)
Diagnostics tool.

The real story behind this figure is that after timestamp
160, we began executing an updated version of the applica-
tion code where the processing time of transaction Tr1 is in-
creased by 10 ms. However, by looking at the measured trans-
action latency over time we can not detect this: the reported
latency metric does not provide enough information to detect
this change.

Problem Definition. While using off-line data analysis we
can detect and filter out the time periods that correspond to
abnormal application performance or identify periods where
application performance experiences significant change, the
goal is to design an on-line approach that automatically detects
the performance anomalies and application changes. Such a
method enables a set of useful performance services:

• early warnings on deviations in expected application per-
formance,

• raise alarms on abnormal resource usage,
• create a consistent dataset for modeling the application re-

source requirements by filtering out performance anoma-
lies and pointing out the periods of changed application
performance.

The next two sections present our solution that is based on in-
tegration of two complementary techniques: i) a regression-
based transaction model that correlates processed transactions
and consumed CPU time to create a resource consumption
model of the application; and ii) an application performance
signature that provides a compact model of run-time behavior
of the application.

4 Regression-Based Approach for Detecting
Model Changes and Performance Anomalies

We use statistical learning techniques to model the CPU de-
mand of the application transactions (client transactions) on a
given hardware configuration, to find the statistically signifi-
cant transaction types, to discover the time segments where the
resource consumption of a given application can be approxi-
mated by the same regression model, to discover time segments
with performance anomalies, and to differentiate among appli-
cation performance changes and workload-related changes as
transactions are accumulated over time.

Prerequisite to applying regression is that a service provider
collects the application server access log that reflects all pro-
cessed client transactions (i.e., client web page accesses), and
the CPU utilization of the application server(s) in the evaluated
system.

4.1 Regression-Based Transaction Model

To capture the site behavior across time we observe a num-
ber of different client transactions over a monitoring window t
of fixed length L. We use the terms “monitoring window t” or
“time epoch t” interchangeably in the paper. The transaction
mix and system utilization are recorded at the end of each mon-
itoring window. Assuming that there are totally n transaction
types processed by the server, we use the following notation:

• Tm denotes the time segment for monitored site behavior
and |Tm| denotes the cardinality of the time segment Tm,
i.e., the number of time epochs in Tm;

• Ni,t is the number of transactions of the i-th type in the
monitoring window t, where 1 ≤ i ≤ n;

• UCPU,t is the average CPU utilization of application
server during this monitoring window t ∈ Tm;

• Di is the average CPU demand of transactions of the i-th
type at application server, where 1 ≤ i ≤ n;

• D0 is the average CPU overhead related to activities that
“keep the system up”. There are operating system pro-
cesses or background jobs that consume CPU time even
when there are no transactions in the system.

From the utilization law, one can easily obtain Eq. (1) for each
monitoring window t:

D0 +

n∑
i=1

Ni,t · Di = UCPU,t · L. (1)

Let Ci,m denote the approximated CPU cost of Di for 0 ≤ i ≤
n in the time segment Tm. Then, an approximated utilization
U ′

CPU,t can be calculated as

U ′
CPU,t = C0,m +

∑n
i=1 Ni,t · Ci,m

L
. (2)

To solve for Ci,m, one can choose a regression method from
a variety of known methods in the literature. A typical objec-
tive for a regression method is to minimize either the absolute
error or the squared error. In all experiments, we use the Non-
negative Least Squares Regression (Non-negative LSQ) pro-
vided by MATLAB to obtain Ci,m. This non-negative LSQ
regression minimizes the error

εm =
√ ∑

t∈Tm

(U ′
CPU,t − UCPU,t)2 ,

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 454 DSN 2008: Cherkasova et al.

such that Ci,m ≥ 0.
When solving a large set of equations with collected moni-
toring data over a large period of time, a direct (naive) lin-
ear regression approach would attempt to set non-zero values
for as many transactions as it can to minimize the error when
the model is applied to the training set. However, this may
lead to poor prediction accuracy when the model is later ap-
plied to other data sets, as the model may have become too
finely tuned to the training set alone. In statistical terms, the
model may “overfit” the data if it sets values to some coeffi-
cients to minimize the random noise in the training data rather
than to correlate with the actual CPU utilization. In order to
create a model which utilizes only the statistically significant
transactions, we use stepwise linear regression [10] to deter-
mine which set of transactions are the best predictors for the
observed CPU utilization. To determine the set of significant
transactions, the stepwise regression algorithm initializes with
an “empty” model which includes none of the transactions. At
each following iteration, a new transaction is considered for in-
clusion in the model. The best transaction is chosen by adding
the transaction which results in the lowest mean squared error
when it is included. Before the new transaction is included in
the model, it must pass an F-test which determines if includ-
ing the extra transaction results in a statistically significant im-
provement in the model’s accuracy. If the F-test fails, then the
algorithm terminates since including any further transactions
cannot provide a significant benefit. The coefficients for the
selected transactions are calculated using the linear regression
technique described above. The coefficient for the transactions
not included in the model is set to zero.

Typically, for an application with n transactions, one needs
at least n+1 samples to do regression using all n transactions.
However, since we do transaction selection using a stepwise
linear regression and an F-test, we can do regression by in-
cluding only a subset of n transactions in the regression model.
This allows us to apply regression without having to wait all
n + 1 samples.

4.2 Algorithm Outline

Using statistical regression, we can build a model that ap-
proximates the overall resource cost (CPU demand) of appli-
cation transactions on a given hardware configuration. How-
ever, an accuracy of the modeling results critically depends on
the quality of monitoring data used in the regression analysis:
if the collected data contain periods of performance anoma-
lies or periods when an updated application exhibits very dif-
ferent performance characteristics, then this can significantly
impact the derived transaction cost and can lead to an inac-
curate approximation model. The challenge is to design an
on-line method that alarms service providers of model changes
related to performance anomalies and application updates. Our
method has the following three phases:
• Finding the optimal segmentation. This stage of the

algorithm identifies the time points when the transac-
tion cost model exhibits a change. For example, as
shown in Figure 3, the CPU costs of the transactions
(Tr1, T r2, ..., T rn) during the time interval (T0, T1) are
defined by a model (C0, C1, C2, ..., Cn). After that, for
a time interval (T1, T2) there was no a single regression
model that provides the transaction costs within a spec-
ified error bound. This time period is signaled as hav-

Figure 3. Finding optimal segmentation and detecting
anomalies.

ing anomalous behavior. As for time interval (T2, T3),
the transaction cost function is defined by a new model
(C′

0, C
′
1, C

′
2, ..., C

′
n).

• Filtering out the anomalous segments. Our goal is to con-
tinuously maintain the model that reflects a normal appli-
cation resource consumption behavior. At this stage, we
filter out anomalous measurements identified in the col-
lected data set, e.g., the time period (T1, T2) that corre-
sponds to anomalous time fragment a shown in Figure 3.

• Model reconciliation. After anomalies have been filtered
out, one would like to unify the time segments with no
application change/update/modification by using a single
regression model: we attempt to “reconcile” two differ-
ent segments (models) by using a new common model as
shown in Figure 4.

Figure 4. Model reconciliation.
We try to find a new solution (new model) for combined
transaction data in (T0, T1) and (T2, T3) with a given
(predefined) error. If two models can be reconciled then
an observed model change is indicative of the workload
change and not of an application change. We use the
reconciled model to represent application behavior across
different workload mixes.

If the model reconciliation does not work then it means these
models indeed describe different consumption models of ap-
plication over time, and it is indicative of an actual application
performance change.
4.3 On-Line Algorithm Description

This section describes the three phases of the on-line model
change and anomaly detection algorithm in more detail.

1) Finding the optimal segmentation
This stage of the algorithm identifies the time points where
the transaction cost model exhibits a change. In other words,
we aim to divide a given time interval T into time segments
Tm (T =

⋃
Tm) such that within each time segment Tm the

application resource consumption model and the transaction
costs are similar. We use a cost-based statistical learning algo-
rithm to divide the time into segments with a similar regression
model. The algorithm is composed of two steps:
• construction of weights for each time segment Tm;
• dynamic programming to find the optimum segmentation

(that covers a given period T) with respect to the weights.

The algorithm constructs an edge with a weight, wm, for each
possible time segment Tm ⊆ T . This weight represents the
cost of forming the segment Tm. Intuitively, we would like the
weight wm to be small if the resource cost of transactions in

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 455 DSN 2008: Cherkasova et al.

Tm can be accurately approximated with the same regression
model, and to be large if the regression model has a poor fit for
approximating the resource cost of all the transactions in Tm.

The weight function, wm is selected as a Lagrangian sum of
two cost functions: w1,m and w2,m, where
• the function w1,m is the total regression error over Tm:

w1,m =
√ ∑

t∈Tm

(U ′
CPU,t − UCPU,t)2 ,

• the function w2,m is a length penalty function. A length
penalty function penalizes shorter time intervals over
longer time intervals to avoid dynamic programming to
break the time into segments of very short length (since
the regression error can be significantly smaller for a
shorter time segments). It is a function that decreases as
the length of the interval Tm increases. We set it to a
function of the entropy of segment length as

w2,m = −(|Tm|) · log(|Tm|/|T |)

Our goal is to divide a given time interval T into time segments
Tm (T =

⋃
Tm) that minimize the Lagrangian sum of w1,m

and w2,m over the considered segments, i.e., the segmentation
that minimizes:

W1(T) + λW2(T) (3)

where the parameter λ is the Lagrangian constant that is used
to control the average regression error εallow (averaged over
T) allowed in the model, and

W1(T) =
∑
m

w1,m and W2(T) =
∑
m

w2,m.

Let us consider an example to explain the intuition for how the
equation (3) works. Let us first consider the time interval T
with no application updates or changes. Let time interval T be
divided into two consecutive time segments T1 and T2.

First of all, W1(T1) + W1(T2) ≤ W (T), hence there are
two possibilities:
• One possibility is that a regression model constructed over

T is also a good fit over time segments T1 and T2, and the
combined regression error of this model over time seg-
ments T1 and T2 is approximately equal to the total re-
gression error over the original time interval T .

• The other possibility is that there could be different re-
gression models that are constructed over shorter time
segments T1 and T2 with the sum of regression errors
smaller than a regression error obtained when a single re-
gression model is constructed over T .

For the second possibility, the question is whether the differ-
ence is due to a noise or small outliers in T , or do segments T1

and T2 indeed represent different application behaviors, i.e.,
“before” and “after” the application modification and update.

This is where the W2 function in equation (3) comes into
play. The term log(|Tm|/|T |) is a convex function of |Tm|.
Therefore, each time a segment is split into multiple segments,
W2 increases. This way, the original segment T results in the
smallest W2 compared to any subset of its segments, and λ can
be viewed as a parameter that controls the amount of regres-
sion error allowed in a segment. By increasing the value of λ,

we allow a larger W1, regression error, in the segment. This
help in reconciling T1 and T2 into a single segment represen-
tation T . In such a way, by increasing the value of λ one can
avoid the incorrect segmentations due to noise or small out-
liers in the data T . When an average regression error over a
single segment T is within the allowable error εallow (εallow is
set by a service provider), the overall function (3) results in the
smallest value for the single time segment T compared to the
values computed to any of its sub-segments, e.g., T1 and T2.
Therefore, our approach groups all time segments defined by
the same CPU transaction cost (or the same regression model)
into a single segment. By decreasing the value of λ, one can
prefer the regression models with a smaller total regression er-
ror on the data, while possibly increasing the number of seg-
ments over the data.

There is a trade-off between the allowable regression error
(it is a given parameter for our algorithm) and the algorithm
outcome. If the allowable regression error is set too low then
the algorithm may result in a high number of segments over
data, with many segments being neither anomalies or applica-
tion changes (these are the false alarms, typically caused by
significant workload changes). From the other side, by setting
the allowable regression error too high, one can miss a number
of performance anomalies and application changes that hap-
pened in these data and masked by the high allowable error. 1

2) Filtering out the anomalous segments
An anomalous time segment is one where observed CPU uti-
lization cannot be explained by an application workload, i.e.,
measured CPU utilization can not be accounted for by the
transaction CPU cost function. This may happen if an un-
known background process(es) is using the CPU resource ei-
ther at a constant rate (e.g., using 40% of the CPU at every time
epoch during some time interval) or randomly (e.g., the CPU is
consumed by the background process at different rates at every
epoch). It is important to be able to detect and filter out the
segments with anomalous behavior as otherwise the anoma-
lous time epochs will corrupt the regression estimations of the
time segments with normal behavior. Furthermore, detecting
anomalous time segments provides an insight into the service
problems and a possibility to correct the problems before they
cause major service failure.

We consider a time segment Tm as anomalous if one of the
following conditions take place:

• The constant coefficient, C0,m, is large.
Typically, C0,m is used in the regression model to repre-
sent the average CPU overhead related to “idle system”
activities. There are operating system processes or sys-
tem background jobs that consume CPU time even when
there is no transaction in the system. The estimate for the
“idle system” CPU overhead over a time epoch is set by
the service provider. When C0,m exceeds this threshold a
time segment Tm is considered as anomalous.

• The segment length of Tm is short, indicating that a model
does not get fit to ensure the allowed error threshold.
Intuitively, the same regression model should persist over
the whole time segment between the application up-
dates/modifications unless something else, anomalous,
happens to the application consumption model and it
manifests itself via the model changes.

1Appendix provides a formal description of the algorithm.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 456 DSN 2008: Cherkasova et al.

3) Model reconciliation
After anomalies have been filtered out, one would
like to unify the time segments with no application
change/update/modification by using a single regression
model. This way, it is possible to differentiate between the
segments with application changes from the segments which
are the parts of the same application behavior and were
segmented out by the anomalies in between. In such cases,
the consecutive segments can be reconciled into a single
segment after the anomalies in the data are removed. If there
is an application change, on the other hand, the segments will
not be reconciled, since the regression model that fits to the
individual segments will not fit to the overall single segment
without exceeding the allowable error (unless the application
performance change is so small that it still fits within the
allowable regression error).

4.4 Algorithm Complexity

The complexity of the algorithm is O(M 2), where M is the
number of time samples collected so far. This is problematic
since the complexity is quadratic in a term that increases as
more time samples are collected. In our case study, we have
not experienced a problem as we used only 30 hours of data
with 1-minute intervals, i.e., M = 1800. However, in measur-
ing real applications over long periods of time, complexity is
likely to become challenging. To avoid this, one solution might
retain only the last X samples, where X should be a few or-
ders larger than the number of transaction types n and/or cover
a few weeks/months of historic data. This way, one would have
a sufficiently large X to get accurate regression results, yet the
complexity will not be too large.

5 Detecting Transaction Performance Change

Nowdays there is a new generation of monitoring tools, both
commercial and research prototypes, that provide useful in-
sights into transaction activity tracking and latency breakdown
across different components in multi-tier systems. However,
typically such monitoring tools just report the measured trans-
action latency and provide an additional information on appli-
cation server versus database server latency breakdown. Us-
ing this level of information it is often impossible to decide
whether an increased transaction latency is a result of a higher
load in the system or whether it can be an outcome of the recent
application modification and is directly related to the increased
processing time for this transaction type.

In this section, we describe an approach based on an appli-
cation performance signature that provides a compact model
of run-time behavior of the application. Comparing new ap-
plication signature against the old application signature allows
detecting transaction performance changes.

5.1 Server Transaction Monitoring

Many enterprise applications are implemented using the
J2EE standard – a Java platform which is used for web appli-
cation development and designed to meet the computing needs
of large enterprises. For transaction monitoring we use the HP
(Mercury) Diagnostics [13] tool which offers a monitoring so-
lution for J2EE applications. The Diagnostics tool consists of
two components: the Diagnostics Probe and the Diagnostics
Server as shown in Fig. 5.

Figure 5. Multi-tier application configuration with the
Diagnostics tool.

The Diagnostics tool collects performance and diagnostic
data from applications without the need for application source
code modification or recompilation. It uses bytecode instru-
mentation and industry standards for collecting system and
JMX metrics. Instrumentation refers to bytecode that the Probe
inserts into the class files of the application as they are loaded
by the class loader of the virtual machine. Instrumentation en-
ables a Probe to measure execution time, count invocations, re-
trieve arguments, catch exceptions and correlate method calls
and threads.

The J2EE Probe shown in Fig. 5 is responsible for capturing
events from the application, aggregating the performance met-
rics, and sending these captured performance metrics to the
Diagnostics Server. We have implemented a Java-based pro-
cessing utility for extracting performance data from the Diag-
nostics server in real-time and creating a so-called application
log2 that provides a complete information on all transactions
processed during the monitoring window, such as their over-
all latencies, outbound calls, and the latencies of the outbound
calls. In a monitoring window, Diagnostics collects the follow-
ing information for each transaction type:
• a transaction count;
• an average overall transaction latency for observed trans-

actions.3 This overall latency includes transaction pro-
cessing time at the application server as well as all re-
lated query processing at the database server, i.e., latency
is measured from the moment of the request arrival at the
application server to the time when a prepared reply is
sent back by the application server, see Fig. 6;

• a count of outbound (database) calls of different types;
• an average latency of observed outbound calls (of differ-

ent types). The average latency of an outbound call is
measured from the moment the database request is issued
by the application server to the time when a prepared re-
ply is returned back to the application server, i.e., the av-
erage latency of the outbound call includes database pro-
cessing and communication latency.

The transaction latency consists of the waiting and service
times across the different tiers (e.g., Front and Database
servers) that a transaction flows through. Let Rfront

i and RDB
i

be the average latency for the i-th transaction type at the front
2We use this application log for building the regression-based model de-

scribed in Section 4.
3Note that here a latency is measured for the server transaction (see the

difference between client and server transactions described in Section 2).

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 457 DSN 2008: Cherkasova et al.

Figure 6. The transaction latency measured by the Di-
agnostics tool.

and database servers, respectively. We then have the transac-
tion latency breakdown calculated as follows:

Ri = Rfront
i + RDB

i = (4)

= Rfront
i +

∑Pi

j=1 NDB
i,j ∗ RDB

i,j

Ni

Using this equation we can easily compute Rfront
i .

5.2 Application Performance Signature

In this section, we describe how to create a representative
application signature that compactly reflects important perfor-
mance characteristics of application. As shown in [14], we can
compute the transaction service times using measured trans-
action latencies and corresponding system utilization. For a
concrete transaction type Tri, we have a relationship based
on transaction service time Si, transaction residence time Ri

(measured at the application server) and utilization U of the
system (the application server):

Ri = Si/(1 − U) (5)

Therefore, it is equivalent to

Si = Ri ∗ (1 − U) (6)

Since in real production system we collect measured latencies
for each transaction type i over different monitoring windows,
we have multiple equations that reflect transaction latencies at
different CPU utilization points as shown below 4:

Si = Rfront
i,1 ∗ (1 − U1/100) (7)

Si = Rfront
i,2 ∗ (1 − U2/100)

...

Our goal is to find the solution that is the best fit for the over-
all equation set (7). A linear regression-based (LSR) method
can be chosen to solve for Si. However, there are two reasons
why we chose a different method. First, a number of outliers
that often present in production data could significantly affect
the accuracy of the final solution as LSR aims to minimize the
absolute error across all points. Second, there may be a sig-
nificant difference in the number of transactions contributing

4Since we collect CPU utilization expressed in percents, we need to divide
it by 100 to use correctly in equation (6).

to different CPU utilization points. LSR aims to minimize the
absolute error across the equations, and it treats all these equa-
tions equally.

Therefore, we propose another method to compute the ser-
vice time Si for the i-th transaction type. By solving S i =
Rfront

i,k ∗ (1 − Uk/100) in Eq. 7, a set of solutions Sk
i is ob-

tained for different utilization points Uk in the transaction la-
tency profile. We generate a Cumulative Distribution Function
(CDF) for Si. Intuitively, since we conjecture that each trans-
action type is uniquely characterized by its service time, then
we should see a curve similar to shown in Fig. 7 with a large
number of similar points in the middle and some outliers in the
beginning and the tail of the curve. We then select the 50-th
percentile value as the solution for Si as most representative.5

The 50-th percentile heuristics works well for all transactions
in our study.

(1.27, 50%)

 0

 50
 60

 80
 90

 100

 1 1.5 2 2.5 3 3.5

service time (ms)

Service time

C
D

F
(%

)

Home Transaction

 70

 30
 20
 10

 40

Figure 7. Service time CDF of a typical server transaction.

Finally, an application performance signature is created:

Tr1 −→ S1

Tr2 −→ S2

... ...
T rn −→ Sn

As shown in [14], such an application signature uniquely re-
flects the application transactions and their CPU requirements
and is invariant for different workload types. The application
signature compactly represents a model of application run-time
behavior.

Continuous calculation of the application signature allows
us to detect events such as software updates that may signifi-
cantly affect transaction execution time. By comparing the new
application signature against the old one can detect transaction
performance changes and analyze their impacts.

The application signature technique is complementary to
the regression-based resource consumption model described in
Section 4. For example, it is not capable of detecting abnormal
resource consumption caused by processes unrelated to the ap-
plication and its transaction processing.

6 Case Study

In this section, we demonstrate how integration of two com-
plementary techniques, the regression-based transaction model
and the application performance signature, provides an on-line

5Selecting the mean of Si allows the outliers (thus the tail of the distribu-
tion) to influence our service time extrapolation, which is not desirable. Be-
cause of the shape of the CDF curve, the selection of the 50-th percentile is a
good heuristics.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 458 DSN 2008: Cherkasova et al.

solution for anomaly detection and analysis of essential perfor-
mance changes in application behavior. The next subsection
describes the experimental environment used in the case study
as well as a specially designed workload used to validate the
proposed approach.

6.1 Experimental Environment

In our experiments, we use a testbed of a multi-tier e-
commerce site that simulates the operation of an on-line book-
store, according to the classic TPC-W benchmark [19]. This
allows to conduct experiments under different settings in a con-
trolled environment in order to evaluate the proposed anomaly
detection approach. We use the terms “front server” and “ap-
plication server’ interchangeably in this paper. Specifics of the
software/hardware used are given in Table 1.

Table 1. Testbed components
Processor RAM

Clients (Emulated-Browsers) Pentium D / 6.4 GHz 4 GB
Front Server - Apache/Tomcat 5.5 Pentium D / 3.2 GHz 4 GB
Database Server - MySQL5.0 Pentium D / 6.4 GHz 4 GB

Typically, client access to a web service occurs in the form
of a session consisting of a sequence of consecutive individual
requests. According to the TPC-W specification, the number
of concurrent sessions (i.e., customers) or emulated browsers
(EBs) is kept constant throughout the experiment. For each
EB, the TPC-W benchmark statistically defines the user ses-
sion length, the user think time, and the queries that are gen-
erated by the session. The database size is determined by the
number of items and the number of customers. In our exper-
iments, we use the default database setting, i.e., the one with
10,000 items and 1,440,000 customers.

TPC-W defines 14 different transactions which are classi-
fied as either of browsing or ordering types as shown in Table 2.
We assign a number to each transaction (shown in parenthesis)
according to their alphabetic order. Later, we use these trans-
action id-s for presentation convenience in the figures.

Table 2. 14 basic transactions and their types in TPC-W

Browsing Type Ordering Type
Home (8) Shopping Cart (14)
New Products (9) Customer Registration (6)
Best Sellers (3) Buy Request (5)
Product detail (12) Buy Confirm (4)
Search Request (13) Order Inquiry (11)
Execute Search (7) Order Display (10)

Admin Request (1)
Admin Confirm (2)

According to the weight of each type of activity in a given
traffic mix, TPC-W defines 3 types of traffic mixes as follows:
• the browsing mix with 95% browsing and 5% ordering;
• the shopping mix with 80% browsing and 20% ordering;
• the ordering mix with 50% browsing and 50% ordering.

Since real enterprise and e-commerce applications are typi-
cally characterized by non-stationary transaction mixes (i.e.,
with changing transaction probabilities in the transaction mix
over time) under variable load [9, 5, 17] we have designed an
approach that enables us to generate non-stationary workloads
using the TPC-W setup. To generate a non-stationary trans-
action mix with variable transaction mix and load we run 4
processes as follows:

• the three concurrent processes each executing one of the
standard transaction mixes (i.e., browsing, shopping and
ordering respectively) with the arbitrary fixed number of
EBs (e.g, 20, 30, and 50 EBs respectively). We call them
base processes;

• the 4-th, so-called random process executes one of the
standard transaction mixes (in our experiments, it is the
shopping mix) with a random execution period while us-
ing a random number of EBs for each period. To nav-
igate and control this random process we use specified
ranges for the “random” parameters in this workload. The
pseudo-code of this random process is shown in Figure 8
(the code also shows parameters we use for the non-
stationary mix in this paper).

1. initialize a variable dur ← 3hours
2. while (dur > 0) do

a. set the execution time exe dur← random(20min, 30min)
b. set the number of EBs curr EBs← random(150, 700)
c. execute shopping mix with curr EBs for exe dur time
d. set the sleep time sleep dur ← random(10min, 20min)
e. sleep for sleep dur time
f. adjust dur ← dur - (exe dur+sleep dur)

Figure 8. The pseudocode for the random process.

Due to the 4-th random process the workload is non-stationary
and the transaction mix and load vary significantly over time.

In order to validate the on-line anomaly detection and ap-
plication change algorithm, we designed a special 30-hour ex-
periment with TPC-W that has 7 different workload segments
shown in Figure 9, which are defined as follows.

Figure 9. 30-hour TPC-W Workload used in the Case Study.

1. The browsing mix with the number of EBs equal to 200,
400, 600, 800, and 1000 respectively.

2. In order to validate whether our algorithm correctly de-
tects performance anomalies, we generated a special
workload with non-stationary transaction mix as de-
scribed above and an additional CPU process (that con-
sumes random amount of CPU) on a background.

3. The shopping mix with the number of EBs equal to 200,
400, 600, 800, and 1000 respectively.

4. The ordering mix with the number of EBs equal to 200,
400, 600, 800, and 1000 respectively.

5. The non-stationary TPC-W transaction mix described
above in this section.

6. In order to validate whether we can automatically recog-
nize the application change, we modified the source code
of the “Home” transaction (the 8th transaction) in TPC-W

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 459 DSN 2008: Cherkasova et al.

by inserting a controlled CPU loop into the code of this
transaction and increasing its service time by 5 ms. Us-
ing this modified code, we performed experiment with the
non-stationary TPC-W transaction mix described above.

7. Another experiment with the modified TPC-W bench-
mark, where the service time of the “Home” transaction is
increased by 10 ms and the non-stationary TPC-W trans-
action mix described above.

6.2 Approach Validation

We applied our on-line regression-based algorithm to the
special 30-hour workload shown in Figure 9. We experi-
mented with two values of allowable error in our experiments:
ε1allow = 3% and ε2

allow = 1% to demonstrate the impact of
error setting and stress the importance of tuning this value.

When we used ε1
allow = 3%, the algorithm had correctly

identified the 4 major model changes as shown in Figure 10. In
fact, for the second segment there were 42 model changes (not
shown in this figure to simplify the presentation) with maxi-
mum segment being 5 epochs.

Figure 10. Model Changes in the Studied Workload.

The algorithm accurately detected that the whole segment 2
is anomalous. Then the tool correctly performed the model
reconciliation for the consecutive segments around the anoma-
lous segment as shown in Figure 11. Finally, the algorithm
correctly raised alarms on the application change when the re-
gression model has changed and could not be reconciled (last
two segments in Figure 11.

Figure 11. Model Reconciliation in the Studied Workload.

The power of regression-based approach is that it is sensi-
tive and accurate to detect a difference in the CPU consumption
model of application transactions. However, it can not identify
the transactions that are responsible for this resource consump-
tion difference. To complement the regression-based approach

and to identify the transactions that cause the model change we
use the application performance signature. Comparison of the
new application signature against the old one allows efficient
detection of transactions with performance changes.

-2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

se
rv

ic
e

tim
e

(m
s)

transaction number

Original Signature
New Signature+5ms

New Signature+10ms

Figure 12. Original application signature vs the application
signatures of the modified application.

The application signature stays unchanged for the first 5
segments of the studied 30-hour workload. It is plotted in Fig-
ure 12 as the base line. The new application signatures for the
6-th and 7-th segments reflect the change in service time of
the “Home” (8th) transaction, while for the other transaction
their service times stay unchanged. Thus, indeed, 6-th and 7-th
segments correspond to the application change.

When we used ε1
allow = 1%, the algorithm had identified

the 6 major model changes: in addition to 4 model changes
shown in Figure 10 the algorithm reported 2 extra segments at
timestamps 790 and 1030 that correspond to workload changes
and that are false alarms. It is important to use the appropri-
ate error setting to minimize the number of false alarms. One
can use the application signature while performing the allow-
able error tuning: it helps to get an insight in whether the model
change is indeed an application change or whether it rather cor-
responds to a workload change.

The above experiments show that the proposed integrated
framework of regression-based transaction model and applica-
tion signature provides a simple and powerful on-line solution
for anomaly detection and analysis of essential performance
changes in application behavior.

7 Related Work
Applications built using Web services can span multi-

ple computers, operating systems, languages, and enterprises.
Measuring application availability and performance in such en-
vironments is exceptionally challenging. However, the tightly
defined structures and protocols that have been standardized by
the Web services community have opened the door for new so-
lutions. There is a set of commercial tools [11, 12, 13, 16] for
monitoring Java applications by instrumenting the Java Virtual
Machine (JVM) which provides a convenient locus for non-
intrusive instrumentation (some systems focus on .Net instead
of Java). These tools analyze transaction performance by re-
constructing the execution paths via tagging end-to-end user
transactions as they flow through a J2EE-based system and
looking for performance problems using one or more of the
following techniques:

• Fixed or statistical baseline guided threshold setting in HP
BTO product suite [13], IBM Tivoli [11], CA Wily Intro-
scope [8], and Symantec I 3 [18]. This approach can be
labor intensive and error prone.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 460 DSN 2008: Cherkasova et al.

• Adaptive threshold setting, where the application work-
load is evaluated periodically, e.g., every 24 hours, and
thresholds are adjusted. Examples include BMC Proac-
tiveNet [3] and Netuitive [15]. This approach can result in
a large number of false alarms while adjusting to change.

• Change detection combined with statistical baselining and
thresholding, e.g., CA Wily’s Introscope [8].

While it is useful to have detailed information into the current
transaction latencies, the above tools provide limited informa-
tion on the causes of the observed latencies, and can not be
used directly to detect the performance changes of an updated
or modified application.

In addition to commercial tools, several research projects
have addressed the problem of performance monitoring and
debugging in distributed systems. Pinpoint [4] collects end-
to-end traces of client requests in a J2EE environment using
tagging and identifies components that are highly correlated
with failed requests using statistics. Statistical techniques are
also used by [1] to identify sources of high latency in commu-
nication paths. Magpie [2] provides the ability to capture the
resource demands of application requests as they are serviced
across components and machines in a distributed system. Mag-
pie records the communication path of each request and also
its resource consumption, which allows for better understand-
ing and modeling of system performance. Cohen et al. [7] use
a statistical approach to model performance problems of dis-
tributed applications using low-level system metrics. They de-
sign a set of signatures to capture the essential system state that
contributes to service-level objective violations. These signa-
tures are used to find symptoms of application performance
problems and can be compared to signatures of other applica-
tion performance problems to facilitate their diagnosis.

From the above works, the two most closely related to our
approach is Magpie [2] and [7]. Magpie uses a more sophis-
ticated tracing infrastructure than in our approach and concen-
trates on detecting relatively rare anomalies. The goal of our
work is to detect performance changes in application behavior
caused by application modifications and software updates that
are complementary and independent on workload conditions in
production environments.

8 Conclusion and Future work
Today, the three-tier architecture paradigm has become an

industry standard for building enterprise client-server applica-
tions. The application server is a core component in this archi-
tecture and defines the main service functionality. Typically,
when a new application update is introduced and/or unexpected
performance problems are observed, it is important to separate
performance issues that are caused by a high load of incom-
ing workload from the performance issues caused by possible
errors or inefficiencies in the upgraded software.

In this work, we propose a new integrated framework of
measurement and system modeling techniques for anomaly de-
tection and analysis of essential performance changes in appli-
cation behavior. Our solution is based on integration of two
complementary techniques: i) a regression-based transaction
model that characterizes the resource consumption pattern of
the application; and ii) an application performance signature
that provides a compact model of run-time behavior of the ap-
plication. The proposed on-line regression-based algorithm
accurately detects a change in the CPU consumption pattern

of the application and alarms about either observed perfor-
mance anomaly or possible application change. However, it
can not distinguish which of the transactions is responsible for
a changed CPU consumption of the application. To comple-
ment the regression-based approach and to identify the trans-
actions that cause the model change, we use the application
performance signature.

While this paper concentrates on performance anomalies
and model changes in the CPU consumption of the applica-
tion, we believe that both regression method and application
performance signature can be extended for evaluating memory
usage and memory usage anomalies such as memory leaks. We
plan to exploit this avenue in our future work.

Acknowledgements: We would like to thank our HP col-
leagues from the Diagnostics team: Brent Enck, Dave Ger-
shon, Anupriya Ramraj, Glenna Mayo for their help and useful
discussions during this work.

References
[1] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance debugging for distributed systems of
black boxes. Proc. of the 19th ACM SOSP’2003.

[2] P. Barham, A. Donnelly, R. Isaacs, R. Mortier. Using Magpie
for request extraction and workload modelling. Proc of the 6th
Symposium OSDI’2004.

[3] BMC ProactiveNet. www.bmc.com/
[4] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A.

Fox, and E. Brewer. Path-based failure and evolution manage-
ment. Proc. of the 1st Symposium NSDI’04.

[5] L. Cherkasova, M. Karlsson. Dynamics and Evolution of Web
Sites: Analysis, Metrics and Design Issues. In Proc. of the 6-th
International Symposium on Computers and Communications
(ISCC’01), 2001.

[6] L. Cherkasova, Y. Fu, W. Tang, A. Vahdat: Measuring and
Characterizing End-to-End Internet Service Performance. Jour-
nal ACM/IEEE Transactions on Internet Technology, (TOIT),
November, 2003.

[7] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, A.
Fox. Capturing, Indexing, Clustering, and Retrieving System
History. Proc. of the 20th ACM Symposium SOSP’2005.

[8] CA Wily Introscope. www.wilytech.com.
[9] F. Douglis and A. Feldmann. Rate of change and other metrics:

a live study of the world wide web. In USENIX Symposium on
Internet Technologies and Systems, 1997.

[10] N. R. Draper and H. Smith. Applied Regression Analysis. John
Wiley & Sons, 1998.

[11] IBM Corporation. Tivoli Web Management Solutions, http:
//www.tivoli.com/products/demos/twsm.html.

[12] Indicative Co. www.indicative.com/products/End-to-End.pdf
[13] Mercury Diagnostics. www.mercury.com/us/products/diagnostics/
[14] N. Mi, L. Cherkasova, K. Ozonat, J. Symons, and E. Smirni.

Analysis of Application Performance and Its Change via Rep-
resentative Application Signatures. Will appear in NOMS’2008.

[15] http://www.netuitive.com/
[16] Quest Software Inc. Performasure.

http://java.quest.com/performasure.
[17] C. Stewart, T. Kelly, A. Zhang. Exploiting nonstationarity for

performance prediction. Proc. of the EuroSys’2007.
[18] Symantec I3: Application Performance Management http:

//www.symantec.com/business/products/
[19] TPC-W Benchmark. URL http://www.tpc.org
[20] Q. Zhang, L. Cherkasova, and E. Smirni: A Regression-Based

Analytic Model for Dynamic Resource Provisioning of Multi-
Tier Applications. Proc. of the 4th IEEE International Confer-
ence on Autonomic Computing (ICAC’2007), 2007.

[21] Q. Zhang, L. Cherkasova, G. Mathews, W. Greene, and E.
Smirni: R-Capriccio: A Capacity Planning and Anomaly De-
tection Tool for Enterprise Services with Live Workloads. Proc.
of the ACM/IFIP/USENIX 8th International Middleware Con-
ference (Middleware’2007), 2007.

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008

1-4244-2398-9/08/$20.00 ©2008 IEEE 461 DSN 2008: Cherkasova et al.

	Return to DSN 2008 Main Menu

	PDS Sessions

