
Analysis of Application Performance and Its
Change via Representative Application Signatures∗

Ningfang Mi
College of William and Mary

Williamsburg, VA 23187, USA
ningfang@cs.wm.edu

Ludmila Cherkasova, Kivanc Ozonat, Julie Symons
Hewlett-Packard Labs

Palo Alto, CA 94304, USA
{lucy.cherkasova, kivanc.ozonat, julie.symons}@hp.com

Evgenia Smirni
College of William and Mary

Williamsburg, VA 23187, USA
esmini@cs.wm.edu

Abstract—Application servers are a core component of a multi-
tier architecture that has become the industry standard for
building scalable client-server applications. A client communi-
cates with a service deployed as a multi-tier application via
request-reply transactions. A typical server reply consists of
the web page dynamically generated by the application server.
The application server may issue multiple database calls while
preparing the reply. Understanding the cascading effects of the
various tasks that are sprung by a single request-reply transac-
tion is a challenging task. Furthermore, significantly shortened
time between new software releases further exacerbates the
problem of thoroughly evaluating the performance of an updated
application. We address the problem of efficiently diagnosing
essential performance changes in application behavior in order
to provide timely feedback to application designers and service
providers.

In this work, we propose a new approach based on an
application signaturethat enables a quick performance com-
parison of the new application signature against the old one,
while the application continues its execution in the production
environment. The application signature is built based on new
concepts that are introduced here, namely thetransaction latency
profiles and transaction signatures. These become instrumental
for creating an application signature that accurately reflects
important performance characteristics. We show that such an
application signature is representative and stable under different
workload characteristics. We also show that application signa-
tures are robust as they effectively capture changes in transaction
times that result from software updates. Application signatures
provide a simple and powerful solution that can further be
used for efficient capacity planning, anomaly detection, and
provisioning of multi-tier applications in rapidly evolvi ng IT
environments.

I. I NTRODUCTION

Fundamental to the design of reliable enterprise applications
is an understanding of the performance characteristics of the
service under different workload conditions and over time.
In multi-tier systems, frequent calls to application servers
and databases place a heavy load on resources and may
cause throughput bottlenecks and high server-side processing
latency. Typically, preliminary performance profiling of an ap-
plication is done by using synthetic workloads or benchmarks
which are created to reflect a “typical application behavior”
for “typical client transactions”.
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While such performance profiling can be useful at the initial
stages of design and development of a future system, it may
not be adequate for analysis of the performance issues and the
observed application behavior in existing production systems.
First, an existing production system can experience a very
different workload compared to the one that has been used
in its testing environment. Second, frequent software releases
and application updates make it difficult and challenging to
perform a thorough and detailed performance evaluation of an
updated application. When poorly performing code slips into
production and an application responds slowly, the organiza-
tion inevitably looses productivity and experiences increased
operating costs.

Automated tools for understanding application behavior and
its changes during the application development life-cycleare
essential for many performance analysis and debugging tasks.
Yet, such tools are not readily available to application design-
ers and service providers. The traditionalreactiveapproach is
to set thresholds for observed performance metrics and raise
alarms when these thresholds are violated. This approach isnot
adequate for understanding the performance changes between
application updates. Instead, apro-active approach that is
based oncontinuousapplication performance evaluation may
assist enterprises in avoiding loss of productivity by the timely
diagnosis of essential performance changes in application
performance.

Nowadays, a new generation of monitoring tools, both
commercial and research prototypes, provides useful insights
into transaction activity tracking and latency breakdown across
different components in multi-tier systems. Some of them
concentrate on measuring end-to-end latencies observed by
the clients [9], [16], [5], [13], [14]. Typically, they provide a
latency breakdown into network and server related portions.
While these tools are useful for understanding the client net-
work related latencies and improving overall client experience
by introducing a geographically distributed solution at the
network level, this approach does not offer sufficient insights
in the server-side latency as it does not provide a latency
breakdown into application and database related portions.

Another group of tools focuses on measuring server-side
latencies [2], [12], [10], [7], [15] using different levelsof trans-
action tracking that are useful for “drill-down” performance
analysis and modeling. Unfortunately, such monitoring tools



typically report the measured transaction latency and provide
additional information on application server versus database
server latency breakdown. Using this level of information it
is often difficult to decide whether an increased transaction
latency is a result of a higher load in the system or whether
is an outcome of the recent application modification that
is directly related to the increased processing time for this
transaction type. Measurements in real systems cannot provide
accurate transaction “demands”, i.e., execution times without
any delays due to queuing/scheduling in each tier/server.
Approximate transaction demands are extrapolated using mea-
surements at very low utilization levels or with nearly 100%
utilization [19]. Variability across different customer behaviors
and workload activity further exacerbates the problem of
accurately measuring and understanding transaction demands.

In this work, we propose a new approach based on an
application performance signaturethat provides a model of
“normal” application behavior. We argue that online perfor-
mance modeling should be a part of routine application moni-
toring and can be useful for performance debugging, capacity
planning, and anomaly detection. The application signature
approach enables a quick and efficient performance analysis
of application transactions while the application is executing
in the production environment. We introduce several new
concepts such astransaction latency profilesand transaction
signaturesthat are used to create a collective application sig-
nature to accurately reflect important application performance
characteristics. We show that such an application signature
is stable for different workload characteristics. Furthermore,
continuous calculation of the application signature allows to
capture events such as software updates that may significantly
affect transaction execution time. Comparing the new applica-
tion signature against the old one allows detection of specific
application performance changes and enables further analysis
to determine whether these are intended and acceptable.

An additional benefit of the proposed approach is its sim-
plicity: it is not intrusive and based on monitoring data that
is typically available in enterprise production environments.
We illustrate the effectiveness of application signaturesvia a
detailed set of experimentation using the TPC-W e-commerce
suite [18].

II. RELATED WORK

Applications built using Web services can span multiple
computers, operating systems, languages, and enterprises.
Measuring application availability and performance in such en-
vironments is exceptionally challenging. However, the tightly
defined structures and protocols that have been standardized
by the Web services community have opened the door for
new solutions. There is a set of commercial tools [9], [10],
[12], [15] for monitoring Java applications by instrumenting
the Java Virtual Machine (JVM) which provides a convenient
locus for non-intrusive instrumentation (some systems focus
on .Net instead of Java). These tools analyze transaction
performance by reconstructing the execution paths via tagging
end-to-end user transactions as they flow through a J2EE-based

system. While it is useful to have detailed information intothe
current transaction latencies, the above tools provide limited
information on the causes of the observed latencies, and can
not be used directly to detect the performance changes of an
updated or modified application.

In addition to commercial tools, several research projects
have addressed the problem of performance monitoring and
debugging in distributed systems. Pinpoint [3] collects end-
to-end traces of client requests in a J2EE environment using
tagging and identifies components that are highly correlated
with failed requests using statistics. Statistical techniques are
also used by [1] to identify sources of high latency in commu-
nication paths. Magpie [2] provides the ability to capture the
resource demands of application requests as they are serviced
across components and machines in a distributed system.
Magpie records the communication path of each request and
also its resource consumption, which allows for better under-
standing and modeling of system performance. Cohen et al. [6]
use a statistical approach to model performance problems of
distributed applications using low-level system metrics.They
designed a set of signatures to capture the essential system
state that contributes to service-level objective violations.
These signatures are used to find symptoms of application
performance problems and can be compared to signatures
of other application performance problems to facilitate their
diagnosis.

From the above works, the one most closely related to
this paper is Magpie. Magpie uses a more sophisticated
tracing infrastructure than in our approach and concentrates
on detecting relatively rare anomalies. The goal of our workis
to detect performance changes in application behavior caused
by application modifications and software updates that are
complementary and independent on workload conditions in
production environments.

III. M OTIVATING EXAMPLE AND INTUITIVE CONJECTURE

Typically, tools like HP (Mercury) Diagnostics [12] are
used in IT environments for observing latencies of the critical
transactions via an interactive GUI as well as for raising alarms
when these latencies exceed the predefined thresholds. While
it is useful to have insight into the current transaction latencies
that implicitly reflect the application and system health, this
approach provides limited information on the causes of the
observed latencies and can not be used directly to detect the
performance changes of an updated or modified application.

Fig. 1 shows the latency of two application transactions,
Tr1 and Tr2, over time. The latencies of both transactions
vary over time and get visibly higher in the second half of the
figure. This does not look immediately suspicious because the
latency increase can be a simple reflection of a higher load in
the system.

The real story behind this figure is that after timestamp
160 min, we began executing an updated version of the
application code where the processing time of transactionTr1
is increased by 10 ms. However, by looking at the measured
transaction latency over time we can not detect this: the
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Fig. 1. The transaction latency measured by HP (Mercury) Diagnostics tool.

reported latency metric does not provide enough information
to detect this change.

The problem addressed in this paper is whether by using
measured transaction latency and its breakdown information,
we can process and present it in a special way to quickly
and efficiently diagnose essential performance changes in
the application performance and to provide fast feedback to
application designers and service providers.

Our main idea is, first, to partition transaction latency into
complementary portions that represent time spent at different
tiers. In particular, we will distinguish latency portionsat
the application server versus the database server. After that,
we augment the transaction latency at the application server
with CPU utilization of application server measured during
the same monitoring window. The hypothesis is that if we
plot transaction latency at the application server againstits
CPU utilization we will get a representative transaction latency
profile. Our intuitive conjecture is that this transaction profile
is very similar under different transaction mixes, i.e., itis
uniquely defined by the transaction type and CPU utilization
of the server and is practically independent on the transaction
mix.

IV. EXPERIMENTAL ENVIRONMENT

A. TPC-W Testbed and Non-Stationary TPC-W Workloads

In our experiments, we use a testbed of a multi-tier e-
commerce site that simulates the operation of an on-line
bookstore, according to the classic TPC-W benchmark [18].
This allows to conduct experiments under different settings
in a controlled environment in order to evaluate the pro-
posed profiling and modeling approach. Specifics of the soft-
ware/hardware used are given in Table I. We use terms “front
server” and “application server’ interchangeably in this paper.

TABLE I
TESTBED COMPONENTS

Processor RAM
Clients (Emulated-Browsers) Pentium D / 6.4 GHz 4 GB
Front Server - Apache/Tomcat 5.5 Pentium D / 3.2 GHz 4 GB
Database Server - MySQL5.0 Pentium D / 6.4 GHz 4 GB

Typically, client access to a web service occurs in the form
of a sessionconsisting of a sequence of consecutive individual
requests. According to the TPC-W specification, the number
of concurrent sessions (i.e., customers) or emulated browsers

(EBs) is kept constant throughout the experiment. For each EB,
the TPC-W benchmark statistically defines the user session
length, the user think time, and the queries that are generated
by the session. The database size is determined by the number
of items and the number of customers. In our experiments, we
use the default database setting, i.e., the one with 10,000 items
and 1,440,000 customers.

TPC-W defines 14 different transactions which are roughly
classified as either of browsing or ordering types as shown
in Table II. We assign a number to each transaction (shown
in parenthesis) according to their alphabetic order. Later, we
use these transactionid-s for presentation convenience in the
figures.

TABLE II
14 BASIC TRANSACTIONS AND THEIR TYPES IN TPC-W

Browsing Type Ordering Type
Home (8) Shopping Cart (14)
New Products (9) Customer Registration (6)
Best Sellers (3) Buy Request (5)
Product detail (12) Buy Confirm (4)
Search Request (13) Order Inquiry (11)
Execute Search (7) Order Display (10)

Admin Request (1)
Admin Confirm (2)

According to the weight of each type of activity in a given
traffic mix, TPC-W defines 3 types of traffic mixes as follows:

• the browsing mixwith 95% browsing and 5% ordering;
• the shopping mixwith 80% browsing and 20% ordering;
• the ordering mixwith 50% browsing and 50% ordering.

1. initialize a variabledur← 3hours
2. while (dur > 0) do

a. set the execution timeexe dur ← random(20min, 30min)
b. set the number of EBscurr EBs← random(150, 700)
c. executeshoppingmix with curr EBs for exe dur time
d. set the sleep timesleep dur ← random(10min, 20min)
e. sleep forsleep dur time
f. adjustdur ← dur - (exe dur+sleep dur)

Fig. 2. The pseudocode for the random process.

One drawback of directly using the transaction mixes de-
scribed above in our experiments is that they arestationary,
i.e., the transaction mix and load do not change over time.
Since real enterprise and e-commerce applications are typi-
cally characterized bynon-stationarytransaction mixes with
variable load [8], [4], [17], we designed an approach that
enables us to generate non-stationary workloads using the
TPC-W setup. To generate a non-stationary transaction mix
with variable load we run 4 processes as follows:

• the three concurrent processes each executing one of the
standard transaction mixes (i.e., browsing, shopping and
ordering respectively) with the arbitrary fixed number of
EBs (e.g, 20, 30, and 50 EBs respectively). We call them
baseprocesses;

• the 4-th, so-calledrandomprocess executes one of the
standard transaction mixes (in our experiments, it is the
shopping mix) with a random execution period while
using a random number of EBs for each period. To
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Fig. 3. CPU utilization of the Front server and the DB server across time under Transaction Mix I.

navigate and control this random process we use specified
ranges for the “random” parameters in this workload. The
pseudo-code of this random process is shown in Fig. 2.

Due to the 4-th random process the workload is non-stationary
and the transaction mix and load vary significantly over time.

In this paper, we use fixed ranges of(20min,30min) for
process “execution” time and(10min,20min)for process “sleep”
time. Thus in order to describe the random process in different
workloads used in our case studies we only specify ranges
for choosing a random number of EBs. In particular, we
consider the following three non-stationary transaction mixes
with different number of EBs for the base processes and
the additional random process as shown in Table III (each
workload is executed for 3 hours):

TABLE III
THE PARAMETERS OF THE THREE NONSTATIONARY WORKLOADS

Number of EBs
Browsing Shopping Ordering Random

Trans. Mix I 20 30 50 random(150,700)
Trans. Mix II 50 50 50 random(150,700)
Trans. Mix III 50 30 100 random(150,700)

Fig. 3 shows the CPU utilization over time at 1-minute
granularity for the front and database servers, respectively, for
Transaction Mix I. CPU utilizations at both the application and
database servers vary dramatically over time. Due to space
limitations we omit figures representing CPU utilization for
the other two workloads. Table IV summarizes CPU utilization
ranges for all the three workloads.

TABLE IV
CPUUTILIZATION RANGES FOR THREE NONSTATIONARY WORKLOADS

Ranges of CPU Utilization
Application Server Database Server

Trans. Mix I 6%− 60% 1%− 42%
Trans. Mix II 10%− 61% 1%− 54%
Trans. Mix III 10%− 64% 1%− 39%

B. Transaction Latency Monitoring

TPC-W implementation is based on the J2EE standard – a
Java platform which is used for web application development
and designed to meet the computing needs of large enterprises.
For transaction monitoring we use the HP (Mercury) Diag-
nostics [12] tool which offers a monitoring solution for J2EE

applications. The Diagnostics tool consists of two components:
the Diagnostics Probe and the Diagnostics Server as shown in
Fig. 4.

Fig. 4. TPC-W experimental configuration with the Diagnostics tool.
The Diagnostics tool collects performance and diagnostic

data from applications without the need for application source
code modification or recompilation. It uses bytecode instru-
mentation and industry standards for collecting system and
JMX metrics. Instrumentation refers to bytecode that the Probe
inserts into the class files of the application as they are loaded
by the class loader of the virtual machine. Instrumentation
enables a Probe to measure execution time, count invocations,
retrieve arguments, catch exceptions and correlate methodcalls
and threads.

The J2EE Probe shown in Fig. 4 is responsible for captur-
ing events from the application, aggregating the performance
metrics, and sending these captured performance metrics to
the Diagnostics Server. In a monitoring window, Diagnostics
provides the following information for each transaction type:

• a transaction count;
• an average overall transaction latency for observed trans-

actions. This overall latency includes transaction process-
ing time at the application server as well as all related
query processing at the database server, i.e., latency is
measured from the moment of the request arrival at the
application server to the time when a prepared reply is
sent back by the application server, see Fig. 5;

• a count of outbound (database) calls of different types;
• an average latency of observed outbound calls (of dif-

ferent types). The average latency of an outbound call is
measured from the moment the database request is issued



Fig. 5. The transaction latency measured by the Diagnosticstool.

by the application server to the time when a prepared
reply is returned back to the application server, i.e., the
average latency of the outbound call includes database
processing and communication latency.

V. TRANSACTION LATENCY PROFILE

We have implemented a Java-based processing utility for
extracting performance data from the Diagnostics server in
real-time and creating a so-called “application log” that pro-
vides a complete information on all transactions processed
during the monitoring window, such as their overall latencies,
outbound calls, and the latencies of the outbound calls. While
in this work, we use only a subset of the extracted fields, we
believe that the proposed application log format enables many
value-added services such as capacity planning and anomaly
detection as proposed in [20], [21], where the authors rely on
the existence of application logs similar to the one described
above.

Assuming that there are totallyM transaction types pro-
cessed by the server, we use the following notation:

• T =1 min is the length of the monitoring window;
• Ni is the number of transactionsTri, i.e.,i-th type, where

1 ≤ i ≤ M ;
• Ri is the average latency of transactionTri;
• Pi is the total number oftypesof outbound DB calls for

transactionTri;
• NDB

i,j is the number of DB calls for each typej of
outbound DB call for transactionTri, where1 ≤ j ≤ Pi;

• RDB
i,j is the average latency1 for each typej of outbound

DB call, where1 ≤ j ≤ Pi;
• UCPU is the average CPU utilization of the application

server tier during this monitoring window.

Recall that the transaction latency consists of the waiting
and service times across the different tiers (e.g., Front and
Database servers) that a transaction flows through. LetRfront

i

andRDB
i be the average latency for thei-th transaction type

at the front and database servers, respectively. We then have

1In reality, the measured latency of outbound call includes the addtional
communication latency.

the transaction latency breakdown calculated as follows:

Ri = Rfront
i + RDB

i = (1)

= Rfront
i +

∑Pi

j=1
NDB

i,j ∗ RDB
i,j

Ni

Using this equation we can easily computeRfront
i . After that,

for each transactionTri we generate100 CPU utilization
buckets{U i

1 = 1, U i
2 = 2, ..., U i

k = k, ..., U i
100 = 100}.

From the extracted application log, for each 1-minute mon-
itoring window, we classify observed transactions into thecor-
responding CPU utilization buckets. For example, if duringthe
current monitoring window there areNi transactions of typei
with average latencyRfront

i under observed CPU utilization
of 10% at the application server, then a pair (Ni,R

front
i ) goes

in the CPU utilization bucketU i
10. Finally, for each CPU

bucketUk, we compute the average latencyRfront
i,k and overall

transaction countNi,k. In such a way, for each transactionTri

we create atransaction latency profilein the following format
[U i

k, Ni,k, Rfront
i,k ], where1 ≤ i ≤ M and 1 ≤ k ≤ 100. In

each CPU bucket, we keep information on overall transaction
count Ni,k because we will use it in assessing whether the
bucket is representative.

Fig. 6 and Fig. 7 illustrate examples of latency profiles
for “Home” and “Shopping cart” transactions, respectively. In
each figure, the three curves correspond to the three workloads
introduced in Section IV-A (see Table III).

Overall, the transaction latency profiles do look similar
under different workloads. However, the existence of “outliers”
in these curves makes formal comparison difficult. Typically,
the “outliers” correspond to some “under-represented” CPU
utilization buckets with few transaction occurrences, andas a
result an average transaction latency being not representative
for the corresponding CPU utilization bucket.

In the next section, we describe a derivation of transaction
service time (transaction CPU demand) that uniquely defines
the transaction latency curve and hence can be efficiently used
for formal comparison of the transaction latency profiles.

VI. A PPROXIMATING TRANSACTION SERVICE TIME

In this section, we outline some classic queueing theory
formulas that help to relate transaction latency, transaction ser-
vice time, and observed system utilization aiming at defining
transaction signatures that compactly characterize application
transactions under different workload characteristics.

Consider a simple queue system. LetS be the mean service
time for a job in the system, and letA be the queue length at
the instant a new job arrives. The residence time (denoted as
R) at the queueing center is the sum of the total time spent
in service and the total time spent waiting for other jobs to
complete service, which are already queued at that center when
a job arrives. Thus, the average residence timeR in such a
system is given by:

R = S + S ∗ A (2)

As in a closed model, the queue lengthA seen upon arrival
when there areN customers in the network is equal to the
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Fig. 6. The “Home” transaction latency profiles under the three workloads.
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time averaged queue length when the number of customers is
N − 1. If we let Q be the time averaged queue length, then
we have an approximation forA, i.e., A ≈ N−1

N
∗Q [11]. As

N increases, the approximation parameterN−1

N
approaches 1.

Consequently, the queue length seen upon arrival approaches
the time averaged queue lengthQ. As a result, we get the
following formula:

R = S + S ∗ Q (3)

By applying Little’s lawQ = X ∗ R, we have

R = S + S ∗ (X ∗ R), (4)

whereX is the average system throughput.
Since, by the utilization law the server utilization (denoted

as U ) is equal to throughput multiplied by service time, i.e.,
U = X ∗ S, we can simplify Eq. 4 as follows:

R = S + S ∗ ((U/S) ∗ R) = S + U ∗ R (5)

Finally, after solving forR, we have the following form for
the residence time:

R = S/(1 − U) (6)

Let us multiply both sides of Eq. 6 by the throughputX .

X ∗ R = X ∗ S/(1 − U) (7)

By Little’s law, we can replaceQ by XR:

Q =
U

1 − U
(8)

The formula (8) illustrates the relationship between the average
number of jobs in the system queue and the server utilization.

Now, consider a transaction-based workload executed by a
computer system. LetTr1, . . . , T ri be different transaction
types in the overall system, where1 < i ≤ M . Let Si denote
the mean service time of the transactionTri (i.e., service time
for processingTri when it is the only job in the system).
Assume we have on averageN jobs (concurrent transactions
or customers) in the system.

Typical computer systems use a time-sharing discipline to
service multiple outstanding jobs. With simple time-sharing
each job in the system receives a fixed quantum of service
time. For example, the Linux operating system used in our
experiments operates with 1 ms time slices. If the job com-
pletes within the given quantum, it then leaves the system.
Otherwise, this job returns to the end of the queue to wait for
the next allotted quantum. When the fixed quantum approaches
zero in the limit, the time-sharing policy becomes the same as
the processor sharing (PS) policy, where the processor shares
its (fixed) capacity equally among all jobs in the system. That
is, if there areN jobs in the system, they receive1/N of their
mean service time. Consequently, in such a processor sharing
system, the residence timeRi of the transactionTri is given:

Ri = Si ∗ N (9)

Since N = Q + 1, we can replaceQ using formula (8) to
compute a residence time for a concrete transaction type as
follows:

Ri = Si ∗ (Q + 1) = Si ∗ (U/(1 − U) + 1) (10)

= Si/(1 − U)

In such a way, for a concrete transaction typeTri, we have a
relationship (i.e., Eq. 11) based on transaction service timeSi,
transaction residence timeRi and utilizationU of the system:

Si = Ri ∗ (1 − U) (11)

In the next section, we show how to best approximate the
transaction service timeSi using Eq. 11 and how it can be
used to fit the latency curves shown in Fig. 6 and Fig. 7. This
enables us to formally compare the transaction latency profiles
under different workload conditions.

VII. A PPLICATION PERFORMANCESIGNATURE

In this section, we describe how to create representative
application signature that compactly reflects important perfor-
mance characteristics of application. As shown in Section VI,
we can compute the transaction service times from transaction
latency profiles. In reality, when we collect measured latencies
for each transaction typei over time, we have multiple



equations that reflect transaction latencies at different CPU
utilization points as shown below2:

Si = Rfront
i,1 ∗ (1 − U1/100) (12)

Si = Rfront
i,2 ∗ (1 − U2/100)

... ....

Our goal is to find the solution that is the best fit for the overall
equation set (12).

A linear regression-based (LSR) method can be chosen to
solve forSi. However, there are two reasons that forced us to
choose a different method. First, as shown in Fig. 6 and Fig. 7
a number of outliers exists which could significantly affectthe
accuracy of the final solution as LSR aims to minimize the
absolute error across all points. The outliers may significantly
impact and skew the solution while these outliers are non-
representative points in the first place. Second, even if we
decide to use the most representative CPU utilization buckets
(e.g., the top10 or 20 most populated CPU buckets) then again
since LSR aims to minimize the absolute error it treats all the
CPU buckets equally. There may be a significant difference
in the number of transactions contributed to different CPU
buckets, but these “additional weights” are not taken into
consideration when using LSR.

Therefore, we propose another method to compute the
service timeSi for the i-th transaction type. By solving
Si = Rfront

i,k ∗ (1 − Uk/100) in Eq. 12, a set of solutionsSk
i

is obtained for different utilization pointsUk in transaction la-
tency profile. We generate a Cumulative Distribution Function
(CDF) for theSi. For example, Fig. 8 shows the CDF of the
service timeS8 for the Home transaction.

Intuitively, since we conjecture that each transaction type
is uniquely characterized by its service time, then we should
see a curve similar to shown in Fig. 8 with a large number of
similar points in the middle and some outliers in the beginning
and the tail of the curve. We then select the50-th percentile
value as the solution forSi as most representative.3 The 50-
th percentile heuristics works well for all transactions inour
study.

Finally, anapplication performance signatureis created:

Tr1 −→ S1

Tr2 −→ S2

... ...
T rn −→ Sn

We believe that such an application signature uniquely reflects
the application transactions and their CPU requirements and is
invariant for different workload types as we will show in the
next section. The application signature compactly represents a
model of “normal” application behavior. Comparing the new
application signature against the old one allows detectionof

2Since we collect CPU utilization expressed in percents, we need to divide
it by 100 to use correctly in equation (11).

3Selecting the mean ofSi allows the outliers (thus the tail of the distri-
bution) to influence our service time extrapolation, which is not desirable.
Because of the shape of the CDF curve, the selection of the50-th percentile
is a good heuristics.
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specific application performance changes and analysis of their
impacts. We illustrate the effectiveness of this approach in the
next section.

VIII. C ASE STUDY

We ran the TPC-W benchmark under the three nonstation-
ary workloads described in Section IV. Each experiment is
performed for 3 hours, and we collected transaction data and
performance metrics using the Diagnostics tool.

Fig. 9 plots the three TPC-W application signatures under
different workloads. X-axes represent the transaction num-
ber, while Y-axes represent the estimated service time of
transactions. Indeed, the application signatures are practically
identical under different workload mixes and can be used as
a compact performance model of the application behavior.
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Fig. 9. The application signatures under the three workloads.

In order to see whether an application signature can reflect
the application change, we modified the source code of the
“Home” transaction in TPC-W: we’ve increased the transac-
tion execution time by inserting a controlled CPU-hungry loop
into the code of this transaction.

After that we performed three additional experiments with
differently modified versions of the TPC-W benchmark run-
ning under Transaction Mix I, where the service time of the
“Home” transaction (the 8th transaction) is increased byi)
2 milliseconds,ii) 5 milliseconds, andiii) 10 milliseconds,
respectively. The application signatures of the modified appli-
cations are shown in Fig. 10, where the original application
signature is plotted as the base line.

Indeed, comparing a new application signature against the
original one allows detection of the application performance
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Fig. 10. Original application signature vs the applicationsignatures of the
modified application.

changes related to the “Home” transaction. The application
signature approach enables a quick check of the possible
performance changes in the application behavior between
updates while the application continues its execution in the
production environment.

IX. CONCLUSION AND FUTURE WORK

In this work, we propose a new approach based on the appli-
cation performance signature that aims to provide a compact
model of application behavior. We believe that the application
signature is a valuable addition to the service provider’s
arsenal for automatically detecting performance changes of
multi-tier applications in rapidly evolving IT environments.
Comparing a new application signature against the old one
allows detection of specific application performance changes
and enables further analysis of whether these are intended and
acceptable performance changes.

The application signature provides a concise and represen-
tative performance model of the application but one needs
to apply it with care. The TPC-W benchmark under study
is a well designed application with CPU being a primary
bottleneck. In this case, the theoretical foundation designed in
Section VI for deriving service time from transaction latency
and system utilization provides correct results. However,we
had received false alarms under high utilization rates for
“Execute search” transaction (transaction 7). Due to lack of
space, the results are not presented in the paper. The derived
service time for this transaction showed an increase while
there were no modification of the application code for these
experiments. There are a few explanations for this:

• Under high load there could be additional bottlenecks in
the system that contribute to transaction latency. Note that
in this case, the latency is not a direct outcome of CPU
contention only. As a result, when we apply formula (11)
we will see an “increased” service time. To avoid such
false alarms, one needs to limit the CPU utilization ranges
that are used for constructing the application signature.
It helps to make the proposed method more robust.

• There could be some inefficiencies and lock contention
within the transaction code itself. Depending how bad
such inefficiencies are the application signature might re-

flect an “increased” service time for involved transactions
at different levels of system utilization.

We are working on refining our approach and extending the
transaction signature with a few control points for servicetime
derivation. We expect that it might provide additional useful
information for application designers: the transactions with
“tight signatures”, i.e., similar service times across different
CPU utilization levels, represent transactions with a well
written, scalable code, while the transactions with “spread
signatures”, i.e., with visible differences in the derivedservice
time across different CPU utilization levels, indicate transac-
tions with opportunities for code improvement. In addition,
we plan to extend our approach to more complex multi-tiered
systems which may consist of more distributed servers or more
transaction types. These are directions for our future work.
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