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Abstract—Application servers are a core component of a multi-
tier architecture that has become the industry standard for
building scalable client-server applications. A client caonmuni-
cates with a service deployed as a multi-tier application d
request-reply transactions. A typical server reply consit of
the web page dynamically generated by the application serve
The application server may issue multiple database calls wile
preparing the reply. Understanding the cascading effects fothe
various tasks that are sprung by a single request-reply trasac-
tion is a challenging task. Furthermore, significantly shotened

time between new software releases further exacerbates the

problem of thoroughly evaluating the performance of an updaed
application. We address the problem of efficiently diagnosig
essential performance changes in application behavior inrder
to provide timely feedback to application designers and sefice
providers.

In this work, we propose a new approach based on an
application signaturethat enables a quick performance com-
parison of the new application signature against the old one
while the application continues its execution in the prodution
environment. The application signature is built based on ne
concepts that are introduced here, namely théransaction latency
profiles and transaction signaturesThese become instrumental
for creating an application signature that accurately reflects
important performance characteristics. We show that such a
application signature is representative and stable under ifferent
workload characteristics. We also show that application gjna-
tures are robust as they effectively capture changes in tragaction
times that result from software updates. Application signaures
provide a simple and powerful solution that can further be
used for efficient capacity planning, anomaly detection, ath
provisioning of multi-tier applications in rapidly evolving IT
environments.

I. INTRODUCTION
Fundamental to the design of reliable enterprise applinati

While such performance profiling can be useful at the initial
stages of design and development of a future system, it may
not be adequate for analysis of the performance issues and th
observed application behavior in existing production exyst.
First, an existing production system can experience a very
different workload compared to the one that has been used
in its testing environment. Second, frequent softwareasss
and application updates make it difficult and challenging to
perform a thorough and detailed performance evaluatiomof a
updated application. When poorly performing code slips int
production and an application responds slowly, the organiz
tion inevitably looses productivity and experiences iased
operating costs.

Automated tools for understanding application behaviat an
its changes during the application development life-cyie
essential for many performance analysis and debugging.task
Yet, such tools are not readily available to applicationigies
ers and service providers. The traditioneéctiveapproach is
to set thresholds for observed performance metrics and rais
alarms when these thresholds are violated. This approaxt is
adequate for understanding the performance changes hetwee
application updates. Instead, @o-active approach that is
based orcontinuousapplication performance evaluation may
assist enterprises in avoiding loss of productivity by fheety
diagnosis of essential performance changes in application
performance.

Nowadays, a new generation of monitoring tools, both
commercial and research prototypes, provides useful hitsig
into transaction activity tracking and latency breakdowroas
different components in multi-tier systems. Some of them
concentrate on measuring end-to-end latencies observed by

is an understanding of the performance characteristicB®f the clients [9], [16], [5], [13], [14]. Typically, they prase a
service under different workload conditions and over timgatency breakdown into network and server related portions
In multi-tier systems, frequent calls to application sesvenhile these tools are useful for understanding the cliett ne
and databases place a heavy load on resources and gy related latencies and improving overall client expede
cause throughput bottlenecks and high server-side priagessy introducing a geographically distributed solution aé th

latency. Typically, preliminary performance profiling af ap-

network level, this approach does not offer sufficient ihtsg

plication is done by using synthetic workloads or benchmarl, the server-side latency as it does not provide a latency
which are created to reflect a “typical application behaviohreakdown into application and database related portions.

for “typical client transactions”.

* This work was completed in summer 2007 during N. Mi's intdipsat
HPLabs. E. Smirni is partially supported by NSF grants 1428330 and
CNS-0720699, and a gift from HPLabs.

Another group of tools focuses on measuring server-side
latencies [2], [12], [10], [7], [15] using different levets trans-
action tracking that are useful for “drill-down” performaa
analysis and modeling. Unfortunately, such monitoringtoo



typically report the measured transaction latency andigeov system. While it is useful to have detailed information ittie
additional information on application server versus dasgb current transaction latencies, the above tools providédum
server latency breakdown. Using this level of informatibn information on the causes of the observed latencies, and can
is often difficult to decide whether an increased transactimot be used directly to detect the performance changes of an
latency is a result of a higher load in the system or whethapdated or modified application.
is an outcome of the recent application modification that In addition to commercial tools, several research projects
is directly related to the increased processing time fos thhave addressed the problem of performance monitoring and
transaction type. Measurements in real systems cannoiderovdebugging in distributed systems. Pinpoint [3] collectsl-en
accurate transaction “demands”, i.e., execution timebhawit to-end traces of client requests in a J2EE environment using
any delays due to queuing/scheduling in each tier/servéagging and identifies components that are highly corrdlate
Approximate transaction demands are extrapolated usirsg meith failed requests using statistics. Statistical teqbes are
surements at very low utilization levels or with nearly 100%lso used by [1] to identify sources of high latency in commu-
utilization [19]. Variability across different customeeliaviors nication paths. Magpie [2] provides the ability to captune t
and workload activity further exacerbates the problem oésource demands of application requests as they are egrvic
accurately measuring and understanding transaction désnamcross components and machines in a distributed system.

In this work, we propose a new approach based on dugpie records the communication path of each request and
application performance signaturihat provides a model of also its resource consumption, which allows for better unde
“normal” application behavior. We argue that online perfoistanding and modeling of system performance. Cohen et]al. [6
mance modeling should be a part of routine application monise a statistical approach to model performance problems of
toring and can be useful for performance debugging, capaditistributed applications using low-level system metritkey
planning, and anomaly detection. The application sigmatudesigned a set of signatures to capture the essential system
approach enables a quick and efficient performance analystiate that contributes to service-level objective violasi
of application transactions while the application is exgau These signatures are used to find symptoms of application
in the production environment. We introduce several neperformance problems and can be compared to signatures
concepts such asansaction latency profileandtransaction of other application performance problems to facilitateitth
signaturesthat are used to create a collective application sigiagnosis.
nature to accurately reflect important application perfamoe From the above works, the one most closely related to
characteristics. We show that such an application sigeatuhis paper is Magpie. Magpie uses a more sophisticated
is stable for different workload characteristics. Furthere, tracing infrastructure than in our approach and concesdrat
continuous calculation of the application signature alde on detecting relatively rare anomalies. The goal of our werk
capture events such as software updates that may signljicaitt detect performance changes in application behaviorechus
affect transaction execution time. Comparing the new appli by application modifications and software updates that are
tion signature against the old one allows detection of digecicomplementary and independent on workload conditions in
application performance changes and enables further sisalyproduction environments.
to determine whether these are intended and acceptable.

An additional benefit of the proposed approach is its sim!!-
plicity: it is not intrusive and based on monitoring datattha Typically, tools like HP (Mercury) Diagnostics [12] are
is typically available in enterprise production enviromtse used in IT environments for observing latencies of the aalti
We illustrate the effectiveness of application signatwiesa transactions via an interactive GUI as well as for raisiragrak
detailed set of experimentation using the TPC-W e-commenafien these latencies exceed the predefined thresholdse Whil
suite [18]. it is useful to have insight into the current transactioeraies
that implicitly reflect the application and system healthist
approach provides limited information on the causes of the

Applications built using Web services can span multiplebserved latencies and can not be used directly to detect the
computers, operating systems, languages, and enterpripesformance changes of an updated or modified application.
Measuring application availability and performance intsan- Fig. 1 shows the latency of two application transactions,
vironments is exceptionally challenging. However, théntlig 71 and T'r2, over time. The latencies of both transactions
defined structures and protocols that have been standdrdizary over time and get visibly higher in the second half of the
by the Web services community have opened the door fiigure. This does not look immediately suspicious because th
new solutions. There is a set of commercial tools [9], [10latency increase can be a simple reflection of a higher load in
[12], [15] for monitoring Java applications by instrumennti the system.
the Java Virtual Machine (JVM) which provides a convenient The real story behind this figure is that after timestamp
locus for non-intrusive instrumentation (some systemaigoc160 min, we began executing an updated version of the
on .Net instead of Java). These tools analyze transactipplication code where the processing time of transadfion
performance by reconstructing the execution paths viaingggis increased by 10 ms. However, by looking at the measured
end-to-end user transactions as they flow through a J2E&dbasansaction latency over time we can not detect this: the

M OTIVATING EXAMPLE AND INTUITIVE CONJECTURE

Il. RELATED WORK
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Tl —— (EBs) is kept constant throughout the experiment. For e&;h E

20| 2 | the TPC-W benchmark statistically defines the user session
length, the user think time, and the queries that are gestrat

. by the session. The database size is determined by the number

of items and the number of customers. In our experiments, we

use the default database setting, i.e., the one with 10{60Gsi

| M 1 and 1,440,000 customers.

M U TPC-W defines 14 different transactions which are roughly
: : : : : : classified as either of browsing or ordering types as shown
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time (mins)
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trans latency (ms)

in Table Il. We assign a number to each transaction (shown
in parenthesis) according to their alphabetic order. | ater

Fig. 1. The transaction latency measured by HP (Mercuryyipatics tool. o . ; .
use these transactiad-s for presentation convenience in the

figures.

reported latency metric does not provide enough informatio TABLE Il
to detect this change. 14 BASIC TRANSACTIONS AND THEIR TYPES INTPC-W

The problem addressed in this paper is whether by using Browsing Type Ordering Type
measured transaction latency and its breakdown informatio Home (8) Shopping Cart (14)

d present it in a special way to quickl New Products (9) Customer Registration (6

we Can_ Process _an P . p Yy aq y Best Sellers (3) Buy Request (5)
and efficiently diagnose essential performance changes in Product detail (12) | Buy Confirm (4)
the application performance and to provide fast feedback to Search Request (13) Order Inquiry (11)
application designers and service providers. Execute Search (7) gé‘:'nei’n DR'ZZ'SZS?S))

Our main idea is, first, to partition transaction latencyint Admin Confirm (2)

complementary portions that represent time spent at difiter

tiers. In particular, we will distinguish latency portiors According to the weight of each type of activity in a given
the application server versus the database server. Afr theafiic mix, TPC-W defines 3 types of traffic mixes as follows:
we augment the transaction latency at the application Berve o browsing mixwith 95% browsing and 5% ordering:

with CPU utilization of application server measured during « the shopping miswith 80% browsing and 20% orderiné;

the same monitoring window. The _hyp_othe3|s IS that. if we « theordering mixwith 50% browsing and 50% ordering.
plot transaction latency at the application server agaitsst

CPU utilization we will get a representative transactiademay 1. initialize a variabledur « 3hours

profile. Our intuitive conjecture is that this transactiaofile 2. while (dur >0)do . .

: T . . . o set the execution timexe_dur < random(20min, 30min|
is very similar under different transaction mixes, i.e.,igt set the number of EBsurr_EBs « random(150, 700)

uniquely defined by the transaction type and CPU utilization

executeshoppingmix with curr_FE Bs for exe_dur time
of the server and is practically independent on the traisact set the sleep timelecp_dur « random(10min, 20min)
mix.

sleep forsleep_dur time
adjustdur «— dur - (exe_dur+sleep_dur)

~oooow

IV. EXPERIMENTAL ENVIRONMENT
A. TPC-W Testbed and Non-Stationary TPC-W Workloads

In our experiments, we use a testbed of a multi-tier &ne drawback of directly using the transaction mixes de-
commerce site that simulates the operation of an on-ligéribed above in our experiments is that they staionary
bookstore, according to the classic TPC-W benchmark [18E., the transaction mix and load do not change over time.
This allows to conduct experiments under different segtingpince real enterprise and e-commerce applications are typi
in a controlled environment in order to evaluate the pr&ally characterized byon-stationarytransaction mixes with
posed profiling and modeling approach. Specifics of the sowariable load [8], [4], [17], we designed an approach that
ware/hardware used are given in Table I. We use terms “fr¥ft@bles us to generate non-stationary workloads using the

server” and “application server’ interchangeably in thigppr. TPC-W setup. To generate a non-stationary transaction mix
TABLE | with variable load we run 4 processes as follows:

Fig. 2. The pseudocode for the random process.

TESTBED COMPONENTS « the three concurrent processes each executing one of the
Processor RAM standard transaction mixes (i.e., browsing, shopping and
Ellenttss (Emulat:d-BLOV;?erS) —- ien?um B; g-g gEZ jgg ordering respectively) with the arbitrary fixed number of
ron erver - Apache/lomcat o, entium . z .
Database Server - MySOLE0 | Pentium D /6.4 GHz| 4 GB EBs (e.g, 20, 30, and 50 EBs respectively). We call them

baseprocesses;

Typically, client access to a web service occurs in the forme the 4-th, so-calledandom process executes one of the
of a sessiorconsisting of a sequence of consecutive individual ~ standard transaction mixes (in our experiments, it is the
requests. According to the TPC-W specification, the number shopping mix) with a random execution period while
of concurrent sessions (i.e., customers) or emulated lemews using a random number of EBs for each period. To
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Fig. 3. CPU utilization of the Front server and the DB servenoss time under Transaction Mix I.

navigate and control this random process we use specifagablications. The Diagnostics tool consists of two compbsie
ranges for the “random” parameters in this workload. Thiae Diagnostics Probe and the Diagnostics Server as shown in
pseudo-code of this random process is shown in Fig. Eig. 4.
Due to the 4-th random process the workload is non-statyonar
and the transaction mix and load vary significantly over time
In this paper, we use fixed ranges @0min,30min) for
process “execution” time andOmin,20min)for process “sleep”
time. Thus in order to describe the random process in diftere
workloads used in our case studies we only specify ranges

[

a)----

é?ll

for choosing a random number of EBs. In particular, we igg;gn;::;)jerver Daiabase
consider the following three non-stationary transacticres Server
with different number of EBs for the base processes and v
the additional random process as shown in Table Il (each Client 2 =
workload is executed for 3 hours): u!

TABLE IlI Mercury Diagnostics Server

THE PARAMETERS OF THE THREE NONSTATIONARY WORKLOADS . . . . . .
Fig. 4. TPC-W experimental configuration with the Diagnestiool.

Number of EBs The Diagnostics tool collects performance and diagnostic
Browsing [ Shopping | Ordering | Random data from applications without the need for applicationrseu
Trans. Mix | 20 30 50 random(150,700)] code modification or recompilation. It uses bytecode instru
Trans. Mix Il 50 50 50 random(150,700) ; ; ;
Trans M =5 = 60 random(150-700) mentation and industry standards for collecting system and

JMX metrics. Instrumentation refers to bytecode that trebEr
Fig. 3 shows the CPU utilization over time at 1-minut. serts into the class files of the applicatiqn as they arddda_
granularity for the front and database servers, respéytiae y the class loader of the virtual machlne. Instru_mentat_|on
Transaction Mix | CPU utilizations at both the application anoena_bles a Probe to measure exgcutlon time, count invosation

database servers vary dramatically over time. Due to spa{gér leve arguments, catch exceptions and correlate metitxd

limitations we omit figures representing CPU utilizatiorr foan_?hthrfggép be sh i Fig. 4 i ivle f
the other two workloads. Table IV summarizes CPU utilizatio, € robe shown In Fig. 4 Is responsible for captur-

ranges for all the three workloads. ing e_vents from th(_a application, aggregating the perfom:e_an
metrics, and sending these captured performance metrics to
TABLE IV the Diagnostics Server. In a monitoring window, Diagncstic
CPUUTILIZATION RANGES FOR THREE NONSTATIONARY WORKLOADS provides the fO”OWing information for each transactiopey
Ranges of CPU Utilization « a transaction count;
Application Server| Database Serve « an average overall transaction latency for observed trans-
Trans. Mix | 6% — 60% 1% — 42% actions. This overall latency includes transaction preces
Trans. Mix II 10% — 61% 1% — 54% ing ti t th licati I Il related
Trans MicCTIT 0% — 6% 9T —59% ing time at the application server as well as all relate

query processing at the database server, i.e., latency is
measured from the moment of the request arrival at the
application server to the time when a prepared reply is
TPC-W implementation is based on the J2EE standard — a sent back by the application server, see Fig. 5;

Java platform which is used for web application developmente a count of outbound (database) calls of different types;
and designed to meet the computing needs of large entesprisee an average latency of observed outbound calls (of dif-
For transaction monitoring we use the HP (Mercury) Diag- ferent types). The average latency of an outbound call is
nostics [12] tool which offers a monitoring solution for 2E measured from the moment the database request is issued

B. Transaction Latency Monitoring



Database Server

I thrie the transaction latency breakdown calculated as follows:
' R1 — Rifront + RlDB _ (1)
R . Network R Network P; DB DB
3 4 : _ Rfront+ Zj:l Ni,j *Ri,j
) Ni

' Using this equation we can easily compmié”’"t. After that,

Application Server for each transactior’r; we generatel00 CPU utilization

i Transaction Latency 4>' buckets{U{ =1, UQZ =2, ..., U]z =k,..., UIZOO = 100}.

DB Server Latency [0 Application Server Latencyf From the extracted application log, for each 1-minute mon-
itoring window, we classify observed transactions intocbe
responding CPU utilization buckets. For example, if dutime

Fig. 5. The transaction latency measured by the Diagnotiiis current monitoring window there amg; transactions of typé
with average Iatency%{”’"t under observed CPU utilization
of 10% at the application server, then a paif, (?/"°"") goes

by the application server to the time when a preparéal the CPU utilization buckeU;,. Finally, for each CPU

reply is returned back to the application server, i.e., thsucketU;, we compute the average latengy,”"* and overall
average latency of the outbound call includes databaggnsaction coundV; ;.. In such a way, for each transactidi;

processing and communication latency. we create dransaction latency profilen the following format
[U}, N, RI7°™), wherel < i < M and1 < k < 100. In
V. TRANSACTION LATENCY PROFILE each CPU bucket, we keep information on overall transaction

count V; , because we will use it in assessing whether the
We have implemented a Java-based processing utility fiauicket is representative.

extracting performance data from the Diagnostics server inFig. 6 and Fig. 7 illustrate examples of latency profiles
real-time and creating a so-called “application log” thad-p for “Home” and “Shopping cart” transactions, respectivéty
vides a complete information on all transactions processedch figure, the three curves correspond to the three watkloa
during the monitoring window, such as their overall latesci introduced in Section IV-A (see Table III).
outbound calls, and the latencies of the outbound callsléVhi Overall, the transaction latency profiles do look similar
in this work, we use only a subset of the extracted fields, wander different workloads. However, the existence of ‘iens!’
believe that the proposed application log format enablesyméin these curves makes formal comparison difficult. Typigall
value-added services such as capacity planning and anonthly “outliers” correspond to some “under-represented” CPU
detection as proposed in [20], [21], where the authors raly atilization buckets with few transaction occurrences, asch
the existence of application logs similar to the one describresult an average transaction latency being not representa

above. for the corresponding CPU utilization bucket.
Assuming that there are totally/ transaction types pro- In the next section, we describe a derivation of transaction
cessed by the server, we use the following notation: service time (transaction CPU demand) that uniquely defines

the transaction latency curve and hence can be efficiendlgt us

e T =1 min is the length of the monitoring window; ; ) -
for formal comparison of the transaction latency profiles.

o N, is the number of transactiofis-;, i.e.,i-th type, where

1<i < M; V1. APPROXIMATING TRANSACTION SERVICE TIME
« R; is the average latency of transactidin;; In this section, we outline some classic queueing theory
« P;is the total .number ofypesof outbound DB calls for f5muyjas that help to relate transaction latency, transaster-
transaction’’r;; vice time, and observed system utilization aiming at degjnin

DB ; ¢ . . . ..
« N;;~ is the number of DB calls for each typg of yansaction signatures that compactly characterize cajgin

outbound DB call for transactiolir;, wherel < j < Fi; - yransactions under different workload characteristics.
« RPP is the average latencyfor each typej of outbound  consider a simple queue system. ISebe the mean service

DB call, wherel <j < P;; ~ time for a job in the system, and let be the queue length at
« Ucpy is the average CPU utilization of the applicatioRne jnstant a new job arrives. The residence time (denoted as
server tier during this monitoring window. R) at the queueing center is the sum of the total time spent

Recall that the transaction latency consists of the waitirig service and the total time spent waiting for other jobs to
and service times across the different tiers (e.g., Frodt apomplete service, which are already queued at that centen wh
Database servers) that a transaction flows throughR}T’é "t a job arrives. Thus, the average residence tifhén such a
and RPB be the average latency for theh transaction type system is given by:
at the front and database servers, respectively. We them hav R=S+S%A @)

1In reality, the measured latency of outbound call includes addtional As in a closed model, the q_ueue Iengqhseen upon arrival
communication latency. when there areéV customers in the network is equal to the



Home Transaction

6 . . . By Little’s law, we can replacé) by X R:

Tr:al sactioh mix | —
Trangaction mix |1 U 8)
Trangaction mix 11 - = —
Q=17 (
. The formula (8) illustrates the relationship between therage
- number of jobs in the system queue and the server utilization

. Now, consider a transaction-based workload executed by a

latency (ms)
w
]
T

25 a computer system. Lef'rq,...,Tr; be different transaction
2 Y Fh 7 types in the overall system, whete< i < M. Let S; denote
15 M - 7 the mean service time of the transactibn; (i.e., service time
1 1 1 1 1 1 1 . . . . . .
0 10 20 0 20 0 50 20 for processingl'r; when it is the only job in the system).

Assume we have on averagé jobs (concurrent transactions
or customers) in the system.

Typical computer systems use a time-sharing discipline to
service multiple outstanding jobs. With simple time-shgri
each job in the system receives a fixed quantum of service

cpu utilization (%)
Fig. 6. The “Home” transaction latency profiles under thed¢hworkloads.

Shopping Cart Transaction
8 T T T

Trarlsaction mix | —+— time. For example, the Linux operating system used in our
7F L) Rty . experiments operates with 1 ms time slices. If the job com-
rangaction mix Il ---%--- - . .
6 L | pletes within the given quantum, it then leaves the system.
? x Otherwise, this job returns to the end of the queue to wait for
E s} - :
N the next allotted quantum. When the fixed quantum approaches
§ 4l FE- zero in the limit, the time-sharing policy becomes the same a
ks Wﬁt the processor sharing (PS) policy, where the processoeshar
3r o % } its (fixed) capacity equally among all jobs in the system.tTha
2 | - is, if there areN jobs in the system, they receitg¢N of their
1 , , mean service time. Consequently, in such a processor gharin
0 50 60 70 system, the residence tinf¢, of the transactio'r; is given:
cpu utilization (%)
Fig. 7. The “Shopping cart” latency profiles under the threskioads. R, =S N (9)

Since N = @ + 1, we can replace) using formula (8) to
time averaged queue length when the number of customer§@npute a residence time for a concrete transaction type as
N — 1. If we let Q be the time averaged queue length, thef@llows:
we have an approximation fof, i.e., A = % x @ [11]. As

N increases, the approximation parame¥gr approaches 1. R = Six(Q@+1)=8+U/(1-U)+1) (10)

Consequently, the queue length seen upon arrival appreache = S5/1-0)

the time averaged queue length As a result, we get the .

following formula: In su_ch a way, for a concrete transaction t@e, we _have a

relationship (i.e., Eq. 11) based on transaction servioe f;,

R=S5+5%Q (3) transaction residence tinfe; and utilizationU of the system:

By applying Little’s law @ = X x R, we have S; =Ry % (1—U) (11)

R=S+S5%(X*R), 4)

In the next section, we show how to best approximate the
where X is the average system throughput. transaction service timé; using Eqg. 11 and how it can be
Since, by the utilization law the server utilization (dezt used to fit the latency curves shown in Fig. 6 and Fig. 7. This
asU) is equal to throughput multiplied by service time, i.e.enables us to formally compare the transaction latencyl@sofi
U =X =S, we can simplify Eq. 4 as follows: under different workload conditions.
R=S5+5+((U/S)«R) =S+ UxR ©) VII. A PPLICATION PERFORMANCE SIGNATURE
Finally, after solving forR, we have the following form for

the residence time: In this section, we describe how to create representative

application signature that compactly reflects importamtqre
R=5/(1-0) (6) mance characteristics of application. As shown in Sectign V
. : we can compute the transaction service times from trarmsacti
Let us multiply both sides of Eq. 6 by the throughptit latency profiles. In reality, when we collect measured laie
X*xR=XxS/(1-0) (7) for each transaction typé over time, we have multiple



Home Transaction

equations that reflect transaction latencies at differeAUC 100 r ]
s . . 90 - Service time 7]
utilization points as shown belot 80 |
' ~ 70 N
Si = RIT™x(1-U1/100) (12) g eof -
. w 50 (1.27, 50%) -
Si = RIL™x(1-Us/100) S aof -
30 [ 7
20 [ 7
Our goal is to find the solution that is the best fit for the ollera 18 B . . . . ]
equation set (12). 1 15 2 25 3 3
A linear regression-based (LSR) method can be chosen to service time (ms)

solve forS;. However, there are two reasons that forced us to
choose a different method. First, as shown in Fig. 6 and Fig. 7  Fig- 8. CDF of the service time for the “"Home” transaction.
a number of outliers exists which could significantly afféat . o o
accuracy of the final solution as LSR aims to minimize th&Pecific application performance changes and analysiseaf th
absolute error across all points. The outliers may signiflga impacts. We illustrate the effectiveness of this approacihe
impact and skew the solution while these outliers are nofext section.
(rjepr_ﬁsentative r|c])0ints in the first pllacec.:PSUeco.rlw_d, gver;j if I(We VIIl. CASE STUDY

ecide to use the most representative utilization acke .
(5. e ol o2 most populted CPU buckets) e aga % % 1 TP benenmar incer e ree onsitor
since LSR aims to minimize the absolute error it treats al t. ) P
CPU buckets equally. There may be a significant diﬁerenggrformed for 3 hours, and we collected transaction data and
in the number of transactions contributed to different CPE)Jerformance metrics using the Diagnostics tool.

buckets, but these “additional weights’ are not taken inté) Fig. 9 plots the three TPC-W application S|gnatur§s under
. . . ifferent workloads. X-axes represent the transaction -num
consideration when using LSR.

Therefore, we propose another method to compute tEer, while Y-axes represent the estimated service time of

€ . o ; )
service timeS; for the i-th transaction type. By solving ansactions. Indeed, the application signatures areipatlyg
S; = RI"*™ % (1 — U/100) in Eq. 12, a set of solutions”

identical under different workload mixes and can be used as
is obtained for different utilization points;, in transaction la-

a compact performance model of the application behavior.
tency profile. We generate a Cumulative Distribution Fuorcti

(CDF) for the S;. For example, Fig. 8 shows the CDF of the 3% T aeaction i |
service timeSg for the Home transaction. 3+ qransaction mix il -~
Intuitively, since we conjecture that each transactioretypg 25 | i
is uniquely characterized by its service time, then we stouly | + |
see a curve similar to shown in Fig. 8 with a large number of
similar points in the middle and some outliers in the begigni § Lo A
and the tail of the curve. We then select titeth percentile & T \ \ A
value as the solution fof; as most representativeThe 50- 05/ ‘\;‘: .
th percentile heuristics works well for all transactionsoiar ol — : . : —

study.

. . . . R transaction
Finally, anapplication performance signatuie created:

Fig. 9. The application signatures under the three worldoad
TTl — Sl

Tro — Ss In order to see whether an application signature can reflect
the application change, we modified the source code of the
Tr, — S “Home” transaction in TPC-W: we've increased the transac-

We believe that such an application signature uniquelycrtrs‘le.tlon execution time by inserting a controlled CPU-hungryo

" X . : .~ ~into the code of this transaction.
Fhe a_ppl|cat|or) transactions and their CPU reqwremerdgsan After that we performed three additional experiments with
invariant _for different v_vork_load_ types as we will show in thedifferently modified versions of the TPC-W benchmark run-
&egé;eg;'?:(;;:;'? gpI'ﬁi;gg:'genﬁ;%:grcggrﬁ}ac;g/nrelthe ne ning under Transaction Mix |, where the service time of the
application si naturepg ainst the old o.ne allopws dgetecrbianHome" transaction (the 8th transaction) is increasedijoy
PP 9 9 2 millisecondsi,ii) 5 milliseconds, andii) 10 milliseconds,
2Since we collect CPU utilization expressed in percents, easirto divide €spectively. The application signatures of the modifiepliap
it by 100 to use correctly in equation (11). cations are shown in Fig. 10, where the original application
3Selecting the mean of; allows the outliers (thus the tail of the distri- signature is plotted as the base line.

bution) to influence our service time extrapolation, whishnot desirable. Indeed . licati . . h
Because of the shape of the CDF curve, the selection o5@kih percentile ndeed, comparing a new application signature against the

is a good heuristics. original one allows detection of the application performan



12

G‘:Hginal Sibnature —
New Signature+2ms
10F New: Signature+5ms. ---%--- ]|

m New Signature+10ms -
E s

%]

Q

£

[}

L

=

[

12}

transaction

Fig. 10. Original application signature vs the applicatgignatures of the

modified application.

flect an “increased” service time for involved transactions

at different levels of system utilization.
We are working on refining our approach and extending the
transaction signature with a few control points for sertioe
derivation. We expect that it might provide additional usef
information for application designers: the transactiorithw
“tight signatures”, i.e., similar service times acrosdetint
CPU utilization levels, represent transactions with a well
written, scalable code, while the transactions with “sgdrea
signatures”, i.e., with visible differences in the derisatvice
time across different CPU utilization levels, indicatensac-
tions with opportunities for code improvement. In addition
we plan to extend our approach to more complex multi-tiered
systems which may consist of more distributed servers oemor

changes related to the “Home” transaction. The applicati
signature approach enables a quick check of the possible
performance changes in the application behavior betwegn
updates while the application continues its execution & th
production environment. 2]
IX. CONCLUSION AND FUTURE WORK

In this work, we propose a new approach based on the app[ig—]
cation performance signature that aims to provide a compact
model of application behavior. We believe that the appiicat 4
signature is a valuable addition to the service provider’s
arsenal for automatically detecting performance chandes o
multi-tier applications in rapidly evolving IT environmemn
Comparing a new application signature against the old one
allows detection of specific application performance cleang [6]
and enables further analysis of whether these are intermed a
acceptable performance changes. 7]

The application signature provides a concise and represen-
tative performance model of the application but one needd
to apply it with care. The TPC-W benchmark under study
is a well designed application with CPU being a primaryl®]
bottleneck. In this case, the theoretical foundation design [10]
Section VI for deriving service time from transaction latgn [11]
and system utilization provides correct results. Howewer,
had received false alarms under high utilization rates foy,
“Execute search” transaction (transaction 7). Due to lakck p3]
space, the results are not presented in the paper. The dlerive
service time for this transaction showed an increase wh
there were no modification of the application code for theses)
experiments. There are a few explanations for this:

« Under high load there could be additional bottlenecks 17
the system that contribute to transaction latency. Note tha
in this case, the latency is not a direct outcome of CPE‘JS
contention only. As a result, when we apply formula (11
we will see an “increased” service time. To avoid such
false alarms, one needs to limit the CPU utilization ranggso]
that are used for constructing the application signature.
It helps to make the proposed method more robust.

« There could be some inefficiencies and lock contentidf
within the transaction code itself. Depending how bad
such inefficiencies are the application signature might re-

6rrff\nsaction types. These are directions for our future work
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