
J Internet Serv Appl (2010) 1: 117–134
DOI 10.1007/s13174-010-0012-9

S P E C I A L I S S U E : M I D D L E WA R E

Sizing multi-tier systems with temporal dependence: benchmarks
and analytic models

Ningfang Mi · Giuliano Casale · Ludmila Cherkasova ·
Evgenia Smirni

Received: 7 March 2010 / Accepted: 8 August 2010 / Published online: 21 September 2010
© The Brazilian Computer Society 2010

Abstract Temporal dependence, as a synonym for bursti-
ness, is often found in workloads (i.e., arrival flows and/or
service times) in enterprise systems that use the multi-tier
paradigm. Despite the fact that burstiness has deleterious
effects on performance, existing modeling and benchmark-
ing techniques do not provide an effective capacity planning
for multi-tier systems with temporal dependence. In this
paper, we first present strong evidence that existing mod-
els cannot capture bursty conditions and accurately predict
performance. Therefore, we propose a simple and effective
sizing methodology to integrate workload burstiness into
models and benchmarking tools used in system sizing. This
modeling methodology is based on the index of dispersion
which jointly captures variability and burstiness of the ser-
vice process in a single number. We report experimentation
on a real testbed that validates the accuracy of our model-
ing technique by showing that experimental and model pre-
diction results are in excellent agreement under both bursty

This work was partially supported by NSF grants CNS-0720699 and
CCF-0811417, a gift from HP Labs, and the Imperial College JRF
fellowship.

N. Mi (�)
Northeastern University, Boston, MA, USA
e-mail: ningfang@ece.neu.edu

G. Casale
Imperial College London, London, UK
e-mail: g.casale@imperial.ac.uk

L. Cherkasova
HP Labs, Palo Alto, CA, USA
e-mail: lucy.cherkasova@hp.com

E. Smirni
College of William and Mary, Williamsburg, VA, USA
e-mail: esmirni@cs.wm.edu

and non-bursty workloads. To further support the capacity
planning process under burstiness, we propose an enhanced
benchmarking technique that can emulate workload bursti-
ness in systems. We find that most existing benchmarks, like
the standard TPC-W benchmark, are designed to assess sys-
tem performance only under non-bursty conditions. In this
work, we rectify this deficiency by introducing a new mod-
ule into existing benchmarks, which allows to inject bursti-
ness into the arrival stream in a controllable and repro-
ducible manner by using the index of dispersion as a single
turnable knob. This approach enables a better understand-
ing of system performance degradation due to burstiness
and makes a strong case for the usefulness of the proposed
benchmark enhancement for capacity planning of enterprise
systems.

Keywords Enterprise system · Capacity planning ·
Temporal dependence · Burstiness · Performance
benchmarking

1 Introduction

Capacity planning and resource provisioning for web sys-
tems that operate using the client–server paradigm require
to take into account emerging Internet phenomena such as
the “slashdot effect” where a web page linked by a popu-
lar blog or media site suddenly experiences a huge increase
of the number of hits [41] with consequent uneven peaks
in utilization measurements caused by burstiness. These un-
expected surges of traffic are known as flash crowds [20].
Traffic surges are also frequent in other contexts, such as in
auction sites (e.g., eBay) where users compete to buy an ob-
ject that is going to be soon assigned to the customer with

mailto:ningfang@ece.neu.edu
mailto:g.casale@imperial.ac.uk
mailto:lucy.cherkasova@hp.com
mailto:esmirni@cs.wm.edu

118 J Internet Serv Appl (2010) 1: 117–134

the best offer, but also in e-business sites as a result of spe-
cial offers and marketing campaigns. Burstiness or tempo-
ral surges in the incoming requests in an e-commerce server
generally turns out to be catastrophic for performance, lead-
ing to dramatic server overloading, uncontrolled increase of
response times and, in the worst case, service unavailabil-
ity. Similarly, a footprint of burstiness in system workloads
is the presence of short uneven peaks in utilization mea-
surements, which indicate that the server periodically faces
congestion. In multi-tier systems, congestion may arise by
the superposition of several events including database locks,
variability in service time of software operations, mem-
ory contention, and scheduling characteristics. The above
events interact in a complex way with the hardware and soft-
ware systems involved and with the incoming requests, of-
ten resulting in short congestion periods where the entire ar-
chitecture is significantly slowed down. For example, even
for multi-tier systems where the database server is highly-
efficient, a locking condition on a database table may slow
down the service of multiple requests that try to access the
same data and make the database the bottleneck server for an
extended period of time. During that period of time, the data-
base performance dominates the performance of the overall
system, while most of the time another resource, e.g., the ap-
plication server, may be the primary cause of delays in the
system. Thus, the performance of the multi-tier system can
vary in time depending on which is the current bottleneck
resource and can be significantly conditioned by dependen-
cies between servers. For effective capacity planning under
bursty workload conditions, capturing this time-varying bot-
tleneck switch in multi-tier systems and its performance im-
plications becomes highly critical.

In this paper, we discuss techniques for effective capac-
ity planning under bursty workload conditions that review
and extend recent work in the area [13, 30, 31]. After illus-
trating that existing models of multi-tier architectures can be
unacceptably inaccurate if the processed workloads exhibit
burstiness, we describe how to integrate workload burstiness
in performance models and discuss a validation on an archi-
tecture subject to TPC-W workloads with different bursti-
ness profiles. The methodology is based on the index of
dispersion metric [19], which is a classic indicator for sum-
marizing burstiness in a time series. Using the index of dis-
persion together with other two parameters, i.e., mean and
95th percentile of service demands, we show that the accu-
racy of the model prediction can be increased by up to 30%
compared to standard queueing models parameterized only
with mean service demands.

To further support the capacity planning process under
burstiness, we propose a contribution in benchmarking tech-
niques that can emulate the behavior of workload bursti-
ness in systems. Benchmarking is a critical step for effective
capacity planning and resource provisioning. An effective

benchmark should evaluate the system responsiveness un-
der a wide range of client demands from low to high, but
most existing benchmarks are designed to assess the system
responsiveness under a steady client demand.

We propose to inject burstiness in systems using a sim-
ple two-state Markov-modulated processes [34] to regulate
the arrival rate of requests to the system. These processes are
variations of the popular ON/OFF traffic models used in net-
working and can be easily shaped to create correlated inter-
arrival times. In particular, Markov-modulated processes
capture very well the time-varying characteristics of a work-
load and describe fluctuations at different timescales, e.g.,
both variability between different surges and fluctuations
within the same traffic surge. Starting from this basic idea,
we define a modified TPC-W benchmark where sequences
of surges with different intensities and durations are cre-
ated. Consistently with the model-based capacity planning
methodology we discuss, the user can describe burstiness
in experiment based on the index of dispersion that con-
trols the degree of burstiness in the system. The existence
of a single parameter to tune burstiness greatly simplifies
system benchmarking and allows for a flexible evaluation.
We use the index of dispersion to modulate dynamically the
think times of users between submission of consecutive re-
quests. Since this approach is independent of the specific
nature of the requests sent to the system and only changes
their inter-arrival times, our approach can be easily general-
ized to benchmarks other than TPC-W. In addition, the use
of a single parameter for burstiness tuning makes it simple to
implement and reproduce the same experiment on different
systems, thus enabling the autonomic comparison of client–
server performance across different architectures. Using a
TPC-W testbed, we show experimentally that this method-
ology enables to stress the architecture at different levels of
performance degradation, thus making the point of being a
useful tool for performance robustness assessment of real
web systems. We have also released the modified TPC-W at
http://www.cs.wm.edu/~esmirni/tpcw_codes/.

The remainder of the paper is organized as follows. In
Sect. 2, we introduce burstiness using illustrative examples.
We first study burstiness in the service process in a multi-tier
enterprise application and present a new approach to inte-
grate workload burstiness in performance models in Sect. 3.
We then move to define the new benchmarking methodol-
ogy starting from an analysis of different sources of bursti-
ness and an evaluation of the standard TPC-W limitations
in Sect. 4. Detailed experimentation on a real testbed is pre-
sented as well in Sects. 3 and 4, where we validate the ac-
curacy of our performance model in comparison with stan-
dard mean-value based capacity planning and demonstrate
that our modified TPC-W benchmark is extremely effective
in stressing system performance under different levels of
burstiness. A review of existing research efforts in capacity

http://www.cs.wm.edu/~esmirni/tpcw_codes/

J Internet Serv Appl (2010) 1: 117–134 119

planning and resource provisioning is presented in Sect. 5.
Finally, Sect. 6 draws conclusions.

2 Burstiness impact and index of dispersion

In this section, we consider some examples to illustrate the
importance of burstiness in performance models and the
impact of bursty processes on system performance. Here,
we generate three workload traces such that inter-arrival
times in each trace are generated from a 2-state Markov-
Modulated Poison Process (MMPP(2)) with the same mean
λ−1 = 10 ms and squared coefficient-of-variation
SCV = 10, but different burstiness profiles.

Figure 1(a)–(c) presents the number of incoming arrivals
during every 10 ms under these three workloads, respec-
tively. Although three traces have the same variability, a
burst of requests aggressively aggregates during a short pe-
riod in Fig. 1(b)–(c), while no temporal surges exist in
Fig. 1(a) as requests come in random points of the trace. Par-
ticularly, Fig. 1(c) shows the strongest burstiness case with
almost all incoming requests clustering within several short
congestion periods. Therefore, we use the term “burstiness”
to indicate traces that are not just “variable” as the sam-
ple in Fig.1(a), but also aggregate in “bursty periods” as in
Fig. 1(b)–(c).

In order to disclose the performance impact of the bursti-
ness, we run simulations of a trace/M/1 queue such that re-
quest arrival times to the server are obtained from the three
inter-arrival time traces in Fig. 1 and request service times
follow an exponential distribution with mean μ−1 = 4 ms
and 8 ms. As a result, we evaluate the performance of this

trace/M/1 queue under two system loads, i.e., utilizations
ρ = 40% and ρ = 80%, respectively. We also remark that
workload burstiness rules out independence of service time
samples, thus the classic Pollaczek–Khinchin formula for
the G/M/1 does not apply and the performance is not only
determined by mean and squared coefficient-of-variation.

Figure 1(d) depicts the mean response times for the inter-
arrival times traces with different burstiness profiles, i.e.,
I = 10, 82, and 402, as shown in Fig. 1(a)–(c). Irrespec-
tively of the identical service time distribution, burstiness
in workload traces dramatically degrades the system per-
formance and thus clearly has paramount importance for
queueing prediction. For example, when the system is un-
der median load (e.g., 40% utilization), the mean response
time for the high variable but non-bursty trace in Fig. 1(a) is
not high, but as the dispersion of the burstiness increases, the
mean response time becomes approximately 7 and 40 times
higher for the traces in Fig. 1(b) and (c), respectively. Fur-
thermore, the performance degradation is monotonically in-
creasing as the observed burstiness increases. Therefore,
it is critically important to discriminate the behaviors in
Fig. 1(a)–(c) with a quantitative index. Overall, the results
in Fig. 1 clearly give intuition that we really need burstiness
in performance models.

Furthermore, the burstiness in workloads, such as the
inter-arrival times in Fig. 1, can be characterized by the in-
dex of dispersion I [15, 19]. This is a standard burstiness
index used in networking [19], which we apply here to the
characterization of workload burstiness in multi-tier applica-
tions. To the best of our knowledge, the index of dispersion,
while being successfully used in modeling of networking ap-
plications, has not been previously applied to modeling of
enterprise multi-tier applications.

Fig. 1 Three workload traces
with MMPP(2) distribution
(mean λ−1 = 10 ms,
SCV = 10), but different
burstiness profiles. Plots (a)–(c)
show the number of incoming
requests during every 10 ms
under the three workload traces
and the index of dispersion I is
reported on top of each plot.
Plot (d) presents the mean
response time of the trace/M/1
queue under the system
utilization of 40 and 80%

120 J Internet Serv Appl (2010) 1: 117–134

Fig. 2 Burstiness of (a) arrivals to server 0 in the 1998 FIFA World
Cup trace over ten consecutive days, (b) Google HTTP request sizes
logged by New York, NY IRCache server over two days, i.e., Janu-

ary 9, 2007 and January 10, 2007, and (c) static object download sizes
of the HTTP servers at Politecnico di Milano—DEI between Septem-
ber 17, 2006 and September 24, 2006

The characterization of time series with burstiness re-
quires techniques for the statical description of the order in
which requests appear in a trace. This topic has been inves-
tigated by several works in the literature, a survey of the
most popular descriptors can be found in [22]. Here, we
focus on the asymptotic index of dispersion I as a met-
ric for characterizing burstiness. Consider a set of n jobs
having inter-arrival times X1,X2, . . . ,Xn, and define: An =
X1 + X2 + · · · + Xn as the total duration of work imposed
on the system by the n jobs. We can define the index of dis-
persion as the asymptotic limit

I = lim
n→+∞ In = lim

n→+∞
E[(An − E[An])2]

nE[Xn]2
,

where the argument is the index of dispersion for intervals In

[4]. Noting that E[An] = nE[Xn], it is immediate to see that
InE[Xn] is a relative squared deviation of An from expecta-
tion, thus I may be seen as a quantifier of the magnitude in
fluctuations in an asymptotically large time-series with unit
mean.

Other definitions of the index of dispersion of an ar-
rival process are useful for understanding the metric. Call
SCV = Var(Xn)/E[Xn]2 the squared coefficient of variation
of the inter-arrival times and denote with ρk the lag-k auto-
correlations for k ≥ 1; then the index of dispersion can be
written as follows:

I = SCV

(
1 + 2

∞∑
k=1

ρk

)
. (1)

The joint presence of SCV and autocorrelations in I is suf-
ficient to distinguish between traces like those in Fig. 1(a)–
(c), as we have reported in the figure title. As the name sug-
gests, the dispersion of the bursty periods increases as the
values of I grow because the sum of autocorrelation in (1) is
maximal. But, when the correlations become statically neg-
ligible, the index of dispersion only captures the character-
ization of variability with no burstiness presented in work-
loads. The value of I thus approaches the one of SCV , as
shown in Fig. 1(a).

We further give three examples of real world situations
where burstiness exists and the index of dispersion well cap-
tures the intensity of traffic surges. The first real workload is
the 1998 FIFA World Cup website trace available at [5] over
a period of ten days, presenting that dramatic traffic surges
connected to sport events can reach values of I slightly
larger than 6300,1 see Fig. 2(a). We remark that although
the 1998 FIFA World Cup trace is an old web workload,
many characteristics including burstiness persist in recent
years [46]. We also examined two recently collected web
traces: one logged by the New York, NY IRCache server
over two days in January, 2007, shows that the number of
bytes written to the client by Google are not only variable
but also bursty, resulting in the estimation of I greater than
2000, see Fig. 2(b); and the other was collected from Po-
litecnico di Milano—DEI between September 17, 2006 and
September 24, 2006, showing the large static objects (e.g.,
gif and jpg image files) aggregated in “bursty periods” with
the estimated value of I more than 1715, see Fig. 2(c). In
summary, the index of dispersion I can be used as a mea-
sure of burstiness in workloads and will be introduced for
evaluating multi-tier architectures in Sect. 3 and enhancing
benchmarking techniques in Sect. 4.

3 Service process: one source of burstiness

In this section, we first study one source of burstiness—
service process—in a multi-tier enterprise application. Then
we illustrate that traditional models of multi-tier architec-
tures can be unacceptably inaccurate if the processed work-
loads exhibit burstiness. We describe how to integrate work-
load burstiness in performance models by using the index
of dispersion and discuss a validation of the proposed tech-
nique in a testbed of a multi-tier e-commerce site that is built
according to the TPC-W specifications.

1Our analysis has focused on the server with label “0” during the period
going from day 61 to day 71. The estimation of the index of dispersion
I has been done using the theoretical formulas reported in [19], (6).

J Internet Serv Appl (2010) 1: 117–134 121

Fig. 3 E-commerce
experimental environment

3.1 Burstiness in TPC-W

TPC-W is a widely used e-commerce benchmark that sim-
ulates the operation of an online bookstore [18]. Typically,
a multi-tier application uses a three-tier architecture para-
digm, which consists of a web server, an application server,
and a back-end database. A client communicates with this
web service via a web interface, where the unit of activity
at the client-side corresponds to a web page download. In a
production environment, it is common that the web and the
application servers reside on the same hardware, and shared
resources are used by the application and web servers to gen-
erate web pages. Thus, we opt to put both the web server and
the application server on the same machine called the front
server.2 A high-level overview of the experimental setup is
illustrated in Fig. 3.

In general, a web page is composed by an HTML file and
several embedded objects such as images. Since the HTTP
protocol does not provide any means to delimit the begin-
ning or the end of a web page, it is very difficult to ac-
curately measure the aggregate resources consumed due to
web page processing at the server side. Accurate CPU con-
sumption estimates are required for building an effective ap-
plication provisioning model but there is no practical way
to effectively measure the service times for all page objects.
To address this problem, we define a client transaction as a
combination of all processing activities that deliver an en-
tire web page requested by a client, i.e., generate the main
HTML file as well as retrieve embedded objects and per-
form related database queries. Typically, a continuous pe-
riod of time during which a client accesses a web service is
referred to as a User Session which consists of a sequence
of consecutive individual transaction requests. Each client
sends requests in the system with an average think time that
represents the time between receiving a web page and the
following page download request.

2We use terms “front server” and “application server” interchangeably
in this paper.

According to the TPC-W specification, the number of
concurrent sessions (i.e., customers) or emulated browsers
(EBs) is kept constant throughout the experiment. For each
EB, the TPC-W benchmark statistically defines the user ses-
sion length, the user think time, and the queries that are gen-
erated by the session. In our experimental environment, two
Pentium D machines are used to simulate the EBs. We also
have one Pentium D machine serving as the front server,
which is installed with Apache/Tomcat 5.5, and one Pen-
tium D machine serving as the back-end database server,
which is installed with MySQL 5.0. The database size is
determined by the number of items and the number of cus-
tomers. In our experiments, we use the default database set-
ting, i.e., the one with 10,000 items and 1,440,000 customers
in inventory.

There are 14 different transactions defined by TPC-W.
In general, these transactions can be roughly classified of
“Browsing” or “Ordering” type. Furthermore, TPC-W de-
fines three standard transaction mixes based on the weight
of each type in the particular transaction mix:

Transaction Transaction type
mix Browsing Ordering

Browsing mix 95% 5%
Shopping mix 80% 20%
Ordering mix 50% 50%

The TPC-W implementation is based on the J2EE
standard—a Java platform which is used for web applica-
tion development and designed to meet the computing needs
of large enterprises. For transaction monitoring, we use the
HP (Mercury) Diagnostics [47] tool which offers a moni-
toring solution for J2EE applications. The Diagnostics tool
collects performance and diagnostic data from applications
without the need for application source code modification
or recompilation. It uses bytecode instrumentation, which

122 J Internet Serv Appl (2010) 1: 117–134

Fig. 4 The CPU utilization of the database server (dashed lines) and
average queue length at the database server (solid lines) across time
for (a) the browsing mix, (b) the shopping mix, and (c) the ordering

mix. In this figure, the y-axis range of both performance metrics is the
same because there are 100 EBs (clients) in the system. The monitoring
window is 120 seconds

enables a tool to record processed transactions and their
database calls over time as well as to measure their exe-
cution time (both transactions and their database calls). We
use the Diagnostics tool to measure the number of com-
pleted requests nk in the kth period having a granularity
of 5 seconds. We also use the sar command to obtain the
utilizations of two servers across time with one second gran-
ularity.

In TPC-W, for a typical request–reply transaction, the
application server may issue multiple database calls while
preparing the reply of a web page. This cascading effect
of various tasks breaks down the overall transaction service
time into several parts, including the transaction processing
time at the application server as well as all related query
processing times at the database server. Therefore, the ap-
plication characteristics and the high variability in database
server may cause burstiness in the overall transaction ser-
vice times. To verify the above conjecture, we measure the
queue length across time (see solid lines in Fig. 4) and the
CPU utilization across time (see dashed lines in Fig. 4) at
the database server under all three transaction mixes, where
the transient queue length is recorded at each instance that
the database request is issued by the application server and
a prepared reply is returned back to the application server.
Furthermore, in order to make the figure easy to read, we
present the case with 100 EBs such that the queue length
is within the range from 0 to 100 and thus the y-axis range
for both performance metrics (i.e., queue length and utiliza-
tion) is the same. First, our conjecture is verified that for the
browsing mix burstiness does exist in the queue length at the
database server, where the queue holds less than 10 jobs for
some periods, while sharply increases to as high as 90 jobs
during other periods, see Fig. 4(a). More importantly, the
burstiness in the database queue length exactly matches the
burstiness in the CPU utilizations of the database server.
Thus, at some periods almost all the transaction processing
happens either at the application server (with the application
server being a bottleneck) or at the database server (with the

Fig. 5 A closed queueing network for modeling a multi-tier system

database server being a respective bottleneck). This leads
to the alternated bottleneck between the application vs. the
database servers. In contrast, for the shopping and the order-
ing mixes, Figs. 4(b) and (c) in the figure only show high
variability in their utilizations but no burstiness in the queue
length.

3.2 Limitation of traditional performance models

Traditionally, a multi-tier system can be modeled by a closed
queueing network, e.g., composed of two queues and a delay
center as shown in Fig. 5, and can be solved with inexpen-
sive algorithms, e.g., Mean Value Analysis (MVA) [38]; we
refer to these models in the rest of the paper as MVA models.
In the MVA model shown in Fig. 5, the two queues are rep-
resentative of the two servers in an enterprise system, i.e.,
the front server and the database server, respectively. The
delay center is instead used to emulate the client activities,
such that each server within the delay center models the user
think time between receiving a web page and submitting a
new page download request.3 The two queues serve jobs ac-
cording to a processor-sharing scheduling discipline.

3The main difference between a queue and a delay server is that the
mean response time at the latter is independent of the number of re-
quests present.

J Internet Serv Appl (2010) 1: 117–134 123

Fig. 6 MVA model predictions versus measured throughput

The proposed MVA model can be immediately parame-
terized by (1) the mean service time SFS and SDB of the front
server and the database server, respectively, (2) the average
user think time Z, and (3) the number of emulated browsers
(EBs). In TPC-W, a new session is generated in Z seconds
(user think time) after completion of a previously-running
user session: thus, the feedback-loop aspect of TPC-W is
fully captured by the closed nature of the queueing network.
The values of SFS and SDB can be determined with linear
regression methods from the CPU utilization samples mea-
sured across time at the two servers [48].

Figure 6 presents the results of the MVA model predic-
tions versus the actual measured throughputs (TPUTs) of
the system as a function of the number of EBs under the
browsing, shopping, and ordering mixes. We observe that
the MVA model prediction is quite accurate for the shop-
ping and ordering mixes, see Fig. 6(b) and (c). However, for
the browsing mix, the MVA models obtain unacceptable in-
accuracy with a large error up to 36% between the predicted
and the measured throughputs, see Fig. 6(a). This indicates
that MVA models can deal very well with systems without
burstiness (e.g., the ordering mix) and with systems where
burstiness does not result in a bottleneck switch (e.g., the
shopping mix). However, the fundamental and most chal-
lenging case of burstiness reveals the limitation of the MVA
modeling technique, see browsing mix in Fig. 6(a). This is
consistent with established theoretical results for MVA mod-
els, which rule out the possibility of capturing the bottleneck
switching phenomenon [8].

3.3 Performance models with burstiness

Although the mathematical definition of the index of disper-
sion I in (1) is simple, this formulation is not practical for
estimation because of the infinite summation involved and
its sensitivity to noise. The estimation of the index of dis-
persion is difficult due to well-known difficulty of estimating
autocorrelations reliably [15]. Techniques for estimation of
I based on sample measurements are proposed in [19]. Al-
ternatively, one can use the following estimation algorithm,
which requires data that is commonly available from system

performance measurement tools. Let Nt be the number of re-
quests completed in a time window of t seconds, where the
t seconds are counted ignoring the server’s idle time (that
is, by conditioning on the period where the system is busy,
Nt is a property of the service process which is independent
of queueing or arrival characteristics). If we regard Nt as a
random variable, that is, if we perform several experiments
by varying the time window placement in the trace and ob-
tain different values of Nt , then the index of dispersion I is
known to be equal also to the limit [15]:

I = lim
t→+∞ It = lim

t→+∞
Var(Nt)

E[Nt] , (2)

where Var(Nt) is the variance of the number of completed
requests and E[Nt] is the mean service rate during busy pe-
riods. Here It represents the index of dispersion for counts,
a metric similar to In but that describes the variance in time
series of counts rather than in intervals. Since the value of
I depends on the number of completed requests in an as-
ymptotically large observation period, an approximation of
this index can be also computed if the measurements are
obtained with coarse granularity. For example, suppose that
the sampling resolution is T = 60 s, and assume to approx-
imate t → +∞ as t ≈ 2 hours, then Nt is computed by
summing the number of completed requests in 120 consec-
utive samples. Repeating the evaluation for different posi-
tions of the time window of length t , we obtain a basic es-
timate of Var(Nt) and E[Nt]. Based on this approach, the
pseudo-code in Fig. 7 can be used to estimate I directly
from (2). The pseudo-code is a straightforward evaluation
of Var(Nt)/E[Nt] for different values of t . Intuitively, the
algorithm in Fig. 7 calculates I of the service process by ob-
serving the completions of jobs in concatenated busy period
samples, thus trying to reconstruct the service process time
series as if it was measured without the effects of queueing.

In order to integrate the index of dispersion in queueing
models, we model service times as a two-phase Markov-
ian Arrival Process (MAP(2)) [34]. The advantage of this
approach is that one can then represent service times as
MAPs and use the recently proposed class of MAP queue-
ing networks for capacity planning [12, 14]. A MAP(2) is a

124 J Internet Serv Appl (2010) 1: 117–134

Markov process that jumps between two states and the ac-
tive state determines the current rate of service. For example,
one state may be associated with slow service times, while
the other may represent fast service times, and the jumping
frequencies between the two states can be chosen to repro-
duce exactly the burstiness and the distribution of service
or arrival times observed in a trace. Typically, given a set
of trace moments and the index of dispersion value I , it is
straightforward to obtain values of the MAP(2) parameters
that uniquely specify the Markov process. We point to (5)
and (7) reported later in the paper for equations that related
moments and I with MAP(2) parameters and thus can be
used directly for MAP(2) fitting.

Input
T , the sampling resolution (e.g., 60 s)
K , total number of samples, assume K > 100
Uk , utilization in the kth period, 1 ≤ k ≤ K

nk , number of completed requests in the kth period,
1 ≤ k ≤ K

tol, convergence tolerance (e.g., 0.20)
Estimation of the index of dispersion I

1. get the busy time in the kth period Bk := Uk · T ,
1 ≤ k ≤ K

2. initialize t = T and Y(0) = 0
3. do

(a) for each Ak = (Bk,Bk+1, . . . ,Bk+j),∑j

i=0 Bk+i ≈ t ,

(aa) compute Nk
t = ∑j

i=0 nk+i

(b) if the set of values Nk
t has less than 100 elements,

(bb) stop and collect new measures because the
trace is too short

(c) Y(t) = Var(Nk
t)/E[Nk

t]
(d) increase t by T

until |1 − (Y (t)/Y (t − T))| ≤ tol, i.e., the values
of Y(t) converge

4. return the last computed value of Y(t) as estimate of I

Fig. 7 Estimation of I from utilization samples and counts

We can use the closed-form formulas to define the
MAP(2) as follows. After estimating the mean service time
and the index of dispersion I of the trace, we also estimate
the 95th percentile of the service times as we describe at
the end of this subsection. Given the mean, the index of
dispersion I , and the 95th percentile of service times, we
generate a set of MAP(2)s that have ±20% maximal error
on I . Among this set of MAP(2)s, we choose the one with
its 95th percentile closest to the trace. Overall, the com-
putational cost of fitting the MAP(2)s is negligible both
in time and space requirements. For instance, the fitting of
the MAP(2)s has been performed in MATLAB in less than
five minutes. For the experiments in this section, the 95th
percentile is obtained from the 95th percentile of the mea-
sured busy times Bk in Fig. 7 scaled by the median number
of requests processed in the busy periods, see [30] for de-
tails.

We illustrate the accuracy of MAP queueing networks as
a capacity planning tool compared to the Mean Value Analy-
sis (MVA) algorithm that is the standard in queueing analy-
sis for IT sizing [22]. Figure 8 compares the analytical re-
sults with the experimental measurements of the real system
for the three transaction mixes. The values of the index of
dispersion for the front and the database service processes
are also shown in the figure. Figure 8 gives evidence that
the new analytic model based on the index of dispersion
achieves gains in the prediction accuracy with respect to the
MVA model on all workload mixes, showing that it is reli-
able also when the workloads are not bursty. In the brows-
ing mix, the index of dispersion enables the queueing model
to effectively capture both burstiness and bottleneck switch.
The results of the proposed analytic model match closely the
experimental results for the browsing mix, while remaining
robust in all other cases. While in the shopping and the or-
dering mixes, the feature of workload burstiness is almost
negligible and thus MVA yields prediction errors up to 10%.
Yet, as shown in Fig. 8(b) and (c), our analytic model further
improves MVA’s prediction accuracy. This happens because
the index of dispersion I is able to capture detailed proper-
ties of the service time process, which cannot be captured by
the MVA model. Our experiments provide evidence that the

Fig. 8 Modeling results for three transaction mixes as a function of the number of EBs

J Internet Serv Appl (2010) 1: 117–134 125

proposed methodology can work effectively on real-world
applications. Indeed, further validation on real workloads is
needed in order to further assess the general applicability of
the technique.

4 Arrival process: another source of burstiness

Burstiness in arrival streams and/or service processes is of-
ten found in client–server systems. Capturing burstiness ac-
curately in performance models for capacity planning 4 be-
comes extremely important and challenging because this
feature is responsible to significant degradation of perceived
user performance and system capacity by creating request
peak congestion periods in systems.

4.1 Different sources of burstiness

In order to gain intuition about the importance of burstiness
in performance models, we use the closed queueing network
shown in Fig. 5 to model a multi-tier architecture and then
show how burstiness generates traffic surges and thus con-
sistently affects the system performance.

Figure 9 presents the simulation results of the end-to-end
client response times, i.e., the summation of the response
times at the front server and the back-end database, parame-
terized according to the TPC-W model presented in Sect. 3.
In all simulations, we set the same mean service time (i.e., 5
microseconds) at the front server, as well as the same mean
service time (i.e., 3 microseconds) at the database server.
The mean user think time is also kept the same in all exper-
iments, i.e., Z = 7 seconds. The only difference is that we
impose into the model different burstiness profiles: (1) there
is no burstiness in neither the two servers, nor the client
side, labeled non-bursty; (2) burstiness is present only in the
front server’s service process, labeled front-server-bursty;
(3) burstiness is present only in the service process at the

Fig. 9 Illustrating average end-to-end client response time as a func-
tion of the number of maximum client connections N

4In this paper, we focus on performance models for capacity planning
to represent the client–server systems in terms of their performance.

back-end database, labeled db-server-bursty; and (4) bursti-
ness is present only in the arrival process to the front server,
labeled client-bursty.

Figure 9 first shows the same results we have presented in
Fig. 1 of Sect. 2: when there is burstiness in workloads, the
system performance becomes worse compared to the non-
bursty case and this performance degradation is consistent
over different system loads (i.e., the number of client con-
nections). In addition, we find that burstiness in any system
tier (i.e., the service processes at the front and the database
servers) or client side (i.e., the arrival process) has a similar
negative impact on overall system performance. This moti-
vates us to consider the importance of burstiness in capacity
planning no matter if it exists in the arrival process or the
service process of one queue.

Observe also that while the maximum number of clients
in this closed system is fixed, the number of clients receiving
service from the system does fluctuate. Figures 10–13 show
the number of clients receiving service (i.e., the first column
in the figures) under four different workloads: (1) no bursti-
ness in the system, see Fig. 10, (2) when burstiness is present
in the front server’s service process, see Fig. 11, (3) when
burstiness is present in the database server’s service process,
see Fig. 12, and (4) when burstiness is present in the arrival
process to the front server, see Fig. 13. The transient uti-
lization levels at the front and back-end database servers are
also depicted in the figures, see the corresponding second
and third columns. Observe that when there is no burstiness
in the system, the number of clients is quite low and no traf-
fic congestion exists in the system. As a result, the utiliza-
tions at both the front and database servers are highly vari-
able across time only and the best performance is obtained
among all four workloads. In contrast, non-negligible bursti-
ness is found under the other three workloads: when there is
burstiness in the arrivals to the front server, we observe in-
tensive traffic surges (i.e., bursts in the number of clients),
as well as the corresponding burstiness in the front and data-
base utilizations; and when there is burstiness in the front
(resp. database) service times, we observe strong burstiness
in the front (resp. database) utilizations but negligible bursti-
ness in the database (resp. front) utilizations across times.

Furthermore, due to the propagation of burstiness, the
number of clients under workloads front-server-bursty and
db-server-bursty presents the burstiness, see Figs. 11 and
12(a), which however is not as strong as the one under the
workload with bursty arrivals, see Fig. 13(a). It follows that
both the front and the database servers experience longer
saturated periods (i.e., the system utilization almost reaches
100%) under the case of bursty arrivals, see Fig. 13(b)
and (c). All these results give the further explanation about
the poor performance of bursty workloads in Fig. 9: it is
more difficult for the system to recover when there is a huge
accumulation of jobs and this is immediately reflected in the
user-perceived performance.

126 J Internet Serv Appl (2010) 1: 117–134

Fig. 10 Illustrating number of requests in the servers, transient utilizations at the front server, and transient utilizations at the back-end database,
when there is no burstiness in systems

Fig. 11 Illustrating number of requests in the servers, transient utilizations at the front server, and transient utilizations at the back-end database,
when burstiness is present in the front server’s service process

From the implementation point of view, if one wants to
introduce a burstiness “knob” in the benchmark, it is much
harder to introduce and control burstiness at the front or
the database tiers of the system without significantly chang-
ing the TPC-W implementation and possibly even appli-
cation processing functionality. The most natural, simple,
and controllable place of introducing burstiness is at the ar-
rival process, i.e., at the client side. Therefore, in this sec-
tion, we introduce a new module into TPC-W that injects
burstiness into the arrival process in a controllable man-
ner and thus enables detailed performance studies for eval-
uating system performance degradation due to burstiness.
Most importantly, burstiness in the arrivals to the multi-

tier system also capture the performance effect of traffic
surges.

4.2 Limitations of standard TPC-W

The standard TPC-W benchmark implements a fixed num-
ber of emulated browsers in the system that is equal to
the maximum number of client connections. Each emulated
browser sends requests in the system with an average think
time E[Z] that represents the time between receiving a web
page and the following page download request. Fluctuations
of the number of jobs in the system is regulated by the aver-
age user think time E[Z].

J Internet Serv Appl (2010) 1: 117–134 127

Fig. 12 Illustrating number of requests in the servers, transient utilizations at the front server, and transient utilizations at the back-end database,
when burstiness is present in the database server’s service process

Fig. 13 Illustrating number of requests in the servers, transient utilizations at the front server, and transient utilizations at the back-end database,
when burstiness is present in the arrival process to the front server

Here, we propose to inject burstiness into the incoming
traffic by modifying the way think times are generated in the
client machines. Think times in the standard TPC-W bench-
mark are drawn randomly from an exponential distribution
that is identical for all clients [18]. Because of the memory-
less property of the exponential distribution, this is equiva-
lent to imposing that clients operate independently of their
past actions. However, exponential think times are incom-
patible with the notion of burstiness for several reasons:

Temporal locality: intuitively, under conditions of bursti-
ness, arrivals from different customers cannot happen at

random instants of time, but they are instead condensed
in short periods across time. Therefore, the probability of
sending a request inside this period is much larger than out-
side of it. This behavior is inconsistent with classic distri-
butions considered in performance engineering of web ar-
chitectures, such as Poisson, hyper-exponential, Zipf, and
Pareto, which all miss the ability of describing temporal
locality within a process.

Variability of different timescales: Variability within a traf-
fic surge is a relevant characteristic for testing peak per-
formance degradation. Therefore, a benchmarking model
for burstiness should not only create surges of variable in-

128 J Internet Serv Appl (2010) 1: 117–134

tensity and duration, but also create fluctuations within a
surge. This implies a hierarchy of variability levels that
cannot be described by a simple exponential distribution
and instead requires a more structured arrival process.

Lack of aggregation: in the standard TPC-W, each thread
on the client machines uses a dedicated stream of random
numbers, thus think times of different users are always in-
dependent. This is representative of normal traffic, but fails
in capturing the essential property of traffic surges: users
act in an aggregated fashion which is mostly incompatible
with independence assumptions.5 As remarked in Sect. 5,
this is a common problem to many request generation tech-
niques based on the user-equivalent approach [10].

In order to address all the above points, we propose to
regulate the arrival rate of requests to the system using a
class of Markov-modulated processes known as Markovian
Arrival Processes (MAPs) [34], which have the ability of
providing variability at different levels as well as tempo-
ral locality effects. Recent work in [17] proposed two new
metrics, i.e., marginal entropy and coefficient of variation,
to capture temporal locality of web reference streams; how-
ever, the coefficient of variation used as a metric in [17] is
not sufficient to measure the correlation component of tem-
poral locality. Thus, we use a MAP parameterized by the
index of dispersion to create sequences of surges with dif-
ferent intensities and durations in the following sections.

4.3 A turnable burstiness knob and its realistic values

A MAP can be seen as a simple mathematical model of a
time series, such as a sequence of think times, for which
we can accurately shape distribution and correlations be-
tween successive values. Correlations among consecutive
think times are instrumental to capture periods of the time
series where think times are consecutively small and thus a
surge occurs, as well as to determine the surge duration.

We use a class of MAPs with two states only, one respon-
sible for the generation of “short” think times implying that
users produce closely spaced arrivals, possibly resulting in
surges, while the other is responsible for the generation of
“long” think times associated with periods of normal traf-
fic. In the “short” state, think times are generated with mean
rate λshort, similarly they have mean rate λlong < λshort in
the “long” state. We explain in Sect. 4.4 how to assign val-
ues for λshort and λlong starting from standard TPC-W mea-
surements. In order to create correlation between different
events, after the generation of a new think time sample, our
model has a probability ps,s that two consecutive think times

5As already observed in the introduction, we do not assume in any
point of this paper that users explicitly coordinate their submission
of requests. Instead, we impose a loose synchronization which leaves
large room for fluctuations within a traffic surge.

are short and a different probability pl,l of two consecutive
think times being both long. The probability ps,l = 1 − ps,s

(resp., pl,s = 1 − pl,l) determines the frequency of jump
from the short (resp., long) state to the long (resp., short)
state. Thus, the values of ps,s , ps,l , pl,s and pl,l shape the
correlations between consecutive think times and are instru-
mental to determine the duration of the traffic surge; see
the next subsection for further details. Henceforth, we focus
only on the independent values pl,s and ps,l .

In order to gain intuition on the way this model works, we
provide the following pseudo-code to generate a sample of
nt think time values Z1,Z2, . . . ,Zn, . . . ,Znt from a MAP
parameterized by the tuple (λlong, λshort, pl,s , ps,l):

function: MAP_sample(λlong, λshort, pl,s , ps,l , nt)
/* initialization in normal traffic state */
active_state = “long”;
for n = 1,2, . . . , nt

/* generate sample in current state */
Zn = sample from exponential distribution

with rate λactive_state;
/* update MAP state */

r = random number in [0,1];
if active_state =“long” and r ≤ pl,s

active_state = “short”;
else if active_state = “short” and r ≤ ps,l

active_state = “long”;
end

end

Figure 14 summarizes the traffic surge model described
above. Note from the pseudo-code that the problem of vari-
ability of different timescales is solved effectively in MAPs:
if the MAP is in a state i, then samples are generated by an
exponential distribution with rate λi associated with state i.
This creates fluctuations within the traffic surge. It is also
compatible with the observations in Sect. 4.2 against the ex-
ponential think times because the probability of arrival in-
side the traffic surge is larger than outside of it, due to the
state change mechanism that alters the rate of arrival from
λlong to λshort.

We propose to use the index of dispersion as a regulator of
the intensity of traffic surges. The index of dispersion I has
the fundamental property that it grows proportionally with

Fig. 14 Model of traffic surges based on regulation of think times

J Internet Serv Appl (2010) 1: 117–134 129

both variability and correlations, and thus can be immedi-
ately used to identify burstiness in a trace. When there is no
burstiness, the value of I is equal to the squared coefficient-
of-variation of the distribution, e.g., I = SCV = 1 for the
exponential distribution, while it grows to values of thou-
sands on bursty processes. We point to the three real traces
in Fig. 2 of Sect. 2 for a graphical outlook of how the val-
ues of I capture the intensity of burstiness in workloads. For
example, 1998 FIFA World Cup website trace [5] presents
dramatic traffic surges caused by particular important sport
events, which results in the values of I slightly larger than
6300, see Fig. 2(a). Thus, a parameterization of I spanning
a range from single to multiple digits can give a good sense
of scalability between workloads with “no burstiness” and
workloads with “very high burstiness.”

4.4 Integrating burstiness in TPC-W

To avoid inter-machine communication and keep the modifi-
cations to TPC-W simple, we propose to use a shared MAP
process to draw think times for all users emulated on the
same client machine.6 This solves immediately the prob-
lem of independence between requests of different users and
is a paradigm change, because we no longer model in the
TPC-W benchmark the individual think times; instead, we
shape directly the behavior of all clients.

The most complex aspect of this new approach is the
parameterization of the MAP process: how should we
define the arrival stream in order to stress effectively
a system? The fundamental problem is how to determine
a parameterization (λlong, λshort, pl,s , ps,l) that produces
a sequence of surges in the incoming traffic that is always
capable of stressing the system and highlighting scalability
problems. Further, this parameterization must remain rep-
resentative of a realistic (i.e., probabilistic, non-DDoS-like)
scenario. Henceforth, we assume that the user gives to the
modified TPC-W benchmark the desired values of the mean
think time E[Z] and of the index of dispersion I which
specifies the burstiness level. The benchmark automatically
generates a parameterization (λlong, λshort, pl,s , ps,l) capa-
ble of stressing the system. We also assume that the standard
TPC-W benchmark has been previously run on the archi-
tecture and that the mean service demand E[Di] of each
server i has been estimated from utilization measurements,
e.g., using linear regression methods [49].

The mean think time E[Z] can be parameterized as in the
standard TPC-W benchmark as Z = 7 seconds, while the in-
dex of dispersion I is the additional parameter that can be
used to tune the level of burstiness of the benchmark. Our
approach to fully define the properties of MAP think times

6Often, TPC-W setup involves multiple client machines to generate
enough user requests to load the benchmarked system.

other than the mean E[Z] starts by the following parameter-
ization equations:

λ−1
short =

(∑
i

E[Di]
)/

f, (3)

λ−1
long = f max

(
N

(∑
i

E[Di]
)

,E[Z]
)

. (4)

Here, f ≥ 1 is a free parameter, N is the maximum number
of client connections considered in the benchmarking exper-
iment,

∑
i E[Di] is the minimum time taken by a request to

complete at all servers, and N(
∑

i E[Di]) provides an upper
bound to the time required by the system to respond to all
requests. Equation (3) states that, in order to create surges,
the think times should be smaller than the time required by
the system to respond to requests. Thus, assuming that all
N clients are simultaneously waiting to submit a new re-
quest, one may reasonably expect that after a few multiples
of λ−1

short all clients have submitted requests and the architec-
ture has been yet unable to cope with the traffic surge. Con-
versely, (4) defines think times that on average give to the
system enough time to cope with any request, i.e., the nor-
mal traffic regime. Note that the condition λ−1

long ≥ f E[Z]
is imposed to ensure that the mean think time can be E[Z],
which would not be possible if both λ−1

short > λ−1
long > E[Z]

since f > 1 and in MAPs the moments E[Z],E[Z2], . . . are

E[Zk] = k!
(

pl,s

pl,s + ps,l

λ−k
short +

ps,l

pl,s + ps,l

λ−k
long

)
. (5)

The above formula for k = 1 implies that E[Z] has a value
in-between of λ−1

short and λ−1
long, which is not compatible with

λ−1
short ≥ λ−1

long ≥ f E[Z]. According to the last formula, the
MAP parameterization can always impose the user-defined
E[Z] if

pl,s = ps,l

(
λ−1

long − E[Z]
E[Z] − λ−1

short

)
, (6)

and we use this condition in the modified TPC-W bench-
mark to impose the mean think time.

In order to fix the values of ps,l and f in the above
equations, we first carry a simple search on the space (0 ≤
ps,l ≤ 1, f ≥ 1) where at each iteration we check the value
of the index of dispersion I and lag-1 autocorrelation co-
efficient ρ1 from the current values of ps,l and f . We stop
searching when we find a MAP with an I that is within 1%
of the target user-specified index of dispersion and the lag-1
autocorrelation is at least ρ1 ≥ 0.4 in order to have consis-
tent probability of formation of surges within short time pe-
riods. Here, the threshold 0.4 has been chosen since it is the
closest round value to the maximum autocorrelation that can

130 J Internet Serv Appl (2010) 1: 117–134

Fig. 15 User think times for the shopping mix with (a) non-bursty (standard TPC-W), (b) I = 400, and (c) I = 4000

Fig. 16 Arriving clients to the system (front server) for the shopping mix with (a) non-bursty (standard TPC-W), (b) I = 400, and (c) I = 4000
in user think times, where the maximum number of client connections is set to N = 1000

be obtained by a two-state MAP. The index of dispersion of
the MAP can be evaluated at each iteration as 7 [11, 34]

I = 1 + 2ps,lpl,s(λshort − λlong)
2

(ps,l + pl,s)(λshortps,l + λlongpl,s)2
, (7)

while the lag-1 autocorrelation coefficient is computed as

ρ1 = 1

2
(1 − pl,s − ps,l)

(
1 − E[Z]2

E[Z2] − E[Z]2

)
, (8)

where E[Z2] is obtained from (5) for k = 2. We remark that
if no MAP exists with at least ρ1 ≥ 0.4, then the benchmark
should search for the MAP with largest ρ1 in order to facili-
tate the formation of surges which persists over several units
of time.

4.5 Experiments

In order to demonstrate our modified TPC-W benchmark,
we conduct detailed experimentation in the TPC-W test-
bed under three standard transaction mixes. For each trans-
action mix, we run a set of experiments with different
number of maximum client connections (fixed within each
experiment) ranging from 200 to 1200. As a result, we
evaluate the new methodology under various system loads
with utilization levels at the front and the database servers

7Note that (7) slightly differs in the denominator from other expres-
sions of I , such as those reported in [19], because here we consider a
MAP that is a generalization of an MMPP process.

within the range of 12–98% and 6–74%, respectively.
In all experiments, the average user think time is set to
E[Z] = 7 sec, which is the default value for the TPC-W
benchmark. We use a two-state MAP to generate the user
think times as described in the previous section. Our ex-
periments are done with two different MAPs that result in
index of dispersion equal to I = 400 (mild burstiness) and
I = 4000 (severe burstiness).

For comparison, we also perform experiments with
the standard configuration, i.e., think times are exponen-
tially distributed with mean E[Z] = 7 seconds and squared
coefficient-of-variation SCV = 1. All experiments are run
for 3 hours each, where the first 5 minutes and the last
5 minutes are considered as warm-up and cool-down pe-
riods and thus omitted in the measurements.

Figure 15 illustrates the user think times under the shop-
ping mix, which are generated by the standard TPC-W and
our extended TPC-W with I = 400 and I = 4000 in MAPs.
Clearly, the user think times in the standard TPC-W bench-
mark are exponentially distributed, see Fig. 15(a), while
mild and strong burstiness is presented in user think times
under the two MAPs. Consequently, the two MAPs (with
I = 400 and I = 4000) for user think times inject the bursti-
ness into the arrival process. Figure 16 demonstrates the
arrival processes to the system under the shopping mix,8

where we depict the number of arriving clients to the sys-
tem (i.e., the front server) in monitoring windows of 1 sec-

8The results for the browsing and the ordering mixes are qualitatively
the same and are not presented here due to lack of space.

J Internet Serv Appl (2010) 1: 117–134 131

Fig. 17 Average latencies as a function of the number of maximum client connections N for (a) browsing mix, (b) shopping mix, and (c) ordering
mix with non-bursty and bursty of I = 4000 and 400 in the user think times

Fig. 18 CDFs of latencies for (a) browsing mix, (b) shopping mix, and (c) ordering mix with non-bursty and bursty of I = 4000 and 400 in user
think times, where N = 1000 and the corresponding average latencies are also marked

ond. In the standard TPC-W experiment, there is no bursti-
ness in the number of arriving clients, which remains sta-
ble around 150, see Fig. 16(a). When we adopt two-state
MAPs in think times, surges are generated in the arrivals
as shown by periods of continuous peak arrival rates, see
Fig. 16(b) and (c). We stress that all three arrival processes
have the same mean. As the index of dispersion increases
from I = 400 to I = 4000, there are sharp surges in the
number of active clients, consistently with our purpose to
“create” bursty conditions.

Figure 17 presents the average latency for a client trans-
action, which is the interval from the moment when the
client sends an HTTP request to the moment when an entire
HTTP web page (including embedded objects) is retrieved.
We first direct the reader’s attention to the system perfor-
mance under the standard TPC-W experiment (i.e., expo-
nential think times, labeled non-bursty in Fig. 17, see all
solid curves). As shown in Fig. 17 across all workloads, av-
erage latencies increase as the maximum number of client
connections increases. Especially for the browsing mix, the
latency becomes two orders of magnitude larger when N is
increased from 200 to 1200. This is due to the presence of
burstiness in the service times at the database server, which
dramatically degrades the overall system performance. For
the shopping and the ordering mixes, there is no burstiness
in neither the front nor the database service processes, al-
though these two workload mixes are highly variable. Con-

sequently, a large number of clients do not deteriorate their
performance as severely as in the browsing mix.

When burstiness is injected into the arrival flows, the
overall system performance becomes significantly worse for
all three transaction mixes. For instance, for the shopping
and the ordering mixes, when the index of dispersion in
the two-state MAP for user think times is I = 4000 and
the maximum number of client connections is beyond 600,
the average latency is increased by at least 13 times and
35 times, respectively, compared to the non-bursty case. As
the index of dispersion decreases, e.g., I = 400, the degra-
dation caused by burstiness on the overall system perfor-
mance becomes weaker yet visible as latencies remain at
least 6 times slower. For the browsing mix, the newly in-
jected burstiness in arrivals further deteriorates average la-
tencies. Yet, as the maximum number of client connections
reaches 1200, the system performance under I = 400 is sim-
ilar to the non-bursty case. This happens because the system
is already overloaded, regardless of burstiness.

In addition to average latency values, we also evaluate
the distribution of latencies. Figure 18 shows the cumula-
tive distribution function (CDF) of the latency of the three
transaction mixes when N = 1000. The corresponding av-
erage latencies are also marked in the figure. With bursty
arrivals, the mass of clients experience significantly worse
performance and much longer tails in the latency distribu-
tions. This essentially argues that QoS guarantees cannot be
given for significant percentiles of the workload and further

132 J Internet Serv Appl (2010) 1: 117–134

highlights the pressing need to evaluate client–server sys-
tems under bursty conditions.

5 Related work

Capacity planning of multi-tier systems is a critical part of
the architecture design process and requires reliable quanti-
tative methods, see [27] for an introduction. Queueing mod-
els are popular for predicting system performance and an-
swering what-if capacity planning questions [27, 43–45].
Single-tier queueing models focus on capturing the perfor-
mance of the most-congested resource only (i.e., bottleneck
tier): [45] describes the application tier of an e-commerce
system as an M/GI/1/PS queue; [37] abstracts the appli-
cation tier of an N -node cluster as a multi-server G/G/N

queue.
Mean Value Analysis (MVA) queueing models that cap-

ture all the multi-tier architecture performance have been
validated in [43, 44] using synthetic workloads running on
real systems. The parameterization of these MVA models
requires only the mean service demand placed by requests
at the different resources. In [40] the authors use multiple
linear regression techniques for estimating from utilization
measurements the mean service demands of applications in
a single-threaded software server. In [26], Liu et al. cali-
brate queueing model parameters using inference techniques
based on end-to-end response time measurements. A traffic
model for web traffic has been proposed in [25], which fits
the real data using the mixture of distributions.

However, the observations in [29] show that autocorrela-
tion in multi-tier systems flows, which is ignored by stan-
dard capacity planning models, must be accounted for accu-
rate performance evaluation. Indeed, [9] presents that bursti-
ness in the World Wide Web and its related applications
peaks the load of the web server beyond its capacity, which
results in the significant degradation of the actual server
performance. In this paper we have proposed for the first
time robust solutions for capacity planning under workload
burstiness. The class of MAP queueing networks considered
in this paper that can capture the effects of burstiness has
been first introduced in [12, 14] together with a bounding
technique for approximate model solution. In [12, 14] the
authors provide the theoretical methods for capacity plan-
ning under bursty workloads. But, a practical issue often
encountered is that the model parameterization must be de-
rived from limited coarse measurements. Thus, to address
this issue, in this paper we have proposed a parameterization
of MAP queueing networks using for the service process of
each server its mean service time, the index of dispersion,
and the 95th percentile of service times. The index of disper-
sion has been frequently adopted in the networking literature
for describing traffic burstiness [19, 42]; in particular, it is

known that the performance of the G/M/1/FCFS queue in
heavy-traffic is completely determined by its mean service
time and index of dispersion [42]. Further results concern-
ing the characterization of index of dispersion in MAPs can
be found in [3].

To analyze performance of systems, one needs a good un-
derstanding of fundamental features and properties of web
workloads. The workload of websites has been extensively
studied and characterized in many research and industrial
papers [1, 6, 7, 10, 16]. A number of studies of different
sites identified that Internet and web traffic is bursty across
several timescales and showed the importance of multiscale
analysis of web requests [2, 16, 23, 28, 35]. In [23, 28], the
authors consider the relationship between response time per-
centiles and CPU utilization for a web-based shopping sys-
tem. The authors noted that for bursty workloads it is im-
portant to consider different timescales; they noted that the
frequency of intervals with high or low utilization increased
at a finer timescales, and this can impact SLA’s guarantees
for a significant portion of requests.

Several studies have shown that the arrival of requests
in a web-based system is self-similar [16, 28]. Self-similar
workloads exhibit significant request correlations or bursts
over multiple timescales [2]. A system’s ability to handle
such bursts is determined by its features and system re-
sources such as the system capacity, scheduling disciplines,
maximum allowable queue lengths, etc. If a system is not
able to support bursts at some timescale, significant queue-
ing delays may occur [36]. When choosing an e-commerce
site’s hardware and software configuration, one needs to ac-
cess whether considered configurations could handle a de-
sired load level while providing acceptable performance.
Considerable effort has been focused on synthetic work-
load generators for traditional web-based systems [10, 21,
33]. SURGE [10] is a workload generator for testing web
servers. The GEIST tool [21] attempts to match the aggre-
gate workload characteristics and models attributes of the
request arrival process at the system level. The Httperf [33]
tool provides a flexible facility for generating various http
workloads for measuring web server performance.

Workload models [24, 32, 39] have been recently stud-
ied to generate synthetic traces which can represent real
networking traffic with the characteristics of long range de-
pendence (LRD) and/or burstiness. For example, the multi-
fractal wavelet model (MWM) has been developed for char-
acterizing and synthesizing positive LRD data [39]. Later,
Li [24] used the MWM to model the LRD job arrivals in
Grids and Minh and Wolters [32] modified the MWM to
model both LRD and burstiness in the job arrival process.

J Internet Serv Appl (2010) 1: 117–134 133

6 Conclusions

Today’s IT and Services departments are faced with the dif-
ficult task of ensuring that enterprise business-critical ap-
plications are always available and provide adequate per-
formance. Predicting and controlling the issues surround-
ing system performance is a difficult and overwhelming task
for IT administrators. With complexity of enterprise systems
increasing over time and customer requirements for QoS
growing, effective models for quick and automatic evalua-
tion of required system resources in production systems be-
come a priority item on the service provider’s “wish list”.

In this work, we have presented a solution to the difficult
problem of model parameterization by inferring essential
process information from coarse measurements in real sys-
tem. After giving quantitative examples of the importance
of integrating burstiness in performance models pointing out
its role relatively to the bottleneck switch phenomenon, we
show that coarse measurements can still be used to para-
meterize queueing models that effectively capture burstiness
and variability of the true process. The parameterized queue-
ing model can thus be used to closely predict performance
in systems even in the very difficult case where there is per-
sistent bottleneck switch among the various servers.

We have also developed a new methodology to explic-
itly introduce burstiness in a client–server benchmark. We
exemplify this methodology in the well established TPC-W
benchmark. Our methodology injects burstiness into the ar-
rival process of the server in a controllable way using the
index of dispersion. This simple parameterization allows the
user to introduce traffic surges of different intensity into the
system, thus allowing for accurate benchmarking as well
as evaluation of the system under various what-if scenar-
ios. Looking to the future, we will investigate the robustness
of our methodology and focus on early detection of traffic
surges and on proactive solutions ranging from load balanc-
ing to work shedding.

References

1. Almeida V, Bestavros A, Crovella M, de Oliveira A (1996) Char-
acterizing reference locality in the WWW. In: IEEE conference on
parallel and distributed information systems, Dec 1996

2. Almeida V, Arlitt M, Rolia J (2002) Analyzing a web-based sys-
tem’s performance measures at multiple timescales. ACM Perform
Eval Rev 30(2):3–9

3. Andersen AT, Nielsen BF (1998) A Markovian approach for mod-
eling packet traffic with long-range dependence. IEEE J Sel Areas
Commun 16(5):719–732

4. Andersen AT, Nielsen BF (2002) On the use of second-order de-
scriptors to predict queueing behavior of MAPs. Nav Res Logist
49(4):391–409

5. Arlitt M, Jin T (1999) Workload characterization of the 1998
World Cup website. Technical Report HPL-1999-35R1

6. Arlitt M, Williamson C (1996) Web server workload characteri-
zation: the search for invariants. In: Proc of ACM SIGMETRICS,
pp 126–137

7. Arlitt M, Friedrich R, Jin T (1999) Workload characterization of
a web proxy in a cable environment. ACM Perform Eval Rev
27(2):25–36

8. Balbo G, Serazzi G (1996) Asymptotic analysis of multiclass
closed queueing networks: common bottlenecks. Perform Eval
26(1):51–72

9. Banga G, Druschel P (1999) Measuring the capacity of a web
server under realistic loads. WWW 2(1–2):69–83

10. Barford P, Crovella M (1998) Generating representative web
workloads for network and server performance evaluation. ACM
Perform Eval Rev 26(1):151–160

11. Casale G, Zhang E, Smirni E (2007) Characterization of moments
and autocorrelation in MAPs. ACM Perform Eval Rev 35(1):27–
29. Special issue on MAMA workshop

12. Casale G, Mi N, Smirni E (2008) Bound analysis of closed queue-
ing networks with workload burstiness. In: Proc of SIGMETRICS,
pp 13–24

13. Casale G, Mi N, Cherkasova L, Smirni E (2010) Dealing with
burstiness in multi-tier applications: new models and their para-
meterization (under submission)

14. Casale G, Mi N, Smirni E (2010) Model-driven system capac-
ity planning under workload burstiness. IEEE Trans Comput
59(1):66–80

15. Cox DR, Lewis PAW (1966) The statistical analysis of series of
events. Methuen, London

16. Crovella M, Bestravos A (1996) Self-similarity in Word Wide Web
traffic: evidence and possible causes. In: Proc of SIGMETRICS

17. Fonseca R, Almeida V, Crovella M, Abrahao B (2003) On the in-
trinsic locality properties of web reference streams. Proc IEEE IN-
FOCOM

18. Garcia D, Garcia J (2003) TPC-W e-commerce benchmark evalu-
ation. IEEE Comput 36:42–48

19. Gusella R (1991) Characterizing the variability of arrival
processes with indexes of dispersion. IEEE J Sel Areas Commun
19(2):203–211

20. Jung J, Krishnamurthy B, Rabinovich M (2002) Flash crowds
and denial of service attacks: characterization and implications for
CDNs and websites. In: Proc of WWW, pp 293–304

21. Kant K, Tewary V, Iyer R (2001) An internet traffic generator for
server architecture evaluation. In: Proc of workshop computer ar-
chitecture evaluation using commercial workloads

22. Kobayashi H, Mark BL (2009) System modeling and analysis:
foundations of system performance evaluation

23. Krishnamurthy D, Rolia J (1998) Predicting the QoS of an elec-
tronic commerce server: those mean percentiles. ACM Sigmetrics
Perform Eva Rev 26(3):16–22

24. Li H (2010) Realistic workload modeling and its performance im-
pacts in large-scale eScience grids. IEEE Trans Parallel Distrib
Syst 21(4):1045–9219

25. Liu Z, Niclausse N, Jalpa-Villanueva C (2001) Traffic model and
performance evaluation of web servers. Perform Eval 46(2–3)

26. Liu Z, Wynter L, Xia CH, Zhang F (2006) Parameter inference of
queueing models for it systems using end-to-end measurements.
Perform Eval 63(1):36–60

27. Menascé DA, Almeida VAF, Dowdy WL (1994) Capacity plan-
ning and performance modeling: from mainframes to client–server
systems

28. Menascé DA, Almeida VAF, Reidi R, Pelegrinelli. R. Fonesca F,
Meira W Jr. (2000) In search of invariants in e-business workloads.
In: Proc of ACM conf electronic commerce, pp 56–65

29. Mi N, Zhang Q, Riska A, Smirni E, Riedel E (2007) Performance
impacts of autocorrelated flows in multi-tiered systems. Perform
Eval 64(9–12):1082–1101

134 J Internet Serv Appl (2010) 1: 117–134

30. Mi N, Casale G, Cherkasova L, Smirni E (2008) Burstiness in
multi-tier applications: symptoms, causes, and new models. In:
Proc of Middleware

31. Mi N, Casale G, Cherkasova L, Smirni E (2009) Injecting realistic
burstiness into a traditional client–server benchmark. In: Proc of
ICAC

32. Minh TN, Wolters L (2009) Modeling job arrival process with
long range dependence and burstiness characteristics. In: Proc of
int’l symp on cluster computing and the grid, pp 324–330

33. Mosberger D, Jin T (1998) httperf: a tool for measuring web server
performance. In: Proc of workshop internet server performance

34. Neuts MF (1989) Structured stochastic matrices of M/G/1 type
and their applications. Dekker, New York

35. Paxon V, Floyd S (1995) Wide area traffic: the failure of poisson
modeling. IEEE/ACM Trans Netw 3(3):226–244

36. Ranjan S, Rolia J, Fu H, Knightly E (2002) QoS-driven server
migration for internet data center. In: Proc of IWQoS, pp 3–12

37. Ranjan S, Rolia J, Fu H, Knightly F (2002) Qos-driven server mi-
gration for Internet data centers. In: Proc of IWQoS

38. Reiser M, Lavenberg S (1980) Mean-value analysis of closed mul-
tichain queueing networks. J ACM 27(2):312–322

39. Riedi RH, Crouse MS, Ribeiro VJ, Baraniuk RG (1999) A mul-
tifractal wavelet model with application to network traffic. IEEE
Trans Inf Theory 45(4):992–1018

40. Rolia J, Vetland V (1998) Correlating resource demand informa-
tion with arm data for application services. In: Proc of WOSP, pp
219–230

41. Slashdot effect, Wikipedia, Oct 13, 2008. http://en.wikipedia.
org/wiki/Slashdot_effect

42. Sriram K, Whitt W (1986) Characterizing superposition arrival
processes in packet multiplexers for voice and data. IEEE J Sel
Areas Commun 4(6):833–846

43. Urgaonkar B, Pacifici G, Shenoy P, Spreitzer M, Tantawi A (2005)
An analytical model for multi-tier internet services and its appli-
cations. In: Proc of ACM SIGMETRICS, pp 291–302

44. Urgaonkar B, Shenoy P, Chandra A, Goyal P (2005) Dynamic pro-
visioning of multi-tier internet applications. In: Proc of ICAC

45. Villela D, Pradhan P, Rubenstein D (2002) Provisioning servers in
the application tier for e-commerce systems. ACM Trans Internet
Technol 7(1):7

46. Williams A, Arlitt M, Williamson C, Barker K (2005) Web work-
load characterization: ten years later. Springer, New York

47. www.mercury.com/us/products/diagnostics. HP (Mercury) diag-
nostics

48. Zhang Q, Cherkasova L, Mathews G, Greene W, Smirni E (2007)
R-capriccio: a capacity planning and anomaly detection tool for
enterprise services with live workloads. In: Proc of Middleware,
pp 244–265

49. Zhang Q, Cherkasova L, Smirni E (2007) A regression-based ana-
lytic model for dynamic resource provisioning of multi-tier appli-
cations. In: Proc of ICAC

http://en.wikipedia.org/wiki/Slashdot_effect
http://en.wikipedia.org/wiki/Slashdot_effect
http://www.mercury.com/us/products/diagnostics

	Sizing multi-tier systems with temporal dependence: benchmarks and analytic models
	Abstract
	Introduction
	Burstiness impact and index of dispersion
	Service process: one source of burstiness
	Burstiness in TPC-W
	Limitation of traditional performance models
	Performance models with burstiness

	Arrival process: another source of burstiness
	Different sources of burstiness
	Limitations of standard TPC-W
	A turnable burstiness knob and its realistic values
	Integrating burstiness in TPC-W
	Experiments

	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

