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Abstract

As most computer systems are expected to remain opera-
tional 24 hours a day, 7 days a week, they must complete
maintenance work while in operation. This work is in ad-
dition to the regular tasks of the system and its purpose
is to improve system reliability and availability. Nonethe-
less, additional work in the system, although labeled as
best effort or low priority, still affects the performance of
foreground tasks, especially if background/foreground work
is non-preemptive. In this paper, we propose an analytic
model to evaluate the performance trade-offs of the amount
of background work that a storage system can sustain. The
proposed model results in a quasi-birth-death (QBD) pro-
cess that is analytically tractable. Detailed experimenta-
tion using a variety of workloads shows that under depen-
dent arrivals both foreground and background performance
strongly depends on system load. In contrast, if arrivals of
foreground jobs are independent, performance sensitivity
to load is reduced. The model identifies dependence in the
arrivals of foreground jobs as an important characteristic
that controls the decision of how much background load the
system can accept to maintain high availability and perfor-
mance gains.
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1 Introduction

Nowadays, computer systems are rarely taken off-line for
maintenance. Even simple workstations, are in operation
24 hours a day, 7 days a week. Consequently, most sys-
tems schedule necessary maintenance that intends to assess
system status and predict/avoid reliability and availability
issues as background tasks [1, 2, 12, 17]. Very often, back-
ground activity is also associated with approaches that aim
at enhancing system performance [4, 21, 3].

Although background activity is critical to system opera-
tion, it often has lower priority than foreground work, i.e.,
the work requested by the system users. Therefore, it is
of paramount importance for system designers to better un-
derstand the trade-offs between minimizing the foreground
performance degradation and maximizing completion of
background tasks so that system reliability, availability, and
performance are improved in the long-run and without com-
promising the short-term performance of foreground work.
While facilitating and supporting background activity in a
system is a general concept [20], its applicability differs
among systems, i.e., distributed and clustered systems, stor-
age systems, and communication systems. Consequently,
efforts for utilizing idle time to improve reliability or per-
formance are often system specific and are either based on
prototyping and measurements [3, 1, 4, 21] or analytic mod-
els [2, 12, 13, 15].

In this paper, we propose an analytic model that ad-
dresses performance trade-offs between foreground and
background work at the disk drive level of a storage system.
There are numerous cases where storage systems and disk
drives deal with background jobs1. One widely accepted
background task is data integrity check or media scrubbing
in disk drives [17]. Disk scrubbing is a periodic checking

1The terms “task” and “job” are used interchangeably.



of disk media to detect unaccessible sectors. If a sector
is not accessible then it is reported up to the file system for
data recovery and it is remapped elsewhere on the disk. An-
other background activity in disk drives is the RAID rebuild
process [19, 12], which happens when one disk in a RAID
array fails and its data is reconstructed in a spare disk using
the data in the remaining disks of the array. Other exam-
ples of background activities include flushing of write-back
caches, prefetching, and replication [19].

Background tasks in a storage system may be periodic such
as disk scrubbing, or may span over a long period of time,
such as the RAID rebuild. Yet there are tasks where the
background jobs have the same service demands as the fore-
ground ones. For example, disk WRITE verification incurs
one extra READ to detect any disk WRITE error. This pro-
cess, known as READ-after-WRITE, degrades disk perfor-
mance substantially and is not feasible if running in fore-
ground, but is attractive as a low priority background activ-
ity. Nevertheless, its successful completion is tightly related
to the reliability and consistency of the data.

In this paper, we propose a model, which consists of an infi-
nite Markov chain with repetitive structure that captures the
disk or storage system behavior under the background ac-
tivity whose service demands are similar to the foreground
activity. It differs from similar models proposed for storage
systems [2] because it allows for bursty and autocorrelated
arrivals, which are the case in storage systems [16]. The so-
lution of the proposed model is tractable and can be solved
using the well-known matrix-geometric method [10]. The
model establishes that the relative performance of fore-
ground and background jobs is similar for either indepen-
dent or dependent arrivals. However, the saturation under
dependent arrivals is very fast (for small changes in fore-
ground workload), which actually effects more completion
rate of background jobs rather than the latency of the fore-
ground ones. For example, the non-preemptive background
jobs delay in the worst case only 20% of all foreground
jobs, with most delays remain below 5%. However, un-
der highly correlated arrivals and medium load the com-
pletion of background tasks is minimal (close to zero), a
non-desirable outcome when background activity intends
to enhance long-term reliability, such as the case of WRITE
verification.

This paper is organized as follows. Section 2 presents re-
lated work. Section 3 gives an overview of storage systems
under background jobs. The proposed model is presented in
Section 4. Performance evaluation results that are derived
using the analytic model are presented in Section 5. Con-
clusions and directions for future work are given in Sec-
tion 6.

2 Related Work

Multiple sources [4, 3, 16] indicate that computer sys-
tem resources operate under bursty arrivals and while they
have periods of high utilization, they may also have long
stretches of idleness. For example, in average disk drives
are only 20% utilized [16]. Given that a system operates in
low utilization, a myriad of approaches have been proposed
aiming at utilizing idle time to improve performance [4, 3],
fault tolerance [1], and reliability [17]. The goal is to sched-
ule performance/availability enhancing activities as low pri-
ority and minimize their impact on user performance [3].

The motivation of our work stems from storage systems,
where traditionally a variety of tasks, mostly aiming at en-
hancing data reliability, are treated as background activ-
ity [2]. Storage system background functions that address
reliability, availability, and consistency typically include
data reconstruction [12], data replication [13], disk scrub-
bing [17], and WRITE verification [2]. Background jobs
may also address storage performance issues including data
replication in a cluster to improve throughput or data reor-
ganization to minimize disk arm movement [4, 21].

Because background activity has often low priority, its ser-
vice is completed only when there is no foreground activity
in the system, i.e., at the end of a busy period. Vacation
models have been proposed for the general performance
analysis of systems where foreground/background jobs co-
exist [20, 15, 15, 22, 23]. To the best of our knowledge,
vacation models that are applied in storage systems or disk
drives have been considered only in [2]. However the mod-
els in [2] attempt to model a system whose arrival process
is strictly exponential and the background task results from
sequential scanning of the data on a disk or part of it. In this
paper, we explicitly model the performance effects of de-
pendence (be it short range or long range) in the arrival pro-
cess of background/foreground jobs on the disk, which has
been detected in [7, 16, 5]. We examine the effects of both
variability and dependence in the arrivals. We further as-
sume that background and foreground jobs are drawn from
the same distribution because we are interested in the set of
background activities such as WRITE verification that have
the same service demands as the user requests.

3 Storage System

In this section, we first identify the salient characteristics of
IO workloads and we give an overview of the operation of
the system with foreground and background tasks.
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3.1 Workload Parameterization

In storage systems and disk drives the arrival process is
bursty or self-similar [7, 16]. Here, we look at traces mea-
sured in different storage systems [16] that show high inter-
dependence in the arrival streams of requests. Throughout
this paper, we use the autocorrelation function (ACF) as a
metric of the dependence structure of a time series and the
coefficient of variation (CV) as a metric of variability. Con-
sider a stationary time series of random variables {Xn},
where n = 0, . . . ,∞, in discrete time. The autocorrelation
function (ACF) ρX(k) and the coefficient of variation (CV)
are defined as follows

ρX(k) = ρXt,Xt+k
=

E[(Xt − µ)(Xt+k − µ)]
δ2

, CV =
δ

µ
,

where µ is the mean and δ2 is the common variance of
{Xn}. The argument k is called the lag and denotes the
time separation between the occurrences Xt and Xt+k. The
values of ρX(k) may range from -1 to 1. If ρX(k) = 0, then
there is no autocorrelation at lag k. If ρX(k) = 0 for all
k > 0 then the series is independent, i,e., uncorrelated. In
most cases ACF approaches zero as k increases. The ACF’s
decay rate distinguishes processes as short-range dependent
(SRD) or long-range dependent (LRD).

Figure 1 presents the autocorrelation function (ACF) of the
inter-arrival times of three traces that have been collected in
three different systems, each supporting an e-mail server,
a software development server, and user accounts server,
respectively. These traces consist of a few hundred thou-
sands entries each and are measured over a 12 to 24 hour
period. As expected, for different applications the depen-
dence structure of the arrivals is different and it is a result
of multiple factors including the architecture of the storage
system, the file system running on top of the storage sys-
tem, and the I/O path hierarchy together with the resource
managing policies at all levels of the I/O path. Nonetheless,
independently of all these factors, all measurements show
that arrivals at the storage system exhibit some amount of
autocorrelation. The table in Figure 1 shows the mean and
coefficient of variation (CV) for the inter-arrival times and
the service times of all requests in the trace. The three traces
represent systems under different loads. Specifically, the
“User Accounts” trace comes from a lightly loaded system
(only 2% utilized), while the “E-mail” and “Software De-
velopment” traces come from systems with modest utiliza-
tions also (“E-mail’ is 8% utilized and “Software Develop-
ment” 6% utilized). These cases of underutilized systems
naturally indicate that an opportunity exists for scheduling
low priority jobs in the system and treating them as back-
ground work. Additionally, the low utilization levels in the
above measurement traces allow to assume that the mea-
sured job response times are a close approximation of the
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Figure 1. ACF of inter-arrival times of three
traces, the respective mean (in ms) and CV
of the inter-arrival and service times.

workload service times. Because all storage systems in Fig-
ure 1 consist of similar hardware, the service process is sim-
ilar across all traces and it actually has low variability, i.e.,
CV values are less than 1.

We propose models of the arrival and service processes in
a storage system that reflect the characteristics of the var-
ious traces illustrated in Figure 1. We model the service
process via an exponential distribution with mean service
time of 6 ms. For the arrival process, we use a two-state
Markovian Modulated Poisson Process (MMPP) [8, 11].2

MMPPs are processes whose events are guided by the tran-
sitions of an underlying finite absorbing continuous time
Markov chain and are described by two square matrices D0

and D1, with dimensions equal to the number of transient
states in the Markov chain. D0 captures the transitions be-
tween transient states and the variability in the stochastic
process while D1 is a diagonal matrix that captures the de-
pendence structure.

Let πMMPP be the stationary probability vector of the under-
lying Markov chain for an MMPP, i.e., πMMPP(D1 + D0) =
0, πMMPPe = 1, where 0 and e are vectors of zeros and ones
of the appropriate dimension. A variety of performance
measures are computed using πMMPP , D0, and D1, such as
the mean arrival rate, the squared coefficient of variation,
and the lag-k of its autocorrelation function ACF [14]:

λ = πMMPPD1e, (1)

2MMPP can capture various ACF levels and inter-arrival times vari-
abilities. Additionally, by using a 2-state MMPP for the arrival process
and exponential service times, the resulting queuing system can be ana-
lyzed with matrix-analytic methods [10].
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CV 2 =
E[X2]

(E[X ])2
− 1 (2)

= 2λπMMPP(−D0)−1e− 1,

ACF (k) =
E[(X0 − E[X ])(Xk − E[X ])]

Var[X ]
(3)

=
λπMMPP((−D0)−1D1)k(−D0)−1e− 1

2λπMMPP(−D0)−1e− 1
,

where X0 and Xk denote two inter-event times k lags apart.

We parameterize our MMPP models, using a simple mo-
ment matching approach that follows from the Eqs.(1), (2),
and (3). The two 2 × 2 matrices of the MMPP model, D0

and D1, have four parameters, i.e., v1, v2, l1, and l2 as
shown in Eq. (4).

D0 =
[ −(l1 + v1) v1

v2 −(l2 + v2)

]
,

D1 =
[

l1 0
0 l2

]
. (4)

Our moment matching technique has one degree of free-
dom. We decide to set l1 as the free parameter and adjust it
to let the analytic model have the same mean response time
as the real system. We parameterize three different MMPPs
to model separately the three different arrival processes of
our traces. The MMPPs are labeled as “E-mail”, “User Ac-
counts”, and “Software Development” and are used as input
to the analytic model that we develop here. We stress that
these MMPP models do not represent an exact fitting of the
traces in Figure 1, they only match the first two moments
of the trace and provide a range of different ACF functions.
Workload fitting such that the ACF is matched exactly, is
outside the scope of this paper. In Figure 2, we show the
ACF of the three MMPPs used here and their full parame-
terization.

3.2 Background Tasks in Storage Systems

We model a simple storage system with one service center,
where foreground jobs are served in a first-come first-serve
(FCFS) fashion. We assume that the amount of available
buffer space is always large enough to store all data asso-
ciated with waiting foreground tasks in the queue. There-
fore, the above system is approximated by an infinite-buffer
queue.

Foreground jobs consists of user arrivals only. Upon com-
pletion, a foreground job may either leave the system with
probability (1− p), or generate a new background job with
probability p, i.e., background tasks are only a portion of
foreground tasks and have service demands with the same
stochastic characteristics as the foreground jobs. Think of
WRITE verification; only a portion of all user requests are
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Figure 2. ACF of our 2-state MMPP models for
the interarrival times of the three traces and
their parameterization.

WRITEs and they need to be verified once they are serviced
by the disk. Background tasks are served in a “best-effort”
manner: a background job will get served only if there is
no foreground job waiting in the queue, i.e., during idle pe-
riods. Consequently, background tasks will ordinarily have
longer waiting times than foreground tasks.

Neither foreground nor background tasks are preemptive,
which is consistent with the nature of work in disk drives,
where the service process consist of three distinct opera-
tions, i.e., seek to the correct disk track, position to the cor-
rect sector, and transfer data. The “seek” portion of the
service time accounts in average for 50% of the service
time and is a non-preemptive operation [9, 18]. Because
of the non-preemptive nature of seeks, background activity
inevitably impacts foreground work performance: if a back-
ground task starts service, then this precludes the existence
of any foreground task in the system, but if a foreground job
arrives during the service of a background job, it will have
to wait in the queue and on the average experience longer
delay than the delay it would have experienced if the system
was not serving background tasks. To minimize this effect,
background tasks do not start service immediately after the
end of a foreground busy period, but after the system has
been idle for some pre-specified period of time, which we
refer to as “idle wait”.

Background jobs, similarly to the foreground ones, require
buffer space. Because the buffer is reserved for foreground
jobs, background buffer is limited. As a result, some of
background tasks will be dropped because the buffer is full.
A practical setting in a disk drive would be to allocate 0.5-
1MB of buffer space for background activity, which cor-
responds to approximately 50 background jobs of average
size. Throughout the paper, we assume a buffer that stores a

4
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Figure 3. The Markov chain of the queue-
ing system with infinite buffer size for fore-
ground tasks and a buffer size of 2 for back-
ground tasks.

maximum of 50 background jobs. We also examined buffer
sizes for up to 250 background jobs. Results are qualita-
tively same as those with buffer size 50 and are omitted due
to lack of space.

4 The Markov Chain

In this section, we describe a Markov chain that models
the queueing system with foreground/background activity
as described in the previous section. To simplify the defi-
nition of the state space as well as transitions among states,
we first assume exponential inter-arrival and service times
with mean rates λ and µ, respectively. Later, in Subsec-
tion 4.1, we show how the exponential inter-arrival process
is replaced by the 2-stage MMPP process. The Markov
chain of the foreground/background activity is depicted in
Figure 3. Because foreground jobs use an infinite buffer and
the background jobs use only a finite one, the Markov chain
is infinite in one dimension only. For presentation sim-
plicity, Figure 3 shows the instance where the background
buffer can store up to 2 background jobs only.

The state space is defined by a 2-tuple (x, y), where x indi-
cates the number of background tasks in the system (wait-
ing or in service) and y indicates the number of foreground
tasks in the system (waiting or in service). There are two
sets of 2-tuples in Figure 3: (x, y) and (x′, y). States (x, y)
indicate that a foreground job is being served. States (x′, y)
show that a background job is being served. The “idle wait”
is represented by states (x, 0), where x > 0 means that the
background jobs wait for a time period, which is exponen-
tially distributed with mean 1/α, before starting. We define
levels in this Markov chain such that level j consists of the

set of states S(j) defined as

S(j) = {(x, y) and (x′, y) |
0 ≤ x ≤ j, 0 ≤ y ≤ j, x + y = j}. (5)

Let the maximum buffer size of the background jobs be X .
Until there are X tasks in the system, the Markov chain
has a tree-like structure. Beyond that point, the background
buffer could be full and the levels of the Markov chain
form a repetitive pattern. The form of the chain is that of
a Quasi-Birth-Death process (QBD) which can be solved
using matrix-analytic methods [10].

4.1 Modeling Dependence in the Arrival
Process

Here, we enhance the simple Markov chain model to cap-
ture arrival streams with high variability and various de-
grees of dependence in their inter-arrival structure using a
2-state Markov Modulated Poisson Process (MMPP). Each
state in the Markov chain of Figure 3 is now replaced by
a set of sub-states, and scalars λ, µ and α are replaced by
matrices F, B, and W, respectively. An additional matrix
L0 is used to describe transitions within a set of sub-states.
Assume that D(A)

0 and D(A)
1 describe an A-state MMPP.

Then L0, F, B, and W are A × A matrices computed by
the following equations.3

F = D(A)
1 , B = IA×µ, W = IA×α, L0 = (D(A)

0 )(∗),
(6)

where IA is an A × A unit matrix and (D(A)
0 )(∗) is equal

to D(A)
0 except that diagonal elements are all 0. Therefore,

we construct a new Markov chain and its corresponding in-
finitesimal generator Q by replacing each state in Figure 3
with a set of A sub-states and use F, B, W, and L0 to de-
scribe its state transitions. The resulting Markov chain is
also a QBD process.

Figure 4(A) illustrates the transitions between the sub-states
corresponding to states (x, y), (x, y + 1) and (x + 1′, y) in
Figure 3. If we do not draw the detailed state transitions,
but simply substitute λ, µ and α in Figure 3 with matrices
F, B and W, and add L0 to describe the local state transi-
tions, we obtain the matrix-based transitions in Figure 4(B).
According to Eq. (6), F, B, W, and L0 of a system with
two-state MMPP arrivals are computed as follows:

F =
[

l1 0
0 l2

]
, B =

[
µ 0
0 µ

]
,

W =
[

α 0
0 α

]
, L0 =

[
0 v1

v2 0

]
, (7)

3Note that the service time and the idle waiting time are exponentially
distributed in our model. However, a similar method and Kronecker prod-
ucts can be used to generate the auxiliary matrices F, B, W, and L0 when
use a MMPP (or MAP) for the service and idle waiting processes.
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where v1, v2, l1, and l2 are the parameters of the 2-state
MMPP model in Eq. (4). One can easily show the equiv-
alence of state transitions in Figure 4(A) and Figure 4(B).
The infinitesimal generator Q of this new Markov chain can
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Figure 4. Changes in the Markov chain of Fig-
ure 3 when the arrival process is a 2-state
MMPP.

be obtained from Figure 3. For each level i corresponding
to the (i + 1)th column in Figure 3, the stationary state
probabilities are given by the following vectors:

π(i) = [π(i)
(0,i), π

(i)
(1′,i−1), π

(i)
(1,i−1), · · · , π(i)

(i′,0), π
(i)
(i,0)],

for 0 ≤ i ≤ X,

π(i) = [π(i)
(0,i), π

(i)
(1′,i−1), π

(i)
(1,i−1), · · · , π(i)

(X′,i−X), π
(i)
(X,i−X)],

for i > X.

π
(i)
(x,y) or π

(i)
(x′,y) is a row vector of size A that corre-

sponds to a set of sub-states under the MMPP arrival
process. Then, πQ = 0 and πe = 1 where π =
(π(0), π(1), · · · , π(X), π(X+1), · · ·).
We solve the QBD using the matrix geometric solution [10].
The state space is partitioned into boundary states and
repetitive states. Boundary states in the QBD of Figure 3
are the union of all levels i for 0 ≤ i ≤ X . We use π[0]

to denote the stationary probability vector of these states,
i.e., π[0] = (π(0), π(1), · · · , π(X)). Each level i for i > X
represents a repetitive set of states. Key to the matrix geo-
metric solution is that a geometric relation holds among the
stationary probabilities of the repetitive states, i.e.,

∀i > X, π(i) = π(X+1) ·Ri−1. (8)

Here the matrix R is a squared matrix of dimension equal
to the cardinality of repetitive levels, and can be computed

using an iterative numerical algorithm [10]. By computing
π[0] and π(X+1) as in [10] one can easily generate the entire
infinite stationary probability vector for the QBD. Thanks
to the geometric relationship in Eq. (8), several metrics can
be computed in closed form formulas.

Let e(i) be a column vector of 0’s with appropriate dimen-
sion except the (2i ·A+1)th to the (2i ·A+A)th elements
that are equal to 1, and let e(i′) be another column vector of
0’s except the ((2i−1) ·A+1)th to the ((2i−1) ·A+A)th
elements that are equal to 1, for i ≥ 0. Note that all the ele-
ments of e(0′) are equal to 0. Both e(i) and e(i′) are of size
A, where A is the order of the arrival MMPP process. The
average queue length of the foreground jobs QLENFG, the
completion rate (or admission rate) of the background jobs
CompBG, and the percentage of foreground jobs waiting
behind background jobs WaitPFG can be calculated as fol-
lows.

QLENF G =

X∑
i=1

i−1∑
j=0

((i − j) ∗ (π
(i)

(j,i−j) + π
(i)

(j′,i−j))e)

+

X∑
i=0

(X + 1 − i)π(X+1)(I −R)−2(e(i) + e(i′)) ,

CompBG = 1 − π(X+1)(I− R)−1e(X)

1 −
X∑

i=0

π
(i)

(0,i)
e − π(X+1)(I− R)−1e(0)

,

WaitPF G =

X∑
i=2

i−1∑
j=1

π
(i)

(j′,i−j) +

X∑
i=1

π(X+1)(I− R)−1e(i′)

1 −
X∑

i=0

(π
(i)

(i,0)
+ π

(i)

(i′,0))e

.

5 Performance Evaluation Results

Here we use the analytic model to analyze the performance
of a storage system that serves foreground and background
jobs, as described in the previous section. The model is
parameterized using the E-mail and Software Development
traces (see Figure 1). This parameterization results in the
MMPPs of Figure 2 which have different mean, CV, and
dependence structure, and we consider representative.4

We evaluate the general performance of the system as a
function of system load.5 Foreground load is a function of
the mean of the arrival process in the system (i.e., the mean

4The User Account trace performs qualitatively the same as the E-mail
trace because of its strong ACF structure. Results are not reported here
due to lack of space.

5In this section we use interchangeably the terms “load” and “utiliza-
tion”.
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of the MMPPs in Figure 2) while background load is a func-
tion of p, i.e., the probability that a foreground generates a
background job upon its completion. We scale the mean of
the two MMPPs in Figure 2 to obtain different foreground
utilizations. We also scale the value of p between 0.1 and
0.9 to obtain different background loads. The mean “idle
wait” time for a background job before starting service dur-
ing an idle period is equal to the mean service time, unless
otherwise stated. The background buffer size is 50.

5.1 Performance of foreground jobs

First, we report on the performance of foreground jobs.
Figure 5 presents the average queue length of foreground
jobs, which sharply increases as a function of foreground
load. This increase is nearly insensitive to different p val-
ues, showing that foreground load determines overall sys-
tem performance. Note that for long-range dependent ar-
rivals (“E-mail” MMPP) the saturation is reached much
faster than for arrivals with short-range dependence (“Soft-
ware Development” MMPP). We will return to the ques-
tion of how intensity in the dependence structure of the ar-
rival process affects system performance later in this sec-
tion. Figure 6 shows the percentage of foreground jobs that
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Figure 5. Average queue length of fore-
ground jobs for the Email (a) and Software
Dev. (b) traces as a function of foreground
load.

are delayed because of background jobs. As background
load increases, the portion of foreground jobs that are de-
layed increases, but as foreground load increases the por-
tion of foreground jobs that are delayed decreases. In the
worst case scenario that we present here, i.e., for p = 0.9,
only 20% of foreground jobs are delayed, which shows that
most foreground jobs maintain their expected performance.
The most interesting point in Figure 6 is that when the (to-
tal) load increases beyond a certain point then the portion
of foreground jobs that are affected decreases dramatically,
which is explained by background jobs performance in the
next subsection.
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Figure 6. Portion of foreground jobs delayed
by a background job for the Email (a) and
Software Dev. (b) traces as a function of fore-
ground load.

5.2 Performance of background jobs

We measure the performance of background jobs by the
portion of background tasks that complete. This metric
is directly related to reliability (or long term performance
benefits) of background activity. Results are given in Fig-
ure 7, which shows that as load increases, the completion
rate decreases to zero, independent of load or dependence
structure. For arrivals with a strong dependence structure,
(i.e., of “E-mail”), this point comes sooner than for arrivals
with weak dependence structure, (i.e., the “Software Devel-
opment”), see the range of the x-axis in Figure 7. Note that
the completion rate of the background activity relates to the
probability of the background buffer being full, which sup-
ports the observation that the strong dependence structure
in arrivals increases the queue length of background jobs,
as illustrated in Figure 8. Figure 8 shows the average queue
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Figure 7. Completion rate for background
jobs for the Email (a) and Software Dev. (b)
traces as a function of foreground load.

length of background jobs. Consistent with results in Fig-
ure 7, Figure 8 shows a similar qualitative behavior across
the two workloads. Quantitatively, the average queue length
of the long-range dependent workload is smaller than that
of the short-range dependent workload because more back-
ground jobs are dropped.
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Figure 8. Average queue length of back-
ground jobs in the workloads Email (a) and
Software Dev. (b) as a function of foreground
load.

5.3 Effect of “idle wait” duration

An important design issue in a storage system that serves
foreground and background jobs is the length of the “idle
wait” period, i.e., the time that the system operates in non-
work-conserving mode. The shorter the duration of “idle
wait”, the higher is the performance degradation of fore-
ground jobs.

In Figure 9, we show how the length of “idle wait” affects
the average queue length of foreground jobs under differ-
ent background loads. These experiments are conducted
for the parameterization of the actual traces given in Fig-
ure 2. Increase in “idle wait” does improve foreground per-
formance, because it reduces the number of foreground jobs
delayed by servicing background jobs. However improve-
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Figure 9. Foreground jobs average queue
length for the Email (a) and Software Dev. (b)
traces as a function of idle wait (in multiples
of service time).

ment of foreground performance does come due to a con-
siderable drop in background completion rate, as shown in
Figure 10. For example in the case of “E-mail” parameter-
ization under an “idle wait” of twice the service time and
p = 0.6, the completion rate of background jobs drops by
20% compared to the completion rate when the idle wait is
half of service time, but the foreground performance gains
are as low as 6.5% (the average foreground queue lengths

are 0.32 and 0.30 when idle wait is twice of the service time
and when idle wait is half of the service time, respectively).
Given the long-term benefits of background activity, main-
taining a small “idle wait” period, close to the average ser-
vice time, is beneficial for sustaining foreground job perfor-
mance and high background completion rate.

Idle time intensity

(a) E−mail − High ACF (b) Software Dev. − Low ACF

Idle time intensity

p = 0.1 p = 0.3 p = 0.6 p = 0.9

100
 80
 60
 40
 20
  0

100
 80
 60
 40
 20
  0

 0.5  1  1.5  2  2.5  3  0  5  10  15  20  25  30  35  40B
g 

co
m

pl
et

io
n 

ra
te

B
g 

co
m

pl
et

io
n 

ra
te

Figure 10. Completion rate for background
jobs in the workloads Email (a) and Software
Dev. (b) as a function of idle wait (in multiples
of service time).

5.4 The impact of dependence in the ar-
rival process

In this subsection, we analyze the effect that the arrival pro-
cess has on a system with background jobs. Using only
the “E-mail” workload parameterization, 6 we examine the
performance effects of Poisson arrivals, of an Interrupted
Poisson Process (IPP) (a process with high variability but
no correlation [6]) and of two MMPP processes with low
and high dependence structure. All these processes have the
same mean and CV as the measured in the arrival process
of “E-mail” trace, with the only exception of the Poisson
arrival process that maintains the same mean only. Results
show that the dependence structure of the arrival process
determines the sensitivity of system performance toward
load changes, that is, the stronger the dependence structure
the higher the sensitivity toward system load.

Figure 11 shows the average queue length for foreground
jobs under two different loads of background jobs, i.e., p
equal to 0.3, and 0.9. There is a dramatic queue length in-
crease under autocorrelated arrivals, that is orders of mag-
nitude higher than the queue length increase with exponen-
tial inter-arrivals. Even at 19% foreground utilization under
the strong correlated arrivals the foreground queue length
reaches 100. Such queue length is reached only under 95%
foreground utilization for the Poisson arrivals. For compar-
ative purposes, we plot the results using different scales on
the x-axis, separated by a vertical line. Consistent with the

6Qualitatively similar results can be obtained using the other two work-
loads and are omitted due to lack of space.
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results in Figure 5, high foreground load rather than back-
ground load determines overall foreground performance. In
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Figure 11. Average queue length for fore-
ground jobs for the “E-mail” workload as a
function of foreground load in the system.

Figure 12, we show completion rates for background jobs
as a function of foreground load. There are cases when
under high foreground load, there is nearly a 100% differ-
ence in performance between exponential and correlated ar-
rivals. The system simply saturates faster under correlated
arrivals and does not have the capacity to serve background
tasks. Therefore, under correlated arrivals light background
load should be sustained to ensure acceptable background
completion rates. Finally, Figure 13 shows the percentage

High ACF Low ACF IIP Expo

 100

  80

  60

  40

  20

   0    0

  20

  40

  60

  80

 100

 0  5  10  15  20  40  60  80  100  0  5  10  15  20  40  60  80  100
Foreground utilization (%) Foreground utilization (%)

(a) E−mail p = 0.3 (b) E−mail p = 0.9

B
g 

co
m

pl
et

io
n 

ra
te

 

 

B
g 

co
m

pl
et

io
n 

ra
te

 

 

Figure 12. Completion rate of background
jobs for the “E-mail” workload as a function
of foreground load in the system.

of foreground jobs delayed by background jobs as a func-
tion of foreground load. Interestingly, the figure shows that
the worst impact on foreground jobs is contained within a
limited range which is reached faster under highly corre-
lated arrivals than independent arrivals. In a dynamically
changing environment with correlated arrivals, the system
regulates itself faster to sustain foreground job performance
than under independent arrivals.

To summarize, the results of this section indicate that, in-
dependent of workload characteristics, the non-preemptive
background jobs minimally impact performance of fore-
ground jobs. However sustained foreground performance
under worst case scenarios is a result of low background
completion rates, which suggests that background load
must be kept modest to benefit system reliability or per-
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Figure 13. Portion of foreground jobs delayed
by a background job for the “E-mail” work-
load as a function of foreground load in the
system.

formance in the long-term. This sensitivity toward system
changes, in particular for the background completion rate,
is significantly higher for correlated than for independent
arrivals, which indicates that workload burstiness is an im-
portant factor that should determine the amount of back-
ground work in the system.

6 Conclusions and Future Work

In this paper, we presented an analytic model for the eval-
uation of disk drives or storage systems with background
jobs. Because of the non-preemptive nature of work (i.e.,
seeks) in disks, background work inevitably affects perfor-
mance of foreground work. The proposed model allows to
evaluate the trade-offs between foreground and background
activities. Our model incorporates most important charac-
teristics in storage systems workloads, including burstiness
and dependence in the arrival process. The model results
in a Markov chain of a QBD form that is solved using the
matrix-geometric method.

Experiments show that system behavior can be qualitatively
similar for independent or correlated arrivals, albeit for dif-
ferent utilization levels. This sensitivity to the system uti-
lization levels strongly depends on the dependence structure
in the arrival process. Although foreground performance
is sustained at acceptable levels, the background comple-
tion rate suffers when background load is high under corre-
lated arrivals. Our results suggest that the amount of back-
ground work is paramount for reliability and performance
gains, and must be a function of the degree of dependence
or burstiness in the arrival process. Currently, we are work-
ing on model extensions that capture more than one job pri-
ority level, i.e., different classes of background jobs.
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