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Abstract—This paper proposes a new packet scheduling al-
gorithm for access points in a crowded 802.11 WLAN. Our
goal is to improve the performance of efficiency (measured by
packet response time or throughput) and fairness which often
conflict with each other. Our solution aggregates both metrics
and leverages the balance between them. The basic idea is to let
the AP allocate different time windows for serving each client.
According to the observed traffic, our algorithm dynamically
shifts the weight between efficiency and fairness and strikes to
improve the preferred metric without excessively degrading the
other one. A valid queuing model is developed to evaluate the
new algorithm’s performance. Using trace-driven simulations,
we show that our algorithm successfully balances the trade off
between the efficiency and the fairness in a busy WLAN.

I. INTRODUCTION

Wireless LANs (WLANs) have been well deployed nowa-

days providing the last mile delivery of Internet access to

mobile clients. For example, wigle.net has reported more

than 33 million observed WiFi networks, and SkyHook a

WiFi-based localization service, has claimed to have “tens

of millions” access points (APs) in its database. With the

dense deployment of WiFi infrastructure and the evolution of

802.11 family, WLANs keep playing an extremely important

role in serving mobile clients. When more and more people

carry WiFi-enabled devices, such as laptop, smartphone, and

iPad, WLANs are often crowded, especially at particular

locations with special events, e.g., a meeting room for a large

conference or a stadium hosting a sports game. Under a heavy

traffic load, WLAN clients may encounter serious performance

degradation due to channel contention and interference.

In this paper, we aim to improve the performance of a busy

WLAN by designing a new scheduling algorithm for APs.

We focus on the packet scheduling of the downlink traffic,

i.e., from the AP to clients, as it carries the majority of data.

Typically, an AP applies First-In-First-Out (FIFO) scheduling

discipline, i.e., the first packet arriving from the Internet will

be first sent via the wireless channel. The FIFO strategy

works well with idle traffic, where each downlink packet can

be immediately sent to a client with little delay at the AP.

However, under heavy traffic, downlink packets may not be

delivered right after arrivals at APs. Instead, each AP maintains

a queue to buffer the incoming packets from the Internet.

Every packet in the queue has different attributes such as

packet size and transmitting rate (according to the destination

client). The simple FIFO policy, however, ignores all these

characteristics and can barely yield the optimal performance.

For example, when the AP delivers a packet with low rate, the

response times of all other packets in the queue are increased

by the transmission time. Thus, it would be better to deliver

the packets with high rates first.

When designing a new scheduling algorithm, we mainly

consider two metrics, link efficiency measured by packet

response time or link throughput and fairness among all the

clients. When an AP serves multiple clients, the wireless link

quality between each client and the AP is different. In order

to improve the efficiency, the AP prefers to first send the

packets through the fastest link. However, some other clients

with slow links may suffer from starvation causing unfairness.

In this paper, we propose a new scheme, named DAT, that

dynamically adjusts the time windows allocated to each client

and strikes the balance between efficiency and fairness.

Our basic idea is to combine Round-Robin, which achieves

the best fairness, with an adaptive time window for service.

The AP rotates all active clients and delivers the packets in

the buffer for them one client after another. Each client is

assigned a time window for serving its packets, i.e., during

a time window, the AP continuously sends the packets to

a particular client. Our DAT scheme dynamically adjusts

the time window for each client according to the observed

efficiency and fairness values. Our goal is to aggregate these

two metrics and balance the performance of them.

In summary, our major contributions in this paper are: 1)

We propose a novel AP scheduling algorithm that aggre-

gates the efficiency and the fairness considerations. 2) We

build a queuing model that captures the behaviors of WLAN

clients and the AP for the performance evaluation. 3) We

conduct comprehensive trace-driven simulations to evaluate

our proposed scheme and compare to two classic policies. The

simulation results show that our algorithm is superior for a

crowded WLAN.

The rest of the paper is organized as follows. Section II

summarizes the prior work and Section III presents our new

scheduling algorithm. In Section IV, we introduce the queuing

model for evaluation. The simulation results are reported in

Section V. Finally, we conclude in Section VI.

II. RELATED WORK

Throughput and fairness are traditional metrics for net-

work packet scheduling. They have also been well studied
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in WLANs’ literature. One direction particularly works on the

TCP flows [1]–[5]. The key problem is to handle head-of-line

blocking and the competition between TCP data packets and

TCP ACKs, especially when considering the channel errors.

While this paper focuses on the MAC layer scheduling, the

prior work on TCP flows can certainly be combined with our

solution to form a cross-layer scheduling scheme.

Another direction in the prior work is to improve through-

put and fairness by managing the whole WLAN such as

strategically associating clients to APs [6]–[11] and assigning

channels to APs [12], [13]. Most of these work requires

central control and coordination. The prior work here is also

complementary to our work in this paper which handles the

packet level scheduling on a single AP.

Furthermore, some previous work [14], [15] proposed to

achieve time-based fairness in WLANs via rate adaptation with

modifications on 802.11 standards. Their solutions focus on

the rate adaptation algorithms and require modifications on

802.11 standards. Our work targets on MAC layer scheduling

and we consider the fairness of throughput.

Also, some previous work focuses on the improvement of

efficiency. For example, [16] proposed an embedded round

robin policy which improves the efficiency by reducing the

time for polling idle stations. Kar., K. etc. [17] presented a

throughput-optimal scheduling policy when the time-varying

channel rate can be measured only infrequently. However, the

metric of fairness is not considered in these papers.

Finally, wireless packet scheduling is often studied to pro-

vide QoS represented by the IEEE 802.11e standard [18]. In

802.11e EDCA mode, high priority traffic is given shorter

delay-related parameters such as contention window (CW) and

arbitration inter-frame space (AIFS) so that it has better chance

to be sent than low priority traffic. Our proposed scheduler is

also complementary to QoS provision scheme. While 802.11e

distinguishes traffics with different priorities, our scheme can

be used to schedule the traffics with the same priority.

III. NEW AP SCHEDULING ALGORITHM: DAT

A. System Model and Overview

In this work, we consider an AP serving n clients,

{c1, c2, . . . , cn}, in a busy wireless LAN. We assume that the

clients are ordered based on their effective downlink rates, con-

sidering the MAC layer transmitting rates, acknowledgment,

retransmission, and other per-packet overheads. It follows that

client c1 has the slowest link to the AP and cn is connected

with the fastest link. When the AP is over-loaded, the downlink

packets may be buffered in a queue at the AP before being

sent out. Normally, the queue has a capacity limit indicated by

a maximum number of packets that can be held in the buffer.

Later in Section V, we show the evaluation under infinite

queue capacity as well.

In this paper, we consider two metrics as the performance

objective of an AP scheduling algorithm: efficiency and fair-

ness. The first metric is measured by the packet response

time or alternatively by the throughput. The second metric of

fairness is measured by the Jain’s index. Despite that both

metrics are critical in the scheduler evaluation, it is often

difficult to improve them simultaneously under a particular

AP scheduling policy. For example, one can use Round Robin

(RR) to achieve the best fairness. By rotating among all

active clients, RR always delivers one packet for each client

in a round. This policy can certainly avoid starvation, but

the efficiency under RR is very poor. In contrast, the other

extreme of scheduling policy (MAXTP) is to always give

higher priority to faster clients, i.e., keep sending the available

packets to a client which has the highest downlink rate. As a

result, the optimal efficiency in terms of packet throughput or

packet transmit delay time is achieved under MAXTP while

poor fairness often becomes a big problem under this policy

because it unfairly treats the clients with slow downlink rates.

How to balance the trade-off between efficiency and fairness

is imminently important and challenging in the AP scheduler

design. In this paper, we propose a new scheduling algorithm,

named DAT, which takes into account both metrics in schedul-

ing the downlink packets at the AP and strikes to obtain the

fairness and the efficiency close to the optimal results provided

by RR and MAXTP respectively.

B. Algorithm Description

Our new algorithm adopts the basic idea of rotating clients

to serve from the RR scheme. However, we assign different

service time to each client.

In our scheme, the AP selects a client c to serve and

allocates a time window for service. The AP keeps sending

the packets for client c till the assigned time window is

elapsed or there is no more packets available for client c.
Then the AP will select another client and start delivering its

packets. Different from the RR scheme, the duration of time

window for each client is dynamically adjusted across time

by considering the trade-off between efficiency and fairness.

We consider that the AP selects a window size from a set of

discrete values to serve a client. Let w denote the minimum

time slice (finest granularity), e.g., w = 0.01 seconds. Then a

pool of k candidate values for the window size is represented

by {1w, 2w, 3w, ..., kw}. In our DAT scheme, the AP chooses

the best window size for each client from these k values based

on the following two target functions.

“Relative Efficiency” function: This function expresses the

relative efficiency gain for a particular choice of the window

size. Intuitively, if efficiency is the only concern, then a good

policy (e.g., MAXTP) should always consider large windows

for clients with fast link rates in order to empty the AP

buffer as soon as possible, resulting in short packet response

times, high system throughput and high system availability.

To characterize the effect of the window size, we define the

Relative Efficiency function as follows:

αi = i · w ·
Ratec −Rate

PackSize
, ∀i ∈ [1, k], (1)

where Ratec represents the link rate of the selected client,

Rate represents the average link rate of all the remaining ac-

tive clients that have packets in the AP buffer, and PackSize



is the mean size of the packets. A higher value of αi indicates

more packets expelled from the queue, thus a better efficiency

is achieved. Based on Eq.(1), if Ratec > Rate, then the AP

prefers to allocate a large window (or the largest window if

αi is the only metric) to client c . Otherwise, if αi becomes

negative, the AP would reduce the window size as much as

possible. We remark that αi provides a good indication of

efficiency that the policy can achieve when the AP assigns a

particular time window to a client.

“Expected Fairness” function: Our second target function is

designed to quantify the fairness. As mentioned earlier, we use

the Jain’s fairness index as the metric to measure the fairness

of a given scheduling policy. Eq.(2) gives the definition of

Jain’s fairness index I:

I =
(
∑n

j=1
TPj)

2

n
∑n

j=1
TPj

2
, (2)

where n is the number of active clients and TPj represents the

throughput of client j in a predefined time period. The range of

I is between 0 and 1, and a higher value of I indicates a better

fairness. The main goal of our second target function, named

Expected Fairness, is to estimate the packet throughput among

all active clients and thus express the performance of fairness.

To accomplish it, DAT online tracks each client’s throughput

in the past monitoring window t and uses this information to

decide the duration of the time window for the current client.

The intuition is that if the client has already received a higher

throughput in the previous monitoring window, then a smaller

time window should be chosen for that particular client in the

next round, and vise versa. Note that the size of monitoring

window t is a user-specific parameter and we will describe its

setting in Section V.

Given a client c and a candidate time window i ·w, we have

the following equations to calculate the expected throughput

for all n clients if DAT decides to send the packets to client

c during the i · w time period:

TPj =





Sj

t+i·w
, for j 6= c,

Sc+s
t+i·w

, for j = c,

(3)

where Sj represents the total amount of data transmitted to

client j during the previous monitoring window t, and s equals

to the estimated amount of data that can be transmitted to client

c within the i · w time window, i.e., s = Ratec · i · w. Let

Ŝum =
∑n

j=1
Sj and Ŝum2 =

∑n

j=1
Sj

2. We then express

the Expected Fairness target function as follows:

βi =
(s+ Ŝum)2

n(Ŝum2 + 2 · s · Sc + s2)
. (4)

Given the above two target functions, DAT further uses the

0-1 scaling technique to scale αi and βi for all k candidate

time windows (i.e., 1 ≤ i ≤ k) as follows.

α′

i =
αi − αmin

αmax − αmin

. (5)

β′

i =
βi − βmin

βmax − βmin

. (6)

Then, DAT selects the best window size for the current client

based on the following equation:

Pi = w1 · α
′

i + w2 · β
′

i, (7)

where w1 and w2 are the user-defined weights for αi and

βi, respectively. We expect that higher Pi will achieve better

efficiency/fairness balance. Therefore, the time window which

can get the highest value of Pi will then be assigned to the

current client. The major steps of DAT are presented in Fig. 1.

Algorithm: DAT
begin
1. choose an active client c based on round-robin rotation and

set current time as t0;
2. assign time window size for the chosen client c;

a. for i = 1 to k
I. calculate αi using Eq.(1);
II. calculate βi using Eq.(4);

b. P ′
← 0, i′ ← 0;

c. for i = 1 to k
I. scale αi and βi to range [0,1] by 0-1 scaling method;
II. calculate Pi using Eq. (7);
III.if Pi > P ′

then P ′
← Pi and i′ ← i;

d. assign window size i′ · w to client c;
3. send packets to client c;

a. if current time t < t0 + i′ · w and
number of packets from client c > 0

then
I. send a packet to client c;

II. update history information Sc, Ŝum, and Ŝum2;
else go to step 1;

end

Fig. 1. The high level description of DAT.

IV. SIMULATION MODEL

In this section, we present a queuing model built for

evaluation. We consider the circumstance where requests from

multiple clients and the corresponding reply packets from the

AP are all sent through the same wireless channel. Fig. 2

illustrates the model that captures the behavior observed in the

single AP situation and evaluates the performance of different

scheduling algorithms under heavy load conditions.
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Fig. 2. A queuing model of the single AP wireless network.

In this model, an infinite queue (Q0) with n servers is

used to emulate n clients’ activity in the system, where

each server represents a single client, independently sending

requests to the AP. We model the request inter-arrival times

as a Markovian Arrival Process (MAP) [19] for each server

in Q0 such that each client can have different arrival rates



and different arrival distributions. The specifications of each

request include request arrival times, request sizes in bytes,

client index, and effective uplink/downlink rates. All requests

generated by Q0 are then enqueued to the queue Q1, waiting

for the transmission in the shared wireless channel. We remark

that in the real wireless network, clients usually trigger a retry

mechanism if there are simultaneous contentions for the shared

channel. Since our focus is on AP’s scheduling for downlink

packets, we here simply ignore such a retry mechanism and

instead transmit these requests in the order of their arrival

times using the FIFO discipline at channel queue Q1.

We further introduce a delay center Q2 to model the

processing times at remote servers, which process a received

client request with a fixed time 1/µi and then send the

corresponding reply data back to the AP. As transmitted

packets usually have a limited size, e.g. 1.5K bytes, if a reply

data set is larger than that particular limit, then the original

one will be partitioned into several packets and transmitted

at the packet level. It follows that instead of having one to

one relationship between requests and reply packets, remote

servers in the delay center Q2 might generate m reply packets

for each arrived request, where m is determined by the original

reply data size and the size limit.

These reply packets received from the remote servers are

then queued in the AP buffer, shown as Q3 in Fig. 2, waiting

for the service or transmission at the shared channel Q1.

When detecting no reply packet waiting or serving at Q1, the

AP chooses a reply packet from the buffer and enqueues it

to Q1 immediately. The selection of next transmitted reply

packet is done according to different scheduling disciplines.

For example, if the MAXTP policy is considered, then the

AP buffer can be implemented as a priority queue based on

transmit rates. Consequently, the AP always selects a reply

packet with fastest downlink rates. In real wireless network,

the transmitted reply packets might trigger one or several client

requests after some delay time. We capture this behavior by

adding a branch probability for reply packets at Q1: with

probability p a completed packet at Q1 is simply forwarded

to its associated client and with probability 1− p, a batch of

client requests (≥ 1) are sent back to the channel queue.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our DAT

and compare the results to the other two classic policies, RR

and MAXTP.

A. Evaluation Settings

Workload: We conduct simulations with the following three

synthetic trace sets which represent different scenarios.

• Base case: The requests from each client follow a random

arrival pattern with the same mean request arrival rate.

• Burst case: In this case, we choose the top two fastest

clients and set idle and burst periods in the request arrival

trace of these two clients. The requests from other clients

are the same as in the base case.

• Uneven case: In this case, we set the request rates of the

top two fastest clients to be five times higher than those of

other clients.

We use the trace from SIGCOMM 2008 [20] to generate

requests and reply packets. The mean size of requests is 322

bytes and the mean size of reply packets is 1004 bytes.

Default parameters: In our default setting, there are totally

n = 20 clients. Each client has the fixed uplink and downlink

rates throughout the whole simulation, and the link rate ranges

from 100KB to 1MB. Without loss of generality, clients with

larger index have faster link rates, such that client 20 has

the highest uplink and downlink rates among all clients. By

default, we set the minimum time slice w = 0.01sec, the

number of candidate window sizes k = 10 and the branch

probability p = 1. The user-specific parameters are set as

follows: t = 0.5sec (size of the monitoring window), w1 = 1
and w2 = 2 (weights in Eq.(7)).

For each trace set, we further consider both infinite buffer

size situation and finite buffer size situation when measuring

performance. With the setting of infinite buffer size, we

measure the average response time for efficiency and average

Jain’s index for fairness. When considering finite buffer size,

we additionally measure the number of dropped packets and

the corresponding drop ratios.

Fairness measurement: In our simulation, the fairness

index is measured across time within a 0.25-second time

window. We also tried other time window lengths (e.g., 0.5

sec, 1 sec), which result qualitatively the similar results. In

each time window, we only consider the active clients for

calculating the fairness index. We define a client to be active

in a certain time window if it has sent requests during this

time window or if it has a pending request (sent in past time

windows) that has not been replied. In addition, we ignore the

time windows with no active clients or only one active client

since there is no fairness issue in such a situation.

Scale rate: To clearly illustrate how well our DAT balances

between the efficiency and the fairness, we further present the

relative scale rate using the 0-1 scaling technique as follows:

among all the polices (e.g., RR, DAT and MAXTP), we scale

the best performance to 1 and the worst performance to 0 and

then normalize our DAT’s performance between 0 and 1, see

Eq.(8).

Scale rate =
|DAT −Worst|

|Best−Worst|
. (8)

Therefore, a larger-than-0.5 relative scale rate indicates that

DAT performs closely to the best policy, e.g., with shorter

response time or larger fairness index. If the relative scale

rate is smaller than 0.5, then it implies the opposite. If the

values with respect to both response time and fairness index

are greater than 0.5, then our DAT obtains a well balance

between the efficiency and the fairness.

B. Performance Improvement

1) Base Case: In this case, each client’s mean request

arrival rate was generated independently through a 2-state



Markov-Modulated Poisson Process (MMPP), which is a spe-

cial case of the Markovian Arrival Process (MAP) [19]. We

stress that distributions of modern network traffic, e.g., packet

and connection arrivals are no longer Poisson distributed [21].

Therefore, we investigate heavy-tailed WLAN packet arrival

processes where the mean arrival rate of each client ci is set

to λi = 1.5 per sec, and the coefficient of variation (CV) at

the arrival process is equal to 5.

The simulation results under the three scheduling policies

are shown in Table I and Table II with infinite and finite buffer

size (maximum 800 packets in the buffer), respectively. The

numbers in parentheses are the relative scale rates of DAT. As

we can see, in both infinite buffer and finite buffer settings,

mean response time of our DAT is close to MAXTP and mean

fairness index is close to RR. For example, compared to RR,

when using infinite buffer, DAT improves the efficiency (e.g.,

response time) by 50 percent yet only degrades the fairness by

18 percent. The corresponding scale rates in terms of response

time and fairness index are both more than 0.5.

RR DAT MAXTP

RespTime(s) 2.301 1.135(0.82) 0.885
FairIndex 0.766 0.626(0.56) 0.450

TABLE I
PERFORMANCE UNDER BASE CASE WITH INFINITE BUFFER SIZE.

RR DAT MAXTP

RespTime(s) 0.866 0.714(0.69) 0.647
FairIndex 0.758 0.641(0.70) 0.369

DropRatio(%) 2.010 1.012(0.81) 0.773

TABLE II
PERFORMANCE UNDER BASE CASE WITH FINITE BUFFER SIZE.
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Fig. 3. Illustrating (a) CDFs of fairness index, and (b) CDFs of
response time for RR, MAXTP, and DAT, where k = 10 and buffer
size is infinite under base case.

Fig. 3 further illustrate more details about the performance

comparison of the three different scheduling policies. Accord-

ing to the cumulative distribution functions (CDFs) of fairness

index and response time per packet, it is apparent that DAT

policy achieves the fairness close to RR and the efficiency

performance close to MAXTP. The minimum fairness index

under DAT is about 0.3, which is close to the minimum one

under RR, while the minimum index in MAXTP is less than

0.1 indicating that most clients are starved during that time

period.

2) Burst Case: In our burst case workload, the mean

request arrival rate of each client is the same as in the base

case. Yet, a bursty access pattern is introduced into the arrivals

of two clients with fastest link rates, i.e., client 19 and 20, such

that the SCV of their inter-arrival times is equal to 20 and

the autocorrelation function (ACF) at lag 1 is equal to 0.47.

Therefore, high variability and strong temporal dependence are

injected to the workload of these two clients.

As shown in Table III, all three policies encounter signif-

icant performance degradation in terms of response time and

drop ratio. The efficiency of DAT seems not as good as we

observed in the base case. The relative improvement of average

response time is only 22 percent compared to RR. However,

if we examine the average response times of those clients

without bursty patterns, i.e., client 1 to 18, then the average

response times of both RR and DAT decrease while the

average response time of MAXTP on the contrary increases.

Consequently, DAT becomes the most efficient policy for

those non-bursty clients. Since the bursty patterns are injected

into the arrivals of the top two fastest clients, MAXTP achieves

good efficiency by giving them high priority, but on the other

hand, sacrifices the performance of other clients, resulting in

extremely serious unfairness. Fig. 4 (b) further demonstrates

such unfairness under MAXTP where it always degrades the

performance of clients which have slow link rates.

Another interesting point in this case is that the mean

fairness index value of MAXTP is counter-intuitively better

than that in the base case. In fact, this is caused by the property

of Jain’s fairness index, which is sensitive to the number of

active clients. For example, considering there are now only

two active clients, even under the extreme scenario where one

client is starved during the whole period, the index value will

be equal to 0.5 which is still relatively good. In the burst case,

the AP also experiences more idle periods where the number

of active clients is small. In such an idle time period, the

difference of fairness index values among the three policies is

thus reduced.

3) Uneven Case: Now, we turn to investigate different

request arrival rates. In order to keep the overall request arrival

rate similar as the previous two cases, we scale the arrival rates

of selected clients (e.g., 19, 20) to 6 per sec and decrease the

rates of other clients (e.g., 1∼18) to 1.2 per sec. In addition,

the SCV of all request arrival traces is equal to 5 and no clients

have bursty patterns in their arrival flows. The results shown

in Table IV validate that our DAT still works well in this case,

consistently achieving a good balance between efficiency and

fairness.

Fig. 4 (c) further presents the average response time of each

client’s reply packets. Recall that in our evaluation setting,

the link rate linearly increases as the client index increases

and clients with larger index always have faster link rates.

Thus, one can clearly observe that MAXTP always degrades

the performance of one or two clients with slowest link

rates. While under RR, clients which are responsible for the

buffer congestion suffer significant performance degradation

and the other clients have almost the same response times

despite of their varying link rates. Also, observe that our DAT

always punishes the clients that cause the buffer congestion

in order to improve the efficiency of other clients. On the

other hand, DAT strikes to give clients with faster link rates

better performance, which fortunately is not too aggressive to

degrade the fairness as MAXTP does.



InfiniteBuffer FiniteBuffer
Resp(s) Resp*(s) FairIndex Resp(s) Resp*(s) FairIndex DropRatio(%)

RR 5.921 1.490 0.759 0.734 0.658 0.750 3.329
DAT 4.594 (0.27) 0.849 (1.00) 0.662 (0.72) 0.623 (0.95) 0.538 (1.00) 0.675 (0.69) 2.866 (0.28)

MAXTP 1.052 1.152 0.417 0.617 0.662 0.507 1.682

TABLE III
PERFORMANCE UNDER BURST CASE (RESP* REPRESENTS THE MEAN RESPONSE TIME OF CLIENTS WITHOUT BURSTINESS).

InfiniteBuffer FiniteBuffer
Resp(s) FairIndex Resp(s) FairIndex DropRatio(%)

RR 1.118 0.729 0.476 0.725 1.091
DAT 0.500 (0.74) 0.625 (0.58) 0.360 (0.62) 0.650 (0.61) 0.425 (0.68)

MAXTP 0.287 0.480 0.289 0.535 0.108

TABLE IV
PERFORMANCE UNDER UNEVEN CASE
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Fig. 4. Average response times of each client for RR, MAXTP, and DAT with k = 10 under (a) base case, (b) burst case, and (c) uneven
case and infinite buffer size scenario.

VI. CONCLUSION AND FUTURE WORK

When WLANs become more and more popular, they are

often crowded and the clients experience significant perfor-

mance degradation. To solve the issue, we proposed a new

packet scheduling algorithm DAT for heavily-loaded APs,

which uses the basic Round-Robin scheme to select a client for

service, but allocates each client with a different time window.

The representitive case studies carried out in this paper have

revealed that DAT significantly improves the performance

in terms of efficiency and fairness in a crowded WLAN,

reducing the packet response times and avoiding the starvation

especially for clients with poor link quality. We also show that

by dynamically adjusting the window size, DAT leverages the

balance between the efficiency and the fairness.

Our future work mainly includes two directions. First, we

would like to implement the scheduling algorithm on commer-

cial wireless routers and conduct experiments for evaluation.

Second, we plan to explore a new algorithm as well as a new

model in a setting of multiple APs with possible coordination.
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