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In this paper a novel constrained-stability least-mean-squares �LMS� algorithm for filtering speech
sounds is proposed in the adaptive noise cancellation �ANC� problem. It is based on the
minimization of the squared Euclidean norm of the weight vector change under a stability constraint
over the a posteriori estimation errors. To this purpose, the Lagrangian methodology has been used
in order to propose a nonlinear adaptation in terms of the product of differential input and error.
Convergence analysis is also studied in terms of the evolution of the natural modes to the optimal
Wiener–Hopf solution so that the stability performance depends exclusively on the adaptation
parameter � and the eigenvalues of the difference matrix �R�1�. The algorithm shows superior
performance over the referenced algorithms in the ANC problem of speech discontinuous
transmission systems, which are characterized by rapid transitions of the desired signal. The
experimental analysis carried out on the AURORA 3 speech databases provides an extensive
performance evaluation together with an exhaustive comparison to the standard LMS algorithms,
i.e., the normalized LMS �NLMS�, and other recently reported LMS algorithms such as the modified
NLMS, the error nonlinearity LMS, or the normalized data nonlinearity LMS adaptation.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.3003933�
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I. INTRODUCTION

The widely used least-mean-squares �LMS� algorithm
has been successfully applied to many filtering applications
including modeling,1 equalization, control,2,3 echo cancella-
tion biomedicine, or beamforming.4 One of these important
applications is found in voice communication systems such
as dialogue systems in airplane or helicopter cockpits where
the extraction of noise from the desired speech is required.
Another major application concerns filtering biosignals in
adverse noise conditions that usually are present in medical
instruments. These applications include the cancellation of
several kinds of interference in electrocardiograms �ECGs�
such as canceling the power line interference, the donor ECG
in heart-transplant electrocardiography, or the maternal ECG
in fetal electrocardiography;5 and adaptive noise canceling
�ANC� in modern techniques such as positron emission to-
mography or single positron emission computed tomography
images.6
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The typical noise cancellation scheme of a voice com-
munication system is shown in Fig. 1. Two distant micro-
phones are needed for such application capturing the nature
of the noise and the speech sound simultaneously. The cor-
relation between the additive noise that corrupts the clean
speech �primary signal� and the random noise in the refer-
ence input �adaptive filter input� is necessary to adaptively
cancel the noise of the primary signal. Note that the primary
signal d�n� consists of the clean speech s�n� and the additive
noise v1�n� recorded by the primary microphone. The refer-
ence noise signal v2�n� is the input of the FIR filter defined
by the L�1 weight vector w�n�. Its output y�n� is the “best”
estimation of the additive noise in the primary signal. The
criterion for the best estimation is the minimization of the
expected value of the squared sequence e�n�, which tends to
equal the original signal s�n�. The weights are typically ad-
justed using the LMS algorithm5 because of its simplicity,
ease of implementation, and low computational complexity.
The weight update equation for ANC is
© 2008 Acoustical Society of America 3669�/3669/15/$23.00



w�n + 1� = w�n� + �e*�n�x�n� , �1�

where � is a step-size parameter with units of inverse power,
e�n�=d�n�−y�n�=s�n�+v1�n�−wH�n�x�n� is the system out-
put, where H stands for conjugate transpose, * denotes com-
plex conjugate, and x�n�= �x�n� , . . . ,x�n−L−1��T is the data
vector containing L samples of the reference signal, v2�n�,
that are present in the adaptive filter’s tapped delay line at
time n. Many ANCs �Refs. 5 and 7–10� have been proposed
in the past years using modified LMS �MLMS� algorithms in
order to simultaneously improve the tracking ability and
speed of convergence. In this way, many efforts have been
directed to reduce computational load and power consump-
tion in adaptive filter implementations.11,12

On the other hand, the emerging applications of speech
technologies �particularly in mobile communications, robust
speech recognition, or digital hearing aid devices� often re-
quire a noise reduction scheme working in combination with
a precise voice activity detector �VAD�.13,14 During the past
decade numerous researchers have studied different strate-
gies for detecting speech in noise and the influence of the
VAD decision on speech processing systems.15–21 The non-
speech detection algorithm is an important and sensitive part
of most of the existing single-microphone noise reduction
schemes.22,23 The VAD is even more critical for nonstation-
ary noise environments since it is needed to update the con-
stantly varying noise statistics. A VAD achieves silence com-
pression in modern mobile telecommunication systems
reducing the average bit rate by using the discontinuous
transmission �DTX� mode.16 VADs have been used exten-
sively in the open literature as a reference for assessing the
performance of new algorithms.

This paper shows a novel adaptation in combination
with a VAD to enhance speech signals in DTX systems,
which are characterized by a sudden change in channel sig-
nal statistics. The algorithm is derived assuming stability in
the sequence of a posteriori errors instead of the more re-
strictive hypothesis used in previous approaches,24 that is,
enforcing it to vanish. The result of the Lagrange minimiza-
tion is the application of the normalized LMS �NLMS� algo-
rithm to a new set that consists of difference signals that are
more suitable for ANC of speech signals in DTX systems. In
this way, the sudden transitions in the channel are counter-
acted by the use of the concurrent change of the processing
variables. The deterministic version of the proposed adapta-
tion is also shown to be equivalent to the gradient descent
method, from which the NLMS algorithm derives, in the
sense that they have the same optimal solution.

The paper is organized as follows. In Sec. I A the back-
ground on LMS algorithms applied to the ANC problem is
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FIG. 1. Adaptive noise canceler.
summarized. Then a novel constrained-stability �CS� LMS
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algorithm for filtering speech signals in additive noise is pro-
posed in Sec. II. This is achieved by minimizing the norm of
the difference weight vector and imposing a stability con-
straint in the sequence of errors in order to reach the equi-
librium condition. In Sec. III A a connection to the previous
LMS algorithm is shown, which allows to analyze: the con-
ditions for convergence. This novel methodology for weight
adaptation provides both higher filtering performance as well
as enhanced tracking ability over the traditional LMS meth-
ods in context of ANC applications. In addition, an improve-
ment in filtering results by means of a VAD is also achieved
in Sec. IV. The VAD scheme combines the operation of the
proposed CS-LMS with a suitable MLMS algorithm, the lag
CS-LMS, which is intended for filtering nonstationary noise
segments, exclusively. Thus, we select the best adaptation on
each kind of frame �speech or noise� achieving an additional
improvement in filtering performance and a clear reduction
of background noise, on the filtering algorithms operating
separately. The experimental analysis conducted in Sec. V
provides the information on how the proposed and refer-
enced algorithms operate on discontinuous speech segments
in the ANC application. Finally, we state some conclusions
in Sec. VI.

A. Background on modified LMS algorithms

Many researchers have proposed modifications to the
LMS algorithm, which are motivated by two factors: �i� re-
ducing the computational burden, and �ii� improving the
trade-off between convergence time and steady-state perfor-
mance. One approach for improving LMS algorithms is to
modify the time-varying step size, i.e., applying nonlineari-
ties to the quantities used to update the weights �the data
vector and/or the output signal�. For instance, Bershad stud-
ied the performance of the NLMS with an adaptive step size
��adap�=� / �x�n��2 in Ref. 25, showing advantages in conver-
gence time and steady state. Later, Douglas and Meng9 pro-
posed the optimum nonlinearity for any input probability
density of the independent input data samples, obtaining the
normalized data nonlinearity LMS �NDN-LMS� adaptation

w�n + 1� = w�n� +
�

1 + ��x�n��2e*�n�x�n� . �2�

Although this algorithm is designed to improve steady-state
performance, its derivation did not consider the ANC with a
strong target signal in the primary input.7 Greenberg’s
MLMS extended the latter approach to the case of the ANC
with the nonlinearity applied to the data vector and the target
signal itself, obtaining substantial improvements in the per-
formance of the canceler. The disadvantage of this method is
that it requires unknown a priori information of the pro-
cesses

w�n + 1� = w�n� +
�L

�emin
2 �n� + �L�x�n��2�

e*�n�x�n� , �3�

where �L=�opt /L and �opt is a dimensionless step-size pa-
rameter. Further emin is the Wiener–Hopf solution in station-
ary environment. Recently, an interesting approach has been

proposed based on a nonlinearity applied to the data vector
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exclusively.10 The error nonlinearity LMS �EN-LMS� algo-
rithm is described in terms of the following LMS adaptation:

w�n + 1� = w�n� +
�opt

e + �e�n��2e*�n�x�n� , �4�

where �e�n��2=�i=0
n−1�e�n− i��2 is the squared norm of the error

vector, which is estimated over its entire history. As in the
NLMS algorithm, � is usually added to prevent instability in
the variable step size of the algorithm if � · �2 is too small. For
both stationary and nonstationary noise environments, the
EN-LMS algorithm has shown a good trade-off between
speed of convergence and misadjustment �M� �Ref. 26� im-
proving the performance over Douglas’ NDN-LMS.10

II. CONSTRAINED-STABILITY „CS…-LMS ALGORITHM

In this section, a novel adaptation that applies nonlin-
earities to the error sequence and the input signal in terms of
difference values is presented. The main motivation of the
CS-LMS algorithm is to obtain a suitable adaptation for
DTX systems, in which the sudden transitions in the channel,
due to the presence of intermittent signals, affect the perfor-
mance of the standard filtering algorithms because of their
limited tracking ability. The adaptation is derived as a solu-
tion to a constrained optimization problem,27 by using the
Lagrangian formulation that minimizes the norm of the dif-
ference weight vector under the stability constraint, which
makes the error sequence as constant as possible. Our ap-
proach belongs to the class of MLMS algorithms based on
applying nonlinearities to one or both of the quantities used
to update the adaptive weights �the data vector and/or the
output signal�,9,24,28,29 rather than optimizing the step-size
function.7,30 The derivation of the nonlinearity applied to the
target signal and the data vector is reached as a generaliza-
tion of the NLMS algorithm, which may be also obtained
using this formulation indeed.27 In this case the constraint of
the standard LMS algorithm �the error sequence must be can-
celed� is relaxed to be as smooth as possible. In this way,
consider the following constrained optimization problem:

minimize��w�n + 1��2

subject to the constraint e�n+1� = e�n+1��n − 1� , �5�

where �w�n+1�=w�n+1�−w�n�, and e�k��n�=d�n�
−wH�k�x�n� is the error at time n using the weight vector at
time k. The method of Lagrange multipliers converts the
problem of constrained minimization into one unconstrained
minimization by introducing Lagrange multipliers

L�w�n + 1�� = ��w�n + 1��2

+ Re��*�e�n+1��n + 1� − e�n+1��n��� . �6�

The solution to this optimization problem wopt�n+1�
minimizes the norm of the difference between two consecu-
tive weight vectors and satisfies the equilibrium constraint or
condition e�n+1��n�=e�n+1��n−1�. This equilibrium constraint
imposes stability on the sequence of a posteriori errors, i.e.,
the optimal solution wopt�n+1� that is obtained from the
minimization of Eq. �5� under the constraint is the one that

renders the sequence of errors as smooth as possible. Taking
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partial derivative in Eq. �6� with respect to wH�n+1� and
setting it equal to zero, the Lagrange multiplier is found to be
�the complete derivation can be seen for clarity in Appendix
A�

� =
2�e�n��n�
��w�n��2 , �7�

where �e�n��n�=e�n��n�−e�n��n−1� is the difference of the a
priori error sequence and ��x�n��2= �x�n�−x�n−1��2 is the
squared norm of the difference of consecutive input vectors.
Thus, the minimum of the Lagrangian function satisfies the
following adaptation equation:

w�n + 1� = w�n� +
�

��w�n��2 + �
�x�n���e�n��n��*. �8�

This algorithm for adapting the weight vector is based on
difference quantities and the concept of the equilibrium con-
dition given by the constraint. It is interesting to notice that
the equilibrium condition enforces the convergence of the
algorithm if ��x�n��2�0. The adaptation has been completed
by introducing � to prevent instability for small ��x�n��2 and
the constant step � to control the speed of the adaptation. It
can be seen readily that the computational load of the pro-
posed adaptation is of the same order as with the standard
LMS algorithm. The CS-LMS algorithm requires only 2L
+1 complex multiplications and 3L+1 complex additions per
iteration, where L is the number of tap weights used in the
adaptive filter. Thus, the computational complexity of the
algorithm is O�L�. In addition, like the NLMS algorithm, the
CS-LMS adaptation requires computation of the normaliza-
tion term ��x�n��2, which involves only two squaring opera-
tions, one addition and one substraction if it is evaluated
recursively.

As shown in following sections, the convergence of the
algorithm, the excess minimum squared error �EMSE� and
the misadjustment �M� could be readily analyzed in a fashion
similar to the NLMS algorithm for the proposed
nonlinearities26 since the adaptation rule is equivalent except
for the difference data. Then, we will show that the EMSE of
the proposed adaptation algorithm is lower than the one ob-
tained with the standard NLMS algorithm in DTX systems,
i.e., an intermittent, strongly correlated desired signal under
an adverse noisy environment. In addition, under certain
conditions imposed onto the difference data and the step size
� of the adaptation rule, the deterministic CS-LMS algo-
rithm converges to the Wiener solution w0.

III. THE OPTIMAL SOLUTION OF THE CS-LMS
ADAPTATION

As shown in the previous section, the CS-LMS adapta-
tion rule is equivalent to the NLMS algorithm but over a
different set of data. It is interesting to consider the condi-
tions needed for both algorithms to have the same Wiener
solution in the following.

Theorem 1 (convergence equivalence): Consider a
transversal filter with tap input in vector x�n� and a corre-
sponding set of tap weights in vector w�n�. By comparing the

estimate given by the filter y�n� with the desired response

Speech enhancement in discontinuous transmission systems 3671



d�n� we produce the estimation error denoted by e�n�
=d�n�−y�n�. If the desired signal d�n� is generated by the
multiple linear regression model, i.e., d�n�=w0

Hx�n�+e0�n�,
where e0�n� is an uncorrelated white-noise process that is
statistically independent of the input vector x�n�, then the
optimal solution of the deterministic CS-LMS algorithm is
the Wiener solution w0.

Proof: See Appendix B.
Thus, the Wiener solution is the same for both LMS and

CS-LMS algorithms and then the deterministic CS-LMS al-
gorithm is justified. As a consequence, the stochastic CS-
LMS adaptation using an estimated gradient, or equivalently
the NLMS algorithm over the difference data set, will con-
verge in the mean to the Wiener solution. In this case, instead
of minimizing the power of the difference error in Eq. �B1�
we try to make the error sequence as smooth as possible as
shown in Eq. �6�.

A. A connection between CS-LMS and LMS
adaptations

From Eq. �8� we can derive an interesting connection
between our adaptation and the classical LMS algorithm.
The classical LMS adaptation is obtained using the simplest
way to estimate the deterministic gradient vector �J�n� in
the steepest descent �SD� algorithm. In this way, we use in-

stantaneous values �̂J�n�=−e�n�x�n�, where J�n�
=E��e�n��2� is the mean squared error �MSE� function. Ex-
pressing Eq. �8� in terms of the differences of the error se-
quence e�n� and the input vector x�n� and redefining the
variable step size as �̂, we find that

w�n + 1� = w�n� + �̂��e�n��n��*x�n�

+ �e�n��n − 1��*x�n − 1� − �e�n��n��*x�n − 1�

− �e�n��n − 1��*x�n�� . �9�

The first two elements in the adaptation correspond to the
instantaneous estimation of the gradient vector �J�n��k�
=�E��e�n��k��2� at times k=n and n−1, in the direction of
minimization. The second two terms correspond to the in-

stantaneous estimation of the gradient vectors �Ĵ�n��n�
=�E�e�n��n��e�n��n−1��*�=�re�1� and �J̃�n��n−1�=�E�e�n�

��n−1��e�n��n��*�=�re�−1�, where re�k� denotes the corre-

lation function of the error sequence and J̃�n��n−1�= �Ĵ�n�

��n��*, in the direction of maximization �we assume e�n� is
wide sense stationary then the correlation function is sym-
metric for real variables: re�k�=re�−k��. Thus, our algorithm
can be viewed as a pair of LMS or SD adaptations at times
n ,n−1 and a pair of adaptations that try to maximize the
correlation function at lag 1. The maximum value of the
correlation function is achieved for lag k=0; thus, the second
pair of adaptations tries to equalize e�n��n�=e�n��n−1� in or-
der to render re�1� as close as possible to re�0�. This is
equivalent to the above mentioned equilibrium condition that
we imposed in the Lagrange formulation in order to solve the

filtering problem.
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B. Relationship between stochastic information
gradients and CS-LMS

Several learning algorithms, where the learning relies on
the concurrent change of processing variables, have been
proposed in the past for decorrelation, blind source separa-
tion, or deconvolution applications.31,32 Classical approaches
propose a cost function estimator and a gradient descent
learning algorithm based adaptation to find the optimal solu-
tion. The stochastic information gradient �SIG� algorithms32

maximize �or minimize� Shannon’s entropy of the sequence
of error terms using an instantaneous value based estimator
of the probability density function �pdf� and Parzen window-
ing. Given a random variable Y with pdf fY�y� Shannon’s
entropy and its stochastic entropy estimator are expressed as

HS�Y� = − �
−	

	

fY�y�log�fY�y��dy = EY�− log�fY�y���

	 ĤS�Y� = − log�fY�y�k��� , �10�

where y�k� denotes the most recent sample at time k. Since in
practice the pdf of Y is unknown a biased Parzen window
estimate is utilized as follows:

f̂ Y�y�k�� = 1/N �
i=k−N

k−1


��y�k� − y�i�� , �11�

where N is the window length and 
��x� is the kernel func-
tion with size �.32 The result for the maximization �or mini-
mization� of Eq. �10� using Eq. �11� with respect to a set of
parameters w, which generates Y =g�w�, is an adaptation de-
pending on fixed-width � kernel functions.32 If we select N
=1 and Gaussian kernels the adaptation reduces to

�w�n + 1� =
�

�2 �y�k� − y�k − 1��
 �y�k�
�w

−
�y�k − 1�

�w
� .

�12�

The latter adaptation is essentially the CS-LMS algorithm
except for the constant factor given the fixed kernel size �the
maximization of Shannon’s entropy is related, in some sense,
to the description made in the above section in terms of
correlation functions�. Our approach can be described as the
maximization of Shannon’s entropy estimator but using a
variable-size � kernel, which experimentally provides a bet-
ter estimator for the unknown pdf. The benefits of using
variable kernel density estimators are clear from works such
as Refs. 33–35. We refer the interested reader to them for a
treatment of the problem of kernel size estimation, which is
beyond the scope of this paper.

The CS-LMS and SIG methodologies can be further un-
derstood in the greater context of errors-in-variables tech-
niques; specifically in the field of adaptive system identifica-
tion also referred to as instrumental variable approach. The
connection between CS-LMS presented in Eqs. �8�, �B1�,
and �B2� and the error whitening criterion proposed by Rao
et al.36 should be noted at this point. Utilizing difference
input and error data effectively corresponds to exploiting au-

tocorrelation statistics at lags other than zero. The benefits of
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such departures from classical error-energy �zero-lag error
autocorrelation� measures of performance enables the filters
to become more robust to noise present in the signals.

IV. CONVERGENCE ANALYSIS OF THE CS-LMS
ALGORITHM

Let us first consider the convergence of the deterministic
CS-LMS algorithm, which is described as the SD algorithm
on the novel data set. Taking the connection expressed in Eq.
�9� into consideration we can formulate the following deter-
ministic adaptation for the CS-LMS:

w�n + 1� = w�n� + �̂�− ��J�n��n� + J�n��n − 1�


+ 2 Re��Ĵ�n��n�
� . �13�

In terms of the novel data model �x1�n� ,d1�n� ,e1�n�
 intro-
duced in Appendix B the adaptation could be expressed as

w�n + 1� = w�n� + �̂�− ��J1
�n��n�
� , �14�

where J1
�n��n�=E��e1�n��2�. Since e1�n�=d1�n�−wHx1�n� then

J1
�n��n��d1

2 − wHrd1x1
rd1x1

Hw − wHRx1
w . �15�

As shown in Appendix C, a necessary and sufficient condi-
tion for the convergence can be expressed, in terms of the
step-size parameter �̂ and the largest eigenvalue �max of the
difference matrix �R�1�=R�0�−R�1� where R�k�=E�x�n
+k�xH�n��, as

0 � �̂ �
1

�max
. �16�

A. Convergence analysis of the stochastic CS-LMS
algorithm

From Eq. �8� it can be seen readily that the stochastic
CS-LMS algorithm is equivalent to the NLMS adaptation
over the novel difference data set, which was defined in the
previous section. Thus, once we have proven in Sec. III that
�i� they have the same Wiener solution and �ii� the stochastic
CS-LMS is equivalent to the NLMS on the novel data set,
we can assume the same properties of the standard NLMS
algorithm26 to our approach using the difference data set. As
a consequence, the stochastic CS-LMS adaptation using an
estimated gradient is convergent in the MSE sense if Eq. �16�
is satisfied. In this case, instead of minimizing the power of
the difference error in Eq. �B1� the error sequence is made as
smooth as possible as shown in Eq. �6�. Further the evolution
of the expected value of the stochastic weight vector w�n�
also satisfies Eq. �C3� as in the deterministic CS-LMS algo-
rithm.

1. Learning curves in the ANC application

It is common in practice to use ensemble-average learn-
ing curves to study the statistical performance of adaptive
filters. In the ANC application the derivation of these curves
is slightly different due to the presence of the desired clean
signal s�n�. The estimation error produced by the filter in the

ANC application is expressed as
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e�n� = s�n� + e0�n� + �0
H�n�x�n� for � small, �17�

where e0 is the estimation error produced by the Wiener filter
and �0 is the zero-order weight-error vector, which satisfies
the stochastic difference equation described in Ref. 37, i.e.,
we invoke the direct-averaging method. Hence, assuming
that e0 is statistically independent of x�n� and s�n�, the MSE
produced by the filter on the novel data is given by

J�n� = J0 + E��s�n��2� + E��0
H�n�x�n�x�n�H�0�n�� , �18�

where J0=E��e0�n��2� and Jmin=J0+E��s�n��2�. It can be seen
readily that a reduction in MSE J�n� is obtained by the CS-
LMS algorithm if the desired signal s�n� and the input signal
x�n� are either strongly and weakly correlated, respectively
�see Appendix D�. Since the evolution of the weight-error
vector is

�0�n + 1� = �I − �Rx1
��0�n� − �x1�n��ẽ0

*�n� , �19�

where �ẽ0�n�=�e0�n�+s1�n� and the excess error in the
steady state is expressed and bounded as

Jex�	� = lim
n→	

E��0
H�n�x�n�x�n�H�0�n��

= lim
n→	

tr�RxE��0�n��0�n�H��


 �J�
k=1

L
�k

2 − ��k
� Jex

LMS�	� , �20�

where J̃=2�Jmin−Re�rs�1�
� and rs�1� is the correlation func-
tion of the desired signal at lag 1. If the input signal x�n� is
weakly correlated �first inequality: if R�1��0� and the de-
sired signal is strongly correlated s�n� �second inequality: if
Re�rs�1�
�3 /4Jmin, we achieve a clear reduction in excess
MSE.

In addition, if the power of the desired signal is ne-
glected �or disappears in time, i.e., when s�n� is intermittent�
the misadjustment �M� satisfies the following approximate
equality:

M =
Jex�	�
Jmin

� � tr�Rx1
� = ��2�tr�R� − tr�Re�R�1�
���

= 1
2�D tr�R� ,

J�n� � J0 + �J0 tr�Rx1
� , �21�

where Jex�	� denotes the steady-state EMSE, Jmin=J0 , tr
stands for the trace of a matrix, and �D=4� �1
−tr�Re�R�1�
� / tr�R��.

In DTX systems, the adaptive filter is required to have a
high step size � to cope with changing statistics in the chan-
nel. This affects the misadjustment �M� of the algorithm,
which is increased substantially. Beforehand, a clear reduc-
tion of Jex�	� of the CS-LMS algorithm is achieved by re-

ducing Jmin to J̃ �see Eq. �20�� and/or the trace of the input
correlation matrix since M �� tr�Rx1

� �see Eqs. �20� and
�21��. The condition for the reduction of M, which depends

on the input sequence, is the following:
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tr�Re�R�1�
� �
3
4 tr�R� or �D � � . �22�

Note that this condition is incompatible with the one as-
sumed to obtain the upper bound for Jex�	� �R�1��0� �see
Appendix D for further details�. Thus, the reduction of M by
using the trace of the input correlation matrix is unfeasible.

It also follows from the NLMS analysis26 that the high
value of � balances the trade-off between M and the average
time constant. Indeed the average time constant for the sto-
chastic CS-LMS algorithm can be expressed as

� �
L

� tr�Rx1�
, �23�

where L is the filter length. On the basis of this formula, we
may make the same observations as in Ref. 26 about the
connection between M and �. This constant is higher than the
standard LMS algorithm for the same � but fits with the
ANC application for DXT systems �a high value of step size
is needed�. In the following section we show a customized
version of the CS-LMS algorithm, the lag-CS-LMS algo-
rithm, that allows to select a suitable trade-off between con-
vergence and average time constant over noise segments.

V. IMPROVING SPEECH FILTERING IN ANC USING
VAD

Based on the properties and production of the speech
signal, different assumptions can be derived to allow distinc-
tion between speech periods and noise-only periods. The
equilibrium condition in Eq. �5� is hardly met in distinctly
nonstationary segments �of course the condition imposed by
the NLMS algorithm is even more unfeasible, e�n+1��n�=0,
see Ref. 26�, i.e., in DTX systems, these segments corre-
spond to the presence of noisy speech �t�0.2 s�. However,
background noise is usually assumed stationary for much
longer periods, e.g., t�1 s, than speech. Thus, a better per-
formance of the algorithm is expected in noise segments in
which the equilibrium condition could be even more relaxed.
In the past, the use of a VAD has been critical in attaining a
high level of performance in speech processing systems,
even more, for nonstationary noise environments since it is
needed to update the constantly varying noise statistics.38 In
this section we propose the use of a standard energy-based
VAD in order to exchange the application of different filter-
ing algorithms providing a better tracking of the variability
of statistics in noise/speech transitions as shown in Fig. 2.
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FIG. 2. Improving adaptive noise canceler using VAD.
One solution is to apply CS-LMS to noise segments �H0�,
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where the equilibrium condition can be easily achieved, and
a MLMS algorithm,7 using the initial weight vector provided
by the CS-LMS, on speech segments �H1� �see Fig. 3�. As
shown in Sec. VI, the combination of both methods provides
synergy that would be expected to enhance the filter effec-
tiveness over the referenced algorithms. Based on the same
philosophy, we propose the lag-CS-LMS algorithm that re-
laxes the equilibrium constraint over noise segments, and
combined with the CS-LMS over speech segments, obtains a
better performance in terms of EMSE and M than all the
referenced filtering algorithms.

A. A filtered energy-based VAD

In order to avoid the inconvenience of high noise level
conditions in VAD,15 we use the filtered sequence of a priori
errors e�n��n� of the ANC to detect the presence of speech
segments. The use of the reference signal d�n� for this task
would cause a poor hit rate of speech/nonspeech segments at
high noise conditions. Then the application of VAD to this
speech processing system would be completely unnecessary,
i.e., it would show a low level of performance.

Short time average energy is the most evident way to
classify signal to speech and nonspeech periods, since the
signal is assumed to have higher energy, when speech is
present in the filtered sequence. The short time average
energy-based decision at time n+1 can be described as

E�n + 1� =
1

N
�
k=0

N−1

�e�n��n − k��2�
H0

H1

��n� , �24�

where N denotes the amount of contextual information in-
cluded in the VAD decision and ��n� is an empirical thresh-
old that models the background noise. In particular, we com-
pute the average energy of a set of initial noise segments and
update it according to the VAD decision �during nonspeech
periods�, that is, in order to adapt the operation to nonsta-
tionary and noisy environment we compute

n�n + 1� = ���n� + �1 − ��E�n� , �25�

where �=0.9 for a soft decision function. To overcome the
difficulties in the low signal-to-noise ratio �SNR� regime
subband energies have been employed.18–20 Subband ener-
gies will describe the energy distribution of the signal in
frequency domain with some predefined resolution. Energy-
based VAD algorithms can provide a good performance,
when the energies of the speech periods are significantly
higher than the energies of the background noise-only peri-
ods. Most of the features used in VAD algorithms are related
to energy15–20 indeed. However, when the energy of the
background noise is comparable, the signal energy alone will
result in a poor performance. Moreover, the unvoiced parts
of the speech will have low energy constantly, which makes
the classification of the unvoiced phonemes more difficult
than the ones with voice present. Nevertheless, this situation
can be avoided using the filtered sequence provided by the
ANC that is characterized by a high SNR in the steady state
of the filter. On one hand, this allows the use of effective
classical VADs, i.e., based on energy to exchange the opera-

tion of the ANC; on the other hand, it provides a small delay
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1 2
to the VAD that detects the presence of speech at a later
stage. Regardless, that is not a serious implementation ob-
stacle since the ANC works sample by sample unlike most
VADs that works over contextual information windows.18

B. The lag-CS-LMS algorithm

We can exploit the advantages of the CS-LMS algorithm
in noise segments just relaxing the equilibrium condition. In
many cases, constraining the least squares filter to minimize
Eq. �B1� is overly restrictive �see page 171 in Ref. 39�. For
example, if a delay may be tolerated, then we may consider
minimizing the expected value of the difference as follows:

min
w

E��ek�n��2� , �26�

where ek�n�=e�n�−e�n−k�. In most cases, a nonzero delay k
will produce a better approximate filter and, in many cases,
the improvement will be substantial. Following the same
methodology as in Sec. II and imposing the condition

e�n+1��n� = e�n+1��n − k� , �27�

we obtain an additional improvement in the filtering of noise
segments unlike the speech segments where the high nonsta-
tionary noise affects the solution provided by the algorithm.
The explanation of this behavior is that using the novel data
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2 =0.01, L=12, �=0.1, and h
set ek�n�=e�n�−e�n−k�, which is increasing the lag k, we
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decrease the average time constant � in Eq. �C10� by increas-
ing the trace of the input autocorrelation matrix Rxk

�and
consequently increasing M�. This is really effective over
noise segments as shown in Fig. 4, given that a small average
time constant provides a smaller averaged M over nonspeech
frames. Thus, the combination of both operation modes using
an effective VAD, i.e., based on energy and contextural
information,20 is expected to supply better filtering perfor-
mance. The evaluation of the proposed strategy over an ut-
terance of the Speech-Dat-Car �SDC� AURORA 3 is shown
in Fig. 4. As clearly stated in the latter figure and in Sec. VI,
the use of VAD in ANC provides the best results obtained by
the CS-LMS algorithms separately. The selection of lag k is
motivated by the trade-off between the M and the average
time constant �see Fig. 5�. In this case, given a large step size
�=0.25, a higher convergence speed does not reduce the
averaged EMSE in noise segments as clearly stated in Fig.
5�a�. However, when the specifications of the problem re-
quire a good filtering performance �i.e., a reduced M�, a
smaller step size �=0.1 should be selected. Then the aver-
aged EMSE in noise segments may be reduced by incorpo-
rating a lag into the algorithm, which speeds up the algo-
rithm convergence �see also the experimental analysis in Sec.
VI�. In Fig. 5 the robustness of the CS-LMS algorithm
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VI. EXPERIMENTS

Several experiments are commonly conducted in order
to evaluate the performance of the CS-LMS algorithm. The
experimental analysis is mainly focused on the determination
of the EMSE and misadjustment �M� �Ref. 26� at different
SNR levels, step sizes, and environments. This section de-
scribes the experimental framework and the objective perfor-
mance measures conducted to evaluate the proposed algo-
rithm. For this purpose, the AURORA subset of the original
Spanish SDC database40 was used. This database contains
4914 recordings using close-talking �CH0� and distant
hands-free microphone �CH1� from more than 160 speakers.
The files are categorized into three noisy conditions: quiet,
low, and high noise conditions, which represent different
driving conditions with average SNR values between 25 and
5 dB. The EMSE and M were determined for each recording
using the close-talking microphone high noise condition for
the CS-LMS, NDN-LMS,9 NLMS,25 EN-LMS,10 and MLMS
�Ref. 7� algorithms. The experimental EMSE at the kth itera-
tion is defined by

EMSE�k� =
1

j
�
j=1

J

�e�k − j� − s�k − j��2, �28�

where J is the number of samples used in the estimation of
the EMSE. On the other hand, M is defined as a normalized
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MSE, i.e., the ratio of the steady-state EMSE �Jex�	�� to the
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minimum MSE �Jmin�. The MSE is obtained removing s�n�
in Eq. �28� �estimation of the power of s�n��.

A. Numerical experiment

The initial set of simulations used a simple ANC con-
figuration to test the analytical results derived in Sec. IV. In
this case, the desired signal s�n� is a sum of an intermittent
zero-mean AR�1� process with variance 1 and its pole at
as�1�=0.99 and a zero-mean additive white noise with vari-
ance 0.001. The AR�1� process turns on and off every 3000
samples. The noise source v�n� is a zero-mean Gaussian pro-
cess with variance 1, and it is assumed to be independent of
s�n�. The impulse response of the filters h1 and h2 were
modeled as low pass IIR filters according to

H1
−1�z� = 1 − 0.3z−1 − 0.1z−2, H2

−1�z� = 1 − 0.2z−1. �29�

Both CS-LMS and NLMS algorithms use an eight tap
weight vector initialized to zero and different step sizes
�0.001, 0.01, and 0.1�. The experimental setting described
above models the conditions of the ANC in DXT systems
except if only stationary signals are present. In order to show
the performance of the filtering algorithms we use the MSE
in the steady-state averaging over J=200 samples. The
Monte Carlo simulation results �over 100 trials� of running
the two algorithms are shown for different values of � in
Fig. 6. As shown in the figures the MSE of the CS-LMS
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segments as expected �using Eq. �21� MSELMS

�−29.8227 dB; MSECS-LMS�−29.7170 dB for �=0.01 and
MSELMS�−28.4873 dB; MSECS-LMS�−27.7641 dB for �
=0.1� ��x

2=�v
2 / �1−a2�1���4��x

2−a�1��, where a�1�=0.2 and
�x

2=1.0417�. Note that Jmin=−30 dB on noise segments.
Somehow when s�n� turns on �to model correlated speech
segments� there is a clear reduction in EMSE if � is suffi-
ciently high �to cope with high nonstationary environment�.
As also shown in theoretical section, on speech segments:
MSELMS�0.1932 dB; MSECS-LMS�0.0113 dB for �=0.01
and MSELMS�1.6012 dB; MSECS-LMS�0.074 dB for �
=0.1. Observe how when � is increased the small-step-size
statistical theory gives a rough result in the value of MSE
comparing with the experimental one, although the relation
between the performance of both algorithms is preserved.
Note that the � in CS-LMS is also larger than NLMS as
expected.

B. ANC application: Stationary noise environment

Finally, to check the tracking ability of the set of algo-
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FIG. 5. ANC application: The trade-off between M and � of the CS-LMS
algorithm with increasing k over an utterance of the Spanish AURORA 3
database. �a� Evolution of EMSE �in dB=20 loge�.�� for ��=0.25, �v

2 =0.3
L=12�. �b� Evolution of EMSE �in dB=20 loge�.�� for ��=0.1, �v

2 =0.5 L
=12�.
rithms we study the ANC problem using the previously de-
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fined AURORA 3 database. It is expected to obtain a better
performance on the previous approaches since voice signals
are nonstationary in nature. The simulations were carried out
using recordings sampled at 8 kHz and processing 20 000
samples/recording ��2.5 s of real time�. In the stationary
case, the noise v was assumed to be zero mean white Gauss-
ian with three different variances ��v

2 =0.01,0.1,0.5� under
severe noise condition as shown in Table I. The incoming
clean signal was normalized using its entire span for conve-
nience. In the simulations the filter length was varied in the
set L= �8,12,24
, �=0.0001 and the constant step size was
varied in the range �= �0.01,0.5
. The impulse response of
the filters h1 and h2 were modeled as low pass IIR filters
according to Eq. �29�. Observe the effect of the equilibrium
condition in the evaluation of the CS-LMS over an utterance
of the Spanish AURORA 3 database in Fig. 7�a�. The equilib-
rium condition can be easily achieved over the noise station-
ary segments; over the speech segments the equilibrium con-
straint is hardly satisfied because of the nonstationary nature
of speech �regardless there is still an improvement in EMSE
reduction—computed as 20 loge�.� to highly decompress the
EMSE—over classical LMS methods�. In the bottom of Fig.
7�a� we show the spectrogram of the estimated clean signal
e�n� by using the CS-LMS adaptation.

Table I shows the filtering results using the proposed and
referenced algorithms over the complete Spanish AURORA 3

databases. As clearly demonstrated, the proposed method
provides the minimum EMSE and M averaged over a set of
filter lengths L for a wide range of noise variances �delimited
by “\� except for the case �v

2 =0.01, i.e., the EMSE of the
NLMS is not affected by the step size � since it is also
proportional to the input power. In the case of nonstationary
speech segments, this reduction of EMSE and M means bet-
ter trade-off between convergence speed and misadjustment
and then better filtering performance. The combination of the
MLMS with the proposed CS-LMS using a VAD �as de-
scribed in Sec. V� provides an improvement over the classi-
cal method MLMS operating separately at noise adverse
conditions. Of course, the proposed CS-LMS still improves
the combination of both using the VAD, since its more ef-
fective filtering on speech segments over MLMS. This be-
havior can be observed also in nonstationary experiments as
shown in the following section. It is interesting to notice that
for both environments, stationary and nonstationary, and for
a wide range of parameters �L ,� ,�v

2, etc.� we found a better
performance over the referenced filtering algorithms.

Moreover, an additional improvement can be achieved
by relaxing the equilibrium condition of the CS-LMS algo-
rithm over noise segments and by employing the filtered
energy-based VAD described in Sec. V B. The results using
the SNR of 10 dB, which is the most probable application
scenario for telecommunication terminals, are shown in
Table II. The right combination of the lag-CS-LMS algo-
rithm �k=5� and the standard CS-LMS outperforms all the
references ANCs including the proposed CS-LMS working
separately. Even if the combination of both ANCs is in-
versely used, that is the lag-LMS is applied to speech seg-
ments and the standard CS-LMS to noise periods, the results

are still fair enough as shown in Table II.
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C. ANC application: Nonstationary noise environment

For the nonstationary case the noise is also assumed to
be zero mean Gaussian but with a variance linearly increas-
ing from �v,min

2 =0.1 to �v,max
2 =0.5. The effect of increasing

the noise variance is illustrated in Fig. 7�b�. We also show
the filtering result �spectrogram� of the CS-LMS algorithm.
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FIG. 6. Numerical experiment in the ANC problem. Top: MSE �in dB=10 lo
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Table III shows the results obtained �EMSE and M� by the
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complete set of algorithms for different values of � and L.
Again, the proposed algorithm obtains the better trade-off
between convergence speed and misadjustment although the
computational burden is slightly increased by the novel ad-
aptation. Obviously, the filtering performance is also affected
by the nonstationarity of noise segments, unlike the station-
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ary experiment described above, since a larger tracking abil-
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=12�.
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ity is required during the whole utterance. The robustness of
the proposed method under severe noise condition can be
seen in Fig. 7�b�. The above mentioned properties of our
algorithm on the stationary scenario are still visible. Substan-
tial improvements of the proposed ANC are also evident on
this new scenario, particularly under conditions of strong
noise. In addition, the combination of the selected ANC ad-
aptations with a VAD again improves the filtering perfor-
mance over the one obtainable with the referenced algo-
rithms.

VII. CONCLUSION

In this paper we showed an ANC using the novel CS-
LMS algorithm that is based on the minimization of the
squared Euclidean norm of the change �w�n+1� subject to
the constraint of equilibrium condition in the sequence of a
posteriori estimation errors. To solve this constrained opti-
mization problem, we used the well-known method of
Lagrange multipliers for the general case of complex-valued
data. We obtained a novel adaptation algorithm, which is a
combination of a deterministic gradient function in order to
minimize the MSE, with a gradient function maximizing the
correlation function at lag 1 that was assumed to be real
valued. Convergence analysis was studied in terms of the
evolution natural modes toward the optimal Wiener–Hopf
solution and convergence conditions were given: The stabil-
ity performance depends exclusively on � and the eigenval-
ues of �R�1�. In addition, we checked the benefits of a VAD
scheme for improving the performance of the proposed algo-
rithm. We combined the tracking ability and the higher per-
formance on nonstationary speech segments of the latter al-
gorithm for different lags under nonsevere noise conditions.
For both stationary and nonstationary adverse noise environ-
ments, the proposed ANC based on the CS-LMS algorithm
showed superior performance in decreasing excess MSE
compared with referenced algorithms,7,9,10 etc., using the
AURORA 3 Spanish SDC database.40
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NDN-LMS MLMS

E �dB�
;12;24

M̄
L=8;12;24

EMSE �dB�
L=8;12;24

M̄
L=8;12;24

6.15 /−25.64 1.00 /1.07 /1.06 −47.26 /−33.77 /−22.88 0.11 /0.56 /1.82
1.99 /−21.94 1.57 /1.67 /1.67 −46.97 /−30.31 /−20.64 0.12 /0.82 /2.30
8.85 /−18.92 2.24 /2.38 /2.38 −45.47 /−27.84 /−19.25 0.14 /1.07 /2.65

CS-LMS VAD CS+MLMS

E �dB�
;12;24

M̄
L=8;12;24

EMSE �dB�
L=8;12;24

M̄
L=8;12;24

9.36 /−38.02 0.26 /0.28 /0.34 −45.29 /−41.55 /−38.02 0.11 /0.22 /0.34
5.97 /−35.71 0.39 /0.41 /0.43 −41.42 /−38.09 /−35.71 0.19 /0.31 /0.43
3.00 /−32.91 0.56 /0.59 /0.59 −38.21 /−35.21 /−32.91 0.27 /0.44 /0.59
TABLE I. Performance of referenced and proposed LMS algorithms in stationar

Stationary white noise
E�v�n��=0

�v
2 =0.01 /0.1 /0.5

NLMS

EMSE �dB�
L=8;12;24

M̄
L=8;12;24

EMS
L=8

�=0.1 −42.23 /−35.17 /−23.42 0.22 /0.43 /1.61 −27.04 /−2
�=0.25 −42.66 /−31.80 /−20.86 0.21 /0.62 /2.15 −22.75 /−2
�=0.5 −42.91 /−29.80 /−19.31 0.20 /0.85 /2.56 −19.18 /−1

Stationary white noise
E�v�n��=0

�v
2 =0.01 /0.1 /0.5

EN-LMS

EMSE �dB�
L=8;12;24

M̄
L=8;12;24

ESM
L=8

�=0.1 −41.90 /−23.19 /−6.95 0.23 /1.85 /13.25 −40.06 /−3
�=0.25 −41.98 /−21.02 /−0.85 0.23 /2.68 /28.93 −36.50 /−3
�=0.5 −41.70 /−16.75 /6.40 0.24 /4.79 /63.98 −33.49 /−3
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FIG. 7. �Color online� ANC application using the CS-LMS algorithm over
an utterance of the Spanish AURORA 3 databases. Top: EMSE evolution �in
dB=20 loge�.��; middle: corrupted and error �clean� signal; bottom: spectro-
gram of the error signal. �a� Stationary environment ��=0.1, �v

2 =0.1 L
=12�. �b� Nonstationary environment ��=0.1, �v,min

2 =0.1, �v,max
2 =0.7, L
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APPENDIX A: PROOF OF THE CONSTRAINED-
STABILITY LMS ADAPTATION

Once the Lagrangian function has been established in
Eq. �6�, we need to derive the minimum weight vector under
the equilibrium constraint. Taking partial derivative of Eq.
�6� with respect to the vector wH�n+1� and set it equal to
zero, we obtain

�L�w�n + 1��
�wH�n + 1�

=
��wH�n + 1��w�n + 1�

�wH�n + 1�

+ �*
 �e�n+1��n�
�wH�n + 1�

−
�e�n+1��n − 1�
�wH�n + 1� � = 0.

�A1�

Since �w�n+1�=w�n+1�−w�n� and e�n+1��k�=d�k�−wH�n
+1�x�k� for k=n, n−1 then

TABLE II. Performance of referenced and proposed

Stationary white noise
E�v�n��=0

�v
2 =0.3

NLMS

EMSE �dB�
L=8

M
L=8

�=0.01 −36.60 0.38

Stationary white noise
E�v�n��=0

�v
2 =0.3

Inv. VAD lag CS-LMS

EMSE �dB�
L=8

M
L=8

�=0.01 −39.09 0.32

TABLE III. Performance of referenced and proposed LMS algorithms in no

Nonstationary white noise
E�v�n��=0

�v,min-max
2 =0.1–0.5

NLMS

EMSE �dB�
L=8 /12 /24

M
L=8 /12 /24

�=0.1 −27.92 /−26.27 /−23.80 0.95 /1.14 /1.53 −24
�=0.25 −24.70 /−23.26 /−21.13 1.37 /1.62 /2.07 −21
�=0.5 −22.57 /−21.32 /−19.53 1.75 /2.02 /2.49 −18

Nonstationary white noise
E�v�n��=0

�v,min-max
2 =0.1–0.5

EN-LMS

EMSE �dB�
L=8 /12 /24

M
L=8 /12 /24

�=0.1 −16.49 /−16.43 /−16.44 3.30 /3.35 /3.35 −39
�=0.25 −20.94 /−20.80 /−20.63 1.73 /1.80 /1.89 −35
�=0.5 −23.61 /−24.08 /−24.18 1.31 /1.28 /1.23 −32
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�L�w�n + 1��
�wH�n + 1�

= 2�w�n + 1� − �*�x�n� = 0. �A2�

thus, the step of the algorithm is

�w�n + 1� = 1
2�*�x�n� ⇒ w�n + 1� = w�n� + 1

2�*�x�n� .

�A3�

To complete the minimization procedure we must determine
the Lagrange multiplier by applying the equilibrium con-
straint. Multiplying both sides of Eq. �A2� by �xH�n+1� we
have

2�xH�n��w�n + 1� − �*�xH�n��x�n� = 0. �A4�

Thus, we find that the Lagrange multiplier can be expressed
as

�* =
2�xH�n��w�n + 1�

��x�n��2 =
2��e�n+1��n� − �e�n��n��*

��x�n��2 �A5�

since e�k��n�=d�n�−xH�n�w�k� and the numerator on the left
side of Eq. �A5� is equal to xH�n�w�n+1�−xH�n−1�w�n
+1�−xH�n�w�n�+xH�n−1�w�n�. Therefore applying the
equilibrium constraint on the right hand side of Eq. �A5�
��e�n+1��n�=0�, we have that � is given by Eq. �7�.

algorithms in stationary environment.

NDN-LMS MLMS

EMSE �dB�
L=8

M
L=8

EMSE �dB�
L=8

M
L=8

−34.56 0.40 −34.29 0.55

CS-LMS VAD lag CS-LMS

EMSE �dB�
L=8

M
L=8

EMSE �dB�
L=8

M
L=8

−40.18 0.28 −40.82 0.25

ionary environment.

NDN-LMS MLMS

SE �dB�
8 /12 /24

M
L=8 /12 /24

EMSE �dB�
L=8 /12 /24

M
L=8 /12 /24

25.78 /−27.01 1.09 /1.07 /1.05 −25.27 /−25.16 /−25.11 1.41 /1.43 /1.44
22.01 /−22.17 1.71 /1.67 /1.64 −22.65 /−22.58 /−22.49 1.86 /1.88 /1.89
18.82 /−19.07 2.43 /2.38 /2.34 −20.95 /−20.91 /−20.84 2.23 /2.38 /2.25

CS-LMS VAD CS+MLMS

SE �dB�
8 /12 /24

M
L=8 /12 /24

EMSE �dB�
L=8 /12 /24

M
L=8 /12 /24

38.79 /−37.02 0.28 /0.30 /0.37 −26.97 /−26.67 /−26.98 1.26 /1.29 /1.33
35.80 /−35.14 0.42 /0.42 /0.42 −24.62 /−24.32 /−23.87 1.64 /1.67 /1.72
32.92 /−32.77 0.60 /0.59 /0.60 −23.10 /−22.85 /−22.41 1.92 /1.96 /2.02
LMS
nstat

EM
L=

.72 /−

.22 /−

.70 /−

EM
L=

.41 /−

.97 /−

.80 /−
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APPENDIX B: PROOF OF THEOREM 1

One way to see this equivalence is to redefine the prob-
lem as follows. Let x1�n�=�x�n� be the difference incoming
signal, d1�n�=�d�n�=d�n�−d�n−1� the difference desired
signal, and e1�n�=�e�n�=d1�n�−wHx1�n� the difference error
signal �any other system variable will be denoted this way
for short�. Using this new set of transformed data and apply-
ing the Wiener–Hopf methodology, the classical filtering
problem is to minimize the cost function

w0,1 = arg minw E��e1�n��2� . �B1�

Note that the gradient of the latter cost function defines the
deterministic CS-LMS algorithm, that is, in terms of ex-
pected values. The optimum Wiener solution for the novel
data set is then achieved at

w0,1 = Rx1

−1rd1x1
, �B2�

where the autocorrelation matrix Rx1
=E�x1x1

H� is assumed to
be positive definite and rd1x1

=E�x1d
1
*� is the cross-

correlation vector. The optimal solution w0,1 is indeed re-
lated, under some conditions, to the original optimal solution
w0 given the generic data set. Generally, w0�w0,1, that is,

Rx1

−1rd1x1
� Rx

−1rdx. �B3�

but if we assume that the desired signal is generated by the
multiple linear regression model then

rd1x1
= Rx1

w0 ⇒ w0 = w0,1. �B4�

This can be also demonstrated in terms of the expected value
of the difference error sequence in Eq. �B1� since

E��e1�n��2� = E���w0 − w�Hx1�n��2� + E���e0�n��2� �B5�

is minimal only when w0,1=w0. In addition, once the optimal
solution is achieved, the estimated desired signal y0�n�
=w0,1

H x�n� provides the minimum error sequence emin=d�n�
−y0=e0�n�.

APPENDIX C: PROOF OF THE CONVERGENCE OF
THE CS-LMS ALGORITHM

If the original tap-input vector x�n� and the desired re-
sponse d�n� are assumed to be jointly stationary, the correla-
tion matrix and the cross-correlation vector of the difference
input signal x1�n� and the desired signal d1�n� can be ex-
pressed in terms of the original correlation matrix and cross-
correlation vector

Rx1
= 2R − 2 Re�R�1�
 ,

rd1x1
= 2rdx�0� − 2 Re�rdx�1�
 , �C1�

where R�k�=E�x�n+k�xH�n�� and rdx�k�=E�x�n+k�d*�n��,
then the gradient vector in Eq. �14� is given by

w�n + 1� = w�n� + �̂�2�rdx�0� − R�0�w�n��

+ 2 Re�R�1�w�n� − rdx�1�
� . �C2�
If real processes are also assumed, Eq. �C2� transforms into
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w�n + 1� = w�n� + 2�̂��rdx�1� − �R�1�� , �C3�

where �rdx�1�=rdx�0�−rdx�1� and �R�1�=R�0�−R�1� is a
Hermitian positive definite matrix. As in the SD algorithm
the weight-error vector at time n can be defined as c�n�
=w0−w�n�, where w0 is the optimal value of the tap-weight
vector given by the Wiener–Hopf equations.26 Then, elimi-
nating the cross-correlation vector rdx�k� and rewriting the
result in terms of the weight vector c�n�, we get

c�n + 1� = �I − 2�̂�R�1��c�n� . �C4�

In the latter expression we assume that rdx�1�=R�1�w0, that
is, the desired signal is generated by a linear multiple regres-
sion model. Using eigendecomposition, we may express the
difference correlation matrix as

�R�1� = Q�QH, �C5�

where Q is the eigenvector matrix in columns and � is a
diagonal matrix containing the real and non-negative eigen-
values ��1 , . . . ,�n
. Thus, we can study the convergence
analysis in terms of the evolution of each natural mode of the
transformed form of Eq. �C4� as follows:

v�n + 1� = �I − 2�̂��v�n� , �C6�

where v�n+1�=QHc�n�. For stability or convergence of the
deterministic CS-LMS algorithm the following inequality
must be satisfied:

− 1 � 1 − 2�̂�k � 1 for all k , �C7�

where �k is the kth eigenvalue of the difference correlation
matrix �R�1�. Since the eigenvalues are real and positive, it
follows that a necessary and sufficient condition for conver-
gence of the algorithm is that the step-size parameter �̂ must
satisfy the double inequality

0 � �̂ �
1

�max
, �C8�

where �max is the largest eigenvalue of the difference corre-
lation matrix �R�1�. If the convergence condition is com-
pared with the one obtained using the SD algorithm, it can be
seen that the latter is less restrictive by a factor of 2 than our
algorithm �assuming that we have the same set of eigenval-
ues�. It is also readily seen that an exponential envelope of
the time constant �k can be fitted to the evolution of the
natural modes, and its value, for the special case of slow
adaptation �for small �̂�, is given by

�k �
1

2�̂�k

, �̂ � 1. �C9�

In this case, the convergence time of each mode, using the
same set of eigenvalues, is smaller than the natural modes of
the SD algorithm by a factor of 2. As shown, the stability
performance of the deterministic SC-LMS algorithm de-
pends exclusively on � and the eigenvalues of �R�1�. Note
that a connection in terms of � can be shown if we establish
the following upper bound in the stability condition of the

CS-LMS algorithm.
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1. Stability condition for the stochastic CS-LMS
algorithm

In the previous section we derived the stability condition
for the deterministic CS-LMS algorithm, that is, the one that
produces the adaptation in Eq. �8�, when gradients are re-
placed with instantaneous estimates. It also follows from the
NLMS analysis26 that the high value of � balances the trade-
off between the M and the average time constant �, which is
larger than the one obtained with the standard LMS algo-
rithm if tr�Rx1

�� tr�R� since

� �
L

� tr�Rx1�
, �C10�

where L is the filter length. On the basis of this formula, we
may make the same observations as in Ref. 26 about the
connection between M and �.

APPENDIX D: ON THE LEARNING CURVES OF THE
STOCHASTIC CS-LMS ALGORITHM IN THE
ANC APPLICATION

Using the definition of the weight-error vector ��n�
=w0−w�n� and Eq. �8� with the step size defined as � we
may express the evolution of ��n� as

��n + 1� = ��n� − �x1�n��s1�n� + v1�n� − �w0

− ��n��HX1�n��*, �D1�

where v1�n�=v�n�−v�n−1� and v�n� denotes the noise in the
primary signal d�n�. If we assume that v�n� is generated by
the multiple regression model: v�n�=w0

Hx�n�+e0�n� we find
that the weight-error vector may be expressed as

��� + 1� = �I − �x1�n�x1�n�H���n� − �x1�n���e0�n�

+ s1�n��*, �D2�

where �x�n� is denoted by x1�n� for short. Invoking the
direct-averaging method26,37 we finally obtain Eq. �19�. The
stochastic evolution on the natural modes can be also studied
transforming Eq. �19� into

v�n + 1� = �I − ���v�n� − ��n� �D3�

by applying the unitary similarity transformation to the cor-
relation matrix Rx1

, where �=QHRx1
Q and the stochastic

force vector is defined as ��n�=�QHx1�ẽ
0
*�n�. It is seen

readily that the latter vector has the following properties.
P1. The mean of the stochastic force vector ��n� is zero:

E���n��=0.
Proof: E���n��=QHE�x1�n��ẽ

0
*�n��=QHE�x1�n���e0�n�

+s1�n��*�=0 by virtue of the principle of orthogonality26 and
statistical independence between input variables �x�n� and
s�n��.

P2. The correlation matrix of the stochastic force vector

is a diagonal matrix: E���n��H�n��=�2J̃�, where J̃
=2�E��e0�n�2��+E��s�n�2��−Re�E�s*�n+1�s�n��
�.

Proof: Assuming e0�n� is a stationary and uncorrelated

sequence and s�n� is stationary,
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E���n��H�n�� − �2QHE�x1�n��ẽ0
*�n��ẽ0�n�x1

H�n��Q

= �2QH�E��e0
*�n��e0�n�� + E�s1

*�n�s1�n���Rx1
Q ,

�D4�

which, by virtue of the principle of orthogonality and statis-
tical independence, reduces to P2.

Using the properties P1 and P2 we obtain the same for-
mulas for the first two moments of the natural modes v�n� as
in Ref. 26, which allows to obtain the evolution of J�n� with
time step n. The second term of Eq. �18� in light of the
direct-averaging method is equal to

E��0
H�n�x�n�x�n�H�0�n��

� E��0
H�n�R�0�n�� = tr�RE��0

H�n��0�n��


= E�tr�vHQH� 1
2Rx1

+ Re�R�1�
�Qv
�

= 1
2�

k=1

L

�kE��vk�n��2� + E�tr�vHQH Re�R�1�
Qv
� .

�D5�

Assuming that the input signal is weakly correlated �R�1�
�0� we may bound the second term in the last equality of
Eq. �D5� with the first term �natural evolution�, i.e.,
E�tr�vHQH Re�R�1�
Qv
��

1
2�k=1

L �kE��vk�n��2� then

Jex�n� 
 �
k=1

L

�kE��vk�n��2� = �
k=1

L

�k
 �J̃

2 − ��k
+ �1

− ��k�2n
�vk�0��2 −
�J̃

2 − ��k
�� , �D6�

where vk�n� denotes the component of natural mode v�n�.26

If the exponential factor is neglected with increasing n,

Jex�	� 
 �
k=1

L

�k
 �J̃

2 − ��k
� �

1

2
�J̃ tr�Rx1


 . �D7�

The reduction in Jex�	� is achieved whenever

Jex�	� = 1
2�J tr�Rx1

� � �J tr�R� 
 Jex
LMS�	�

= 1
2�Jmin tr�R� ⇔ Re�rs�1�
 �

3
4Jmin, �D8�

where rs�1�=E�s*�n+1�s�n��.
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