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Abstract. In recent years there has been a growing interest in clustering methods stemming from 

the spectral decomposition of the data affinity matrix, which are shown to present good results on 

a wide variety of situations. However, a complete theoretical understanding of these methods in 

terms of data distributions is not yet well understood. In this paper, we propose a spectral 

clustering based mode merging method for mean shift as a theoretically well-founded approach 

that enables a probabilistic interpretation of affinity based clustering through kernel density 

estimation. This connection also allows principled kernel optimization and enables the use of 

anisotropic variable-size kernels to match local data structures. We demonstrate the proposed 

algorithm’s performance on image segmentation applications and compare its clustering results 

with the well-known Mean Shift and Normalized Cut algorithms. 
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1. INTRODUCTION 

 Clustering has a wide range of applications on several aspects of unsupervised learning; hence, 

it is a fundamental problem in machine learning. Applications include image segmentation, data 

mining, data compression, and speech recognition; to name a few. In recent years, a number of 

authors suggested clustering methods based on the eigendecomposition of a suitable affinity 



matrix. Such methods are known as spectral clustering and are considered to be among the most 

effective methods in the literature. There are several matrix and affinity measures that lead to 

different spectral clustering algorithms [8,11,16]. The affinity measures that characterize the 

similarities do not even have to obey the metric axioms except the symmetry property. 

 Spectral clustering is conceptualized with the use of the second smallest eigenvector of the 

Laplacian matrix to bi-partition the data [1]. Recently, a number of related clustering methods are 

suggested that are related to the use eigenvectors or generalized eigenvectors of the affinity matrix. 

The majority of the spectral clustering algorithms can be interpreted as some variant of graph cut 

methods [2,3,4], where multiway cuts have also been investigated [5,6].  In addition to these, 

studies related to the spectral methods are presented in [7,8,9,10,11,14]. Spectral methods are 

sensitive to the definition of the affinity measure, and choosing a suitable affinity measure is 

central to this approach. Since no theoretical criterion for choosing the functions to assign the 

affinities is present in the literature, these algorithms require the assumption of the existence of a 

suitable affinity definition. Typically, Mercer kernels are utilized as affinity measures, such as the 

widely used Gaussian kernel. 

 A different track in spectral clustering was designated by Scott and Longuet-Higgins [12] and 

later improved by Ng and colleagues [13], where they propose a mapping that uses the 

eigenvectors of the affinity matrix to transform the data from the original data space to the kernel 

induced feature space (KIFS), and the actual clustering is performed on the projection of the data 

in that space. Normalization of the transformed data is an important step in this approach, and 

clustering of the projected data in the KIFS was shown to be generating very successful results for 

a variety of different data sets. In this approach, spectral clustering problem becomes a technique 

for measuring data similarities by an inner product defined in the KIFS. For any Mercer kernel, the 



kernel trick defines a technique to compute inner products in the potentially infinite dimensional 

KIFS. This transformation relies on the assumption that the clustering in the KIFS is easier than in 

the original data space. In practice, however, this assumption does not hold for all Mercer kernels, 

and one should search for an optimal kernel design that satisfies this property.  

 Kernel optimization is known to be a tedious task, and it remains unsolved to the satisfaction of 

the machine learning community since there are no general and practical propositions in the 

literature. Furthermore, typically a single kernel does not describe data affinities consistently 

throughout the whole sample and multiple kernel widths have been used heuristically. To 

determine a suitable kernel, we use the connection of similarity based kernel methods with kernel 

density estimation to utilize results from the nonparametric density estimation literature [16]. 

 Mean shift is an iterative nonparametric clustering approach introduced by Fukunaga and 

Hostetler [15]. This procedure is used for seeking the modes of a probability density function 

represented by a finite set of samples. Mean shift formulation is revisited by Cheng [17], which 

made its potential uses in clustering and global optimization more noticeable, and the mean shift 

algorithm gained popularity [18,19]. Independently, a similar fixed-point algorithm for finding the 

modes of a Gaussian mixture was proposed and mean shift was shown to be equivalent to 

expectation maximization (EM) [20,21].  

 Spectral clustering algorithms require the computation of the eigenvectors of the 

NN × affinity matrix, where N is the number of samples. The computational complexity of the 

eigenvector calculation is O(N2) per eigenvector, which makes them impractical to use for very 

large data sets. Typically, by assuming kernels with finite support, the affinity matrices can be 

made sparse in order to employ efficient techniques such as the Lanczos method. 



 We propose a mode affinity based clustering algorithm stemming from a variable-size kernel 

density estimate of the underlying data distribution, which motivates a mean shift like algorithm to 

represent the data in a much smaller affinity matrix whose size depends on the number of modes of 

the density estimate. Throughout the paper, we refer to data samples attracted by the same mode in 

mean shift algorithm as partition. We form the affinity matrix between partitions by evaluating a 

suitable density distance measure and can be processed by standard spectral clustering techniques 

to determine the final clustering solution. The computational complexity of the second step is 

negligible compared to other spectral techniques, since the number of modes is much less than the 

number of samples. The bottleneck is the mean-shift iterations, for which simplifying propositions 

are discussed. The proposed method is well founded on nonparametric density estimation theory, 

and the resulting clustering approximates the nonparametric maximum likelihood solution. 

 

2. MEAN SHIFT SPECTRAL CLUSTERING 

 In this section the details of the proposed method will be discussed. First, we present a brief 

overview of spectral clustering and then the mean shift in the context of kernel density estimation. 

 Spectral Clustering: Given a set of data vectors {x1,…,xN} and a suitable kernel function 

K(xi,xj) to measure the affinities, the affinity matrix K and the normalized Laplacian matrix L are 

 2/12/1,),( −−== jijiijjiij DDK KLxxK  (1) 

where Di is the normalization term given by 

 ∑= j ijiD K . (2) 

There are a number of different approaches based on the eigendecomposition of either one of K 

and L matrices. Due to the improved eigenspread it provides, L is the usual choice [8]. Some of 

these approaches are: 



 1. Threshold the largest eigenvector of K [4]. 

 2. Threshold the second smallest eigenvector of L [3]. 

3.Transform the data to the KIFS using the eigenvectors of K or L and use a simple clustering 

algorithm in that domain [12]. 

 Mean Shift Algorithm: The mean shift algorithm is a mode detection procedure based on the 

density gradient estimation of the data. Given the data set and a kernel function Kσ(.,.), where σ 

denotes the kernel size, the kernel density estimate (KDE) becomes  

 p(x)= ∑ = −N
i ii

KN 1 )()/1( xxσ  (3) 

In general, the kernel size could take a different full covariance form for each sample. We 

experiment with different choices in our simulations. Using (3), the gradient of the probability 

density of the data is estimated and the local maxima points yc are obtained. At these points, the 

gradient becomes null and the Hessian is negative (semi-)definite: 

 0)(ˆ =∇ cKp y  0)(ˆ2 ≤∇ cKp y  (4) 

The mean shift iterations are simply fixed-point iterations towards these stationary points. The 

volume that includes only the set of points that converge to the same mode is defined as the 

attraction basin of that mode. 

 Recently, spectral clustering approaches based on the affinity and Laplacian matrices have been 

shown to be essentially related to kernel density estimation followed by an assignment for the class 

labels that minimizes the inter-cluster overlap and cluster entropy [16]. Particularly, considering 

spectral clustering with fixed size kernel density estimation in this context, one can easily observe 

that mean shift becomes an optimization problem, where the angle between cluster-means in the 

KIFS is to be maximized. 



 Motivated by this relationship between spectral clustering and kernel density estimation we 

propose a two-step spectral clustering algorithm: the first step determines the modes of the kernel 

density estimate with a fixed-point iterative procedure in a manner similar to the mean shift 

procedure. This procedure finds the minimal potential units for clustering, called partitions, which 

are naturally proposed by the density estimator.  The second step employs spectral clustering on a 

reduced-size affinity matrix consisting of similarities between the M partitions determined in the 

first step. Typically M is much smaller than N, and this results in significant computational savings 

in the second step, where the statistically insignificant partitions are merged into significant, larger, 

and more balanced clusters. In the second step, one can either select a threshold, which 

automatically determines the number of clusters or one can request the solution for a specific 

number of clusters using connected components or spectral clustering. 

2.1. Decision Boundary for Clustering 

 In a classification problem the optimal results ⎯in the Bayesian sense⎯ can be obtained by 

minimizing the Bayes risk function for the given data. For a two-cluster case, this definition of 

error requires the knowledge of the true underlying class distributions q1(x) and q2(x) and their 

corresponding a priori probabilities p1 and p2. The corresponding separation boundary is given by 

the solution to the equation p1q1(x)=p2q2(x). In a clustering problem, however, we do not have 

access to the individual class/cluster distributions and the overall data distribution p(x) is known to 

be p(x)=p1q1(x)+p2q2(x). The mean shift step inherently determines the boundaries between the 

  
      Figure 1.a  Figure 1.b 
Figure 1. Two Gaussian clusters with (a) balanced and (b) unbalanced a priori probabilities. Dashed lines represent the 
individual cluster densities, where the Bayes boundary is given by the intersection point. Solid line represents the
overall data density, and the approximation to the Bayes boundary is given by the local minimum between the clusters. 



attraction basins of all modes present in Kp̂ , the kernel-based estimate of this distribution. The 

importance of modes and saddle points in the context of statistical clustering has also investigated 

by Comaniciu and coworkers [33]. To illustrate, a one-dimensional scenario is depicted in Figure 1. 

The local minimum of the overall distribution between the modes is a reasonable approximation to 

the Bayes boundary. However, two modes that are supposed to be in the same cluster can be split 

artificially by the mean shift algorithm. The merging step that will follow takes care of this 

shortcoming by combining strongly connected neighboring modes. 

2.2. Kernel Density Estimation 

 In practice, data probability density functions may take complex forms, and determining a 

suitable parametric family can be a nontrivial task. Nonparametric approaches, on the other hand, 

overcome this difficulty. The probability density of the data can be estimated nonparametrically 

using a number of techniques. Techniques based on sample spacing are not differentiable; hence, 

are not suitable for mean shift iterations [25]. Estimators based on KDE provide a differentiable 

alternative [22,24]. Furthermore, the effectiveness of KDE in describing arbitrary data 

distributions are well known [22,24]. KDE may severely break down for accurate density 

estimation in high dimensional spaces; however, clustering is a simpler problem. Therefore 

successful clustering still can be achieved with a density estimate that is not acceptable for 

modeling. In fact, the connection of spectral clustering and mean shift with KDE implies that all 

of these methods are limited by KDE similarly. 

 Fixed size KDE allows a natural connection to the spectral clustering methods [16]. On the 

other hand, variable size KDE is known to have a fast asymptotic convergence behavior [22], 

which enables us to get a better estimate of the data density with a small number of samples, as 

well as allowing flexibility to adjust the estimator to local scales in the data distribution. In fact, 



the variable size KDE provided better results in our experiments as expected. There is a wide 

literature on how to select kernel sizes for kernel density estimates, including methods that range 

from heuristics to principled Bayesian approaches such as maximum likelihood [15,22]. In our 

experiments, we used several choices for variable and fixed size kernels:  

1. Silverman’s rule of thumb with spherical Gaussian kernel. For an n-dimensional N-sample 

dataset, denoting the sample covariance estimate by Σx, Silverman’s rule gives [25]: 

 ( )( ) )4/(22 )12(/4)()/1( ++= nNntrn xΣσ   (5) 

2. Mean of K nearest neighbor distances of each sample with spherical Gaussian kernel for 

variable size KDE times a global scaling factor optimized using maximum likelihood. 

3.  Covariance of K nearest neighbor of each sample with anisotropic Gaussian kernel for 

variable size KDE times a global scaling factor optimized using maximum likelihood. 

 The trade-off between clustering performance and computational cost between fixed and 

variable-size KDE is clear: introducing individual kernel sizes for each sample will increase the 

overall computational complexity of the algorithm, but will also increase the performance by 

allowing to obtain a density estimate that is more tuned to local scales and less sensitive to outliers 

in the data. Silverman’s rule is widely accepted to be a suitable choice as fixed-size kernel selection 

for unimodal distributions; on the other hand, a fixed kernel is not sufficient for densities with 

complex forms. For variable size KDE, σi is selected such that it becomes larger for samples that 

don’t have close neighbors (which are likely to be outliers), leading the probability density function 

values to be smoother in the vicinity of these samples.  

2.3.Mean Shift Iterations 

 The mean shift algorithm is used to achieve the intermediate clustering results to be used in the 

spectral analysis step. These partitions of the data distribution provide a natural clustering solution, 



where the attraction basin of each mode is a cluster. Given the kernel density estimate of (3), one 

can design a fixed-point algorithm to map each sample to the mode of the attraction basin that the 

sample lies in. At the mode, the gradient becomes zero: 
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Specifically for a Gaussian kernel (6) becomes 
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Reorganizing the terms in (7), and solving for x one obtains the fixed-point recursive update  
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The computational load of this phase is O(N) per sample per iteration. In practice, not all samples 

require the same number of iterations. This step could be made computationally efficient by 

introducing a stopping criterion to iterate the mean shift procedure starting from each data 

sample until a satisfactory convergence measure is achieved.1 Another possibility to reduce 

computational load is to employ the Fast Gauss Transform [26] or Improved Fast Gauss 

Transform [29] stemming from the fast multipole concept. Alternatively, a finite support kernel 

(such as the Epanechnikov kernel) could be employed (as commonly done in image 

segmentation applications) to limit the number of interactions that need to be evaluated for the 

update in (8). Combining all of these techniques could result in a fast and efficient 

implementation of the mean shift phase, with complexity lower than O(N2). Comaniciu & Meer 

suggested that using uniform kernels leads to faster convergence of the mean-shift iterations, 

while Gaussian kernels yield better results [18]. In our experiments, we focus on Gaussian 

                                                           
1 In particular, we used the following rule: if the K nearest data neighbors of an iterating point does not change for a 
few iterations, then it must be close to the peak and the neighbors are the data points in the vicinity of the peak. 



kernels. Moreover, specific computationally simplifying modifications, such as the use of fast 

Gauss transform, are discussed later.  

 In general, one cannot expect each partition to be a meaningful cluster mainly due to the 

existence of statistical variations in nonparametric density estimation in the finite sample case as 

well as due to the possibility of clusters with multiple modes. Each mode at best represents a vector 

quantization solution to represent the points in the corresponding attraction basin, which must be 

evaluated for the final clustering label assignments appropriately to take into account such effects. 

The method to resolve this issue will be detailed in the next section. 

2.4. The Normalized Partition Affinity Matrix 

 In this section, we propose a similarity measure between partitions of a probability density, 

which is purely defined in terms of affinities of individual data pairs. In spectral clustering, the data 

affinity matrix is constructed by evaluating all pair-wise similarities between samples. According 

to the analogy between kernel affinity measures and kernel density estimation presented in [16], 

the affinity matrix entry for the ij-pair is given by the convolution of the kernels associated with 

samples xi and xj in KDE.  

 Mean shift seeks for the modes of a kernel density estimate. Denoting the underlying true 

probability density function with p(.), mean shift iterations map the data points into the stationary 

points of  ( Kp ∗ )(x), and the assignment of the data into corresponding modes is done 

accordingly. Since the results of the mean shift is solely based on the underlying KDE, one should 

consider the resulting intrinsic data manifold to analyze the modes. In fact, KDE maps all the data 

points on a spherical manifold in the kernel induced feature space (KIFS), and in order to 

investigate the intrinsic data manifold in further detail, one should first grasp the characteristics of 

the data transformation into KIFS.  



 KIFS is a potentially infinite dimensional space spanned by the eigenfunctions of the kernel 

function2. Generally, the eigenvectors of the data affinity matrix are employed to approximate these 

eigenfunctions and the KIFS is represented in a dimensionality that is equal to the number of data 

samples. The mapping from the original feature domain into the KIFS is defined by the kernel 

trick. Specifically, for a translation invariant nonnegative3 kernel function, the mapping into KIFS 

is defined on the unit hyper-sphere. To investigate this fact deeper in detail, one should explicitly 

rewrite the kernel function in terms of its eigenvalues and eigenfunctions. For illustrative purposes 

and simplicity here we start with a fixed kernel function; so, the eigendecomposition of the kernel 

function becomes 
                                                           
2 According to the theory of reproducing kernels for Hilbert spaces (RKHS), for every positive semi-definite kernel 
function K(.) that satisfies the Mercer conditions [30], the set eigenfunctions ),...}(),({ 21 xx ϕϕ  form a basis for the 
Hilbert space of square integrable nonlinear functions [31]. 
3 This requirement stems from the connection to the density estimation. 
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Figure 2. The three modal Gaussian dataset is shown in the original feature domain, where the data points 
from each mode are shown by “+”, “× ”, and “◊” (top left). The three dimensional representation of the 
mapping in the kernel induced feature space is shown from different angles using the same markers “+”, 
“× ”, and “◊” for different modes.  
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Here, the outcome of the kernel function for a particular data pair can be regarded as the cosine of 

the angle between them in KIFS domain. Also note that particularly for a nonnegative kernel 

function the cosine between all the transformed data pairs are less than π/2; that is, all the data is 

transformed into a single quadrant in the KIFS. Illustrations regarding to a simple scenario of a 

three modal data distribution is depicted in Figure 2 for varying degrees of overlap between the 

modes. Since it is not possible to fully present the neither the infinite dimensional KIFS domain 

nor its widely used N-dimensional approximation, a subspace projection into the span of three 

greatest eigenvectors is used here. This method is proposed by Ng and colleagues [13] to analyze 

spectral clustering specifically; however, it can be generalized to be used for any kernel-based 

method to analyze the mapping into KIFS. The subspace projection of the data in KIFS domain is 

shown from three different angles, along with the three modal Gaussian mixture data in the original 

feature domain. The most important point here is to observe that the data points in the mode 

denoted with “+” is mapped onto the sphere such that its mean is perpendicular to the plane 

spanned by the class means of the other two modes denoted with “× ˙” and “◊” (top right), and the 

angle in between the other two mode means are less than 2
π  (bottom right), even with only three 

leading eigenvectors4. However, this analysis is only for illustrative purposes, and one can use the 

values of the normalized mode affinity matrix to see the actual angles in between the partition 

means of the transformed data in KIFS. A suitable metric for assessing whether two partitions 

belong to a single cluster is the angle between the means of these two partitions on the infinite 

dimensional spherical manifold. The angle between partition densities can be written as 

                                                           
4 Particularly, in this example the ratio of the magnitude square of eigenvalues correspond to the basis of the subspace 
that used for illustration to the sum of magnitude square of all eigenvalues is 0.67. 
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where Φ

iC
μ is the mean of the ith partition of the transformed data. Ideally, one should use the 

intrinsic means5 on the sphere here; however, assuming a well-chosen kernel that results in 

compact clusters in the KIFS and for computational simplicity, here we approximate the intrinsic 

means with the Euclidean mean. As one can observe from Figure 2, the partitions have a low 

spread on the sphere for a suitable choice of the kernel, and Euclidean distance definition becomes 

a suitable approximation of the intrinsic mean. Specifically, this characteristic is more obvious for 

the isolated modes that are far from any other mode, as an example, in all the data points that 

belong to the mode denoted with “+”looks as if it is mapped into a single point in the KIFS 

representations in Figure 2. Euclidean distance reduces the computational load and proved to be 

efficient in the experiments. Substituting the sample averages, one can rewrite (10) as 
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To investigate how this translates into the original feature space we rewrite (11) using (9) as 
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where i
kx  denotes the kth sample associated with mode i. Hence, the affinity measure given in (12) 

is essentially the sample average of the affinity measures of the individual data samples normalized 

                                                           
 5 The data means obtained using the intrinsic distances on the intrinsic manifold (distances evaluated over the sphere). 



over the individual mode volumes, where the sample average is calculated over the pairs of 

samples corresponding to those particular modes. Therefore, translating the mode-pair affinity 

defined in KIFS into the original feature domain, it is important to note that the distance measure in 

(10) is the normalized graph cut defined in between these modes. At the limit of infinite samples it 

converges to the cosine of the angle between the two distributions pi(x) and pj(x) in the function 

space according to the Euclidean inner product definition, where the inner product is 

 xxxxx dpppp jiji ∫>=< )()()(),(  (13) 

and pi(x) and pj(x) are the corresponding probability density functions of the modes. Since we 

employ mean shift algorithm in the prior step, we inherently use the KDE based estimate of this 

inner product, which is given by 
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and the similarity measure (14) is nothing but the angle defined by this inner product. Hence, we 

can express (12) as 
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In order to explore the effects of finite sample sizes on the distance measure based on the inner 

product estimate the bias and variance of this inner product estimator are investigated in the 

Appendix. The asymptotic unbiasedness and consistency conditions are the same as those of the 

kernel density estimators employed.  

 At this point, to provide consistency with the related literature, we rewrite the derivation 

provided for the proposed pdf distance measure in matrix form. Since the affinity matrix K is also 

implicitly used in the prior mean shift step, the matrix representation has also advantages in the 

implementation. The affinity matrix K is defined as follows 



 )( lkkl K xxK −=  (16) 

 Using (15) one can rewrite the summations over the corresponding rows and columns of the 

kernel matrix and one can build a (normalized) partition affinity matrix K~ , whose entries are the 

pairwise affinities in (13) rewritten using the matrix representation. 
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 Note that the procedure applied to define the distances between the modes in KIFS does not 

depend how the initial clustering assignments have been obtained. Basically, instead of mean shift, 

one can also use another clustering algorithm here due to computational complexity limitations or 

requirements for heuristic rules specially designed for the particular dataset. For simplicity in the 

above illustrations, a fixed-size KDE is used throughout this subsection. However, as stated before, 

variable size KDE is a more powerful tool for estimating the probability density, and considering 

the natural connection to affinity based clustering methods, leads to better clustering results. 

 
2.5. Connected Components of the Partition-Graph 

 Once the partition affinity matrix is evaluated, any standard spectral clustering method such as 

minimum graph cuts and normalized graph cuts can be employed on matrix of mode-affinity 

measures given in (13). Determining the eigenvectors of this matrix would cost O(M2) per 

eigenvector; negligible compared to the complexity of O(N2) when applied to the data affinity 

matrix. To illustrate this, we applied different spectral clustering methods to 
K~ for different 

datasets. Along with the well-known methods we also propose utilizing another simple algorithm 

here based on finding the connected components with a complexity of O(M4), which would make 

the algorithm become impractical for large affinity matrices. On the other hand, this method 



produced good results for small sized mode affinity matrices and is mostly preferred in our 

experiments. Alternatively, hierarchical clustering could also be used to analyze the mode merging 

structure.The simple procedure of determining the connected components of the mode graph given 

the (normalized) affinities basically sorts all affinities in K~ in ascending order and removing the 

weakest connections determined by the smallest affinity values one by one until a predetermined 

number of clusters is reached. In each step, the graph connectivity is being checked and the 

algorithm decides on either continuing to remove connections or stopping and assigning the 

connected modes into the same cluster. Performed in each iteration with O(M2) complexity, 

checking the graph connectivity is the dominant computational load, resulting in a O(M4) 

complexity for the overall algorithm. To check the graph connectivity, a well-known connected 

components algorithm is used [23]. The outline of the resulting algorithm is given in Table 1. 

Table 1. Outline of the overall algorithm. 

1. Get the data x and select the kernel size (or variable kernel sizes for each data point) using any of the methods 

given in section 2.2. Note that the computational complexity of these methods for the kernel selection is 

increasing with increasing index. 

2. Employ the fixed-point iteration in (8) to find the partitions of the probability density function. 

3. Construct K, using (16) calculate Dij for all i,j and using (17) and construct K~ . 

4. Sort all pairwise affinities defined in non-diagonal entries of K~ in an ascending order. The diagonal entries 

can be ignored, since they all are equal to unity. Representing the affinities of partitions with themselves, these 

entries don’t carry out information. 

5. Remove the weakest connection, defined by the smallest affinity. 

6. Check graph connectivity, and determine the number of separate trees. If the number of separate trees in the 

graph is equal to the required number of clusters, assign the connected partitions into the same cluster and stop. 

Otherwise go to step 5. 



 The procedure described above requires the number of clusters to be preset by the user. 

Alternatively, one could define a threshold for the (normalized) affinity values between pairs of 

partitions, which could be employed to maintain the connections corresponding to the larger 

affinities. Selecting a good threshold could be achieved by observing the clustering structure of the 

data as the threshold is increased from 0 to 1. The clusters that survive for a larger interval of 

threshold values could be deemed statistically significant. This procedure has been previously 

employed for setting temperature and kernel size in clustering algorithms [27], and is similar to 

hierarchical clustering in principle. 

 Constructing K~ , one can have an idea of the distances between the partitions of the overall 

distribution and the partition-affinity analysis step provides a systematic way of merging the modes 

by statistically investigating the possibility that neighboring partitions might belong to the same 

cluster. Previously, this issue has been addressed using the Capture Theorem, which requires 

additional expensive mean-shift iterations to be executed [18]. In the proposed framework, the 

connectivity of such partitions can be decided using the preset number of clusters approach or the 

survivability of the clusters along the threshold axis as described. To illustrate this, consider the 

probability density estimate presented in Figure 3. In this figure, decision boundaries of the 

standard mean shift algorithm, namely the boundaries of each neighboring attraction basin is given 

by dotted lines. It can be argued that there are two statistically significant clusters in this 
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Figure 3. A probability density function obtained by a Gaussian mixture of 6 components. The
dashed lines represent the boundaries for each attraction basin. 



probability density; however mean shift still defines each attraction basin as an individual cluster. 

Although one can argue that it might be possible to manipulate the kernel size such that a two 

cluster solution is obtained, the partition-affinity analysis and the connection to kernel density 

estimation eliminates the requirement for such heuristic attempts or tedious kernel optimization 

tasks, and provides a principled way of choosing the kernel and merging the obtained partitions. 

 The problem of deciding about statistically significant clusters is tackled before by Comaniciu 

and Meer [18], where they use mean shift to obtain intermediate clustering result and propose a 

connected components based clustering method, which performs a neighborhood search over 

convergence points, namely the modes, to obtain clustering results. Besides, this approach is 

representing each partition only with the location of the corresponding peak point of the pdf in the 

merging step, and does not necessarily optimizes a cost function over the probability densities of 

the individual modes. We will provide comparison with this approach in the next section. 

 Overall, the proposed algorithm provides a systematic and nonparametric approach for 

estimating perceptually and statistically important clusters. This will be illustrated in the next 

section in artificial data and image segmentation applications. 

 

3. EXPERIMENTAL RESULTS 
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 Figure 4.a Figure 4.b     Figure 4.c 
Figure 4. The crescent dataset is presented in (a), where the dots represent the data points and the lines connect the modes of the
estimated distribution after connected components are determined. Normalized mode affinity matrix and the data Laplacian
matrix are shown in (b) and (c), respectively (diagonals nulled). 



 The proposed algorithm will be illustrated on a synthetic dataset and on image segmentation 

using fixed- and variable-size kernel estimates. In all experiments, Gaussian kernels are utilized. 

For variable-size cases, the local kernel covariance is determined by the sample covariance of k-

nearest neighbors and a global scaling parameter. 

 Crescent dataset: This dataset is synthetically generated and consists of two crescent-shaped 

clusters with a nonlinear separation boundary. For each cluster, 200 two-dimensional samples are 

generated by uniformly selecting the angle in a π-radian arc and perturbing the radius with 

Gaussian distributed random values. A fixed-size spherical kernel determined by Silverman’s 

rule-of-thumb, and the proposed graph connectivity clustering method are used in this 

simulation. A realization of this dataset and the corresponding clustering results are shown in 

Figure 4, where the modes detected by the mean shift algorithm are labeled as shown. Connected 

  
     
 Figure 6.a Figure 6.b Figure 6.c 
Figure 6. The original image is shown in (a). Clustering results for fixed-size spherical kernel obtained using Silverman’s rule
and variable-size anisotropic kernel using local neighborhood covariances are presented in (b) and (c), respectively.  
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 Figure 5.a  Figure 5.b Figure 5.c  
Figure 5. (a) the four modal Gaussian dataset. (b) clustering results obtained with the earlier mode merging method (c) 
clustering results for MSSC 



modes in the figure represent the clustering result. The data Laplacian matrix and the normalized 

partition affinity matrix are also shown in Figure 4. 

 Comparison with an earlier mean shift mode merging method: In this subsection, we will 

compare our results with those of another widely used mode merging approach proposed by 

Comaniciu and Meer [18].. Defining the distance measure between partitions, one can either use 

a preset value for the distance allowed or employ a connected components algorithm and remove 

the weakest connections until the desired number of clusters is reached. Rephrasing, this earlier 

mode merging approach can be summarized as follows: 

1. Run the mean shift. Store the convergence points and corresponding data assignments. 

2. Calculate the distance between all the convergence points and merge the clusters if the 

distance in between the convergence points is less than a preset threshold. 

3. Perform the data assignments over the merged clusters to obtain the final clustering. 

4. Remove regions that contain fewer data samples than a preset threshold.6  

Like all other pairwise similarity based approaches, the most critical point here is the definition 

of the distance measure. Starting with an illustrative example, results for a four modal Gaussian 

mixture is compared in Figure 5, where the Gaussian components are centered at ( ± 1, ± 1/2), 

each with 100 data samples. Figure 5a shows the dataset, where the data samples belonging to 

each cluster is denoted with a different symbol, and mode merging results for two output clusters 

are shown in Figure 5b and Figure 5c. Figure 5b shows the mode merging results for the earlier 

method that considers pairwise distances between maxima points of modes, and Figure 5c shows 

the results obtained by the pdf distance estimate that we propose. As expected, results based on 

pdf distance are more natural clustering solutions for this toy dataset. We will also present 

comparisons with this algorithm on real data in the quantitative performance evaluation section.  
                                                           
6 This step can be regarded as specific to image segmentation applications. For details see the original paper [18]. 



 Note that the threshold in step 2 attempts to identify modes that are close to each other, while 

the thresholding in step 4 attempts to eliminate modes with small “volume”. The angular density 

distance in (17) achieves both objectives simultaneously and consistently. 

Comparison of fixed kernel size and variable kernel size: Image segmentation is an important 

application of clustering and has been utilized as a benchmark in mean shift and spectral clustering 

literatures. Depending on the context, a variety of suitable feature vectors that distinguish specific 

objects and textures from each other and the background can be derived. For simplicity, in this 

example, we present segmentation results for a color image using pixel coordinates and the RGB 

channel intensities as the features. The buddies image is 12896× , resulting in a huge affinity 

matrix. In the spectral clustering literature, a number of authors suggested using kernels that are 

nonzero only in the vicinity of a pixel when defining similarities, in order to reduce computational 

complexity. This corresponds to kernel density estimation with a finite support kernel along the 

pixel coordinate features, and relies on the assumption that the points in the same cluster should 

form a spatially continuous pattern. Note that pixels spatially separated by a distance larger than 

the kernel extent can still be in the same cluster through local connections. 

Results for both variable and fixed kernel sizes are presented in Figure 6. For the fixed-size 

spherical kernel case, the data is normalized to unit-variance in each dimension to avoid scale-

based performance degradation. Hence, this method can in fact be considered to use a separable 

        
 Figure 7.a Figure 7.b  
Figure 7. The original grayscale baseball player image is presented in (a). Clustering result for the mean-shift step using variable-size
anisotropic kernels with local neighborhood covariances is shown in (b). 



kernel with size tuned to the standard deviation of each feature individually. Due to data 

dimensionality, it is not possible to show the samples in the feature space, and only the input and 

output images will be presented in grayscale. In the output image, the pixels with the same 

grayscale value belong to the same cluster. The grayscale values themselves do not represent any 

information; however, the differences between grayscale levels of the segments represent the 

distance in the clusters in the feature space as measured by the angular density distance. 

 Comparison with Normalized Cut: The baseball player image has been utilized previously in 

spectral clustering papers (e.g., [3,13]) and its segmentation is performed using the proposed 

algorithm to provide a means of comparison. Features used in the example are the grayscale pixel 

intensities and the pixel coordinates. The original baseball player image, which is 221147× , is 

shown in Figure 7 with the clustering results obtained using a variable anisotropic kernel size. 

Fixed kernel size results using Silverman’s rule are presented in Figure 8 along with results of the 

well known normalized cut algorithm proposed in [3]. Normalized cut is a widely accepted 

algorithm that employs multi-way graph cut for the required number of clusters. It is not 

considered to be the state of the art for image processing applications, however, among the 

clustering methods in the literature that only require the number of output clusters but no other 

parameters, normalized cut is known to be one of the most efficient methods to provide balanced 

and statistically important clusters. Same as normalized cut, our approach MSSC only requires the 

number of output clusters. In addition, as described above, the angular distance measure in (12) is 

related to the normalized cut cost; hence, the comparison is logical at this point. In Figure 8 results 

of mean shift spectral clustering and normalized cut are presented for different number of clusters. 

We observe that the mean shift spectral clustering algorithm generates perceptually more relevant 

clusters even at small target number of clusters. 



 Quantitative Performance Evaluation: Due to lack of the definition of the correct or optimal 

segmentation boundary, in all preceding experiments, we left the performance evaluation of the 

results to the reader’s visual inspection. In this subsection, we utilize the Berkeley Segmentation 

Dataset and Benchmark [32] to present a quantitative performance evaluation of mean shift 

spectral clustering. This dataset has also the corresponding human segmentation labels along with 

the images that it contains, and provides an empirical basis for image segmentation algorithms.  In 

the evaluation, we used one of the human segmentations as the ground truth for the segmentation 

boundary, and to be able to overcome the difficulty of inconsistencies among human 

segmentations, we performed our experiments on some images or some parts of images, whose 

segmentations corresponding to different human subjects were similar. 

For performance evaluation we used region based precision-recall method. To obtain the precision 

recall curve, we compute two quantities, precision and recall, for different values of the kernel size. 

Although precision-recall curve resembles the ROC curve for hypothesis testing it is 

fundamentally different, and it is widely accepted as a powerful quantitative summary for 

      
 Figure 8.a Figure 8.b Figure 8.c 

        
 Figure 8.d Figure 8.e Figure 8.f 
Figure 8. Results of the Normalized Cut algorithm for 5, 10, and 15 clusters are presented in (a), (b), and (c). Results of the Mean
Shift Spectral Clustering are presented in (d), (e), and (f) for the same number of clusters, respectively.  



evaluating performance in the image segmentation literature. Precision (P) is defined as the ratio of 

detections that are true positives rather than false positives and recall (R) is the ratio of true 

positives rather than the ones that are missed. Since the both precision and recall is defined for a 

two class scenario, probability of detection and miss is meaningless for a multiple cluster case. To 

transform the multiple cluster segmentation problem into a detection problem, we build a 

segmentation matrix S both for the obtained segmentation result and the ground truth, such that 

Sij=1 if ith and jth data samples belong to the same segment of the image, and zero otherwise. 

Having the segmentation matrices constructed by using the ground truth and the results obtained 

using the segmentation algorithm, precision and recall values for can simply be obtained for the 

corresponding kernel size.  

 Although the precision-recall curve fully represents the performance characteristics for 

different parameter values, it is useful to generalize the performance with a single number, and the 

F-measure is used here for this purpose. The F-measure is defined as weighted harmonic mean of 

precision and recall and given as 

 11 )1(1 −− −+= RPF αα  (18) 

The position of the maximum F-measure along the precision-recall curve defines the optimal 

segmentation performance for the given particular α value; hence, the maximum F-measure along 

the precision-recall curve can be used to summarize the performance. The weighting factor α is set 

to 0.5 in our experiments. 

 Figure 9 presents the output of mean shift and mode merging results both for the earlier method 

proposed by Comaniciu and colleagues and mean shift spectral clustering along with the original 

images used in the experiments. While generating the mode merging results for these two 

algorithms we use the same mean shift output, and in the mean shift iterations we used a variable 



kernel size for the reasons we mentioned earlier. Particularly, the covariance of the Gaussian kernel 

function used in this experiment is given by Σi = σ2 Ci, where Ci is the covariance of the K-nearest 

data points, and σ2 is a global scale parameter. Since it leads to a biased density estimate, choosing 

a fixed number of data points to use for local covariance estimation is problematic from the density 

estimation point of view7. 

We set this value as NK =  and obtain the precision-recall curve for different values of the 

global scale σ2. We use (x,y) coordinates of the pixels and the intensity value I(x,y) as features in 

this experiment. The kernel function used for the mean shift entirely defines the distance measure 

for MSSC; on the other hand, since no optimization method is proposed in the earlier mode 

merging method to select the threshold that defines the neighborhood of modes that should be 

connected, we performed a brute-force search for different threshold values and present the results 

with the best F-measure among those correspond to the same mean shift output for the particular 

kernel size.  

 Comparison with Mean Shift: Instead of selecting the kernel sizes stemming from the density 

estimation literature, one may try to select the kernel size that leads to desired clustering results. 

Most common way to do this is to run the algorithm several times for different kernel sizes, until a 

performance measure is optimized. For example, recalling the density estimate given in Figure 3, 
                                                           
7 Generally, to obtain an asymptotically unbiased density estimate K should satisfy: ∞=

∞→
K

N
lim  , 0lim =

∞→ N
K

N
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Figure 10. (a) an eight-cluster mean shift results with a wide kernel (b) mean shift results for Silverman’s rule (c) mean
shift spectral clustering solution for an eight-cluster solution 



one may argue that it is possible to select a wider kernel size to obtain a bimodal density estimate 

for the same dataset. In image segmentation literature, the rule of thumb for an NN ×  is given as: 

(i) scale the intensity level to N, so that the data is normalized among the pixel coordinate and 

intensity features (ii) select the kernel size as N/5. Here, the selection is rather heuristic, but it is 

reported to lead good image segmentation results [34]. Running mean shift with a wide kernel is a 

widely used approach along with the mode merging method that we presented performance 

comparisons in the previous subsection. In this subsection, we compare our approach with the 

mean shift itself. Note that the mean shift clustering results obtained here are totally different than 

the intermediate mean shift results in MSSC. In the context of mode merging, the mean shift 

results are required to have many more clusters as compared to the final number of clusters, for this 

reason either relatively narrow Gaussian kernels or finite support kernels such as the Epanechnikov 

kernels are used. For the results that we obtained for the mean shift algorithm, here we used 

Gaussian kernels and utilized the rule of thumb given above to find the kernel size. For mean shift 

spectral clustering we used Silverman’s rule to obtain the results. Figure 10 shows the results of 

these two methods on the baseball player image. For the image normalized along the feature 

dimensions as described above, Figure 10a shows the results of the mean shift algorithm, where 

mean shift ends up with an eight cluster solution. If the kernel size is selected according to 

Silverman’s rule given in (5), mean shift ends up with the clustering solution shown in Figure 10b, 

and Figure 10c shows the eight cluster mean shift spectral clustering solution obtained using this 

mean shift results. Comparing the Figure 10a and Figure 10c one can see that mean shift spectral 

clustering results in a better segmentation, whereas in the mean shift results the body parts of the 

upper baseball player are clustered together with the ground, and the ground and background wall 

are artificially split into two clusters.  



 

4. CONCLUSIONS 

 Although proven to be effective and considered to be among the state-of-the-art methods for 

clustering, the main disadvantage of mean shift is that the resulting clustering assignments can 

artificially separate two modes that are supposed to be in the same cluster. The proposed pdf 

distance based mode merging stage allows a theoretical connection between the quality of the 

clustering solution and that of the kernel density estimate. One can exploit the rich literature on 

kernel optimization based on density estimation performance, thus eliminate the expensive need 

for kernel size selection via repeated clustering trials. This also allows a natural introduction of the 

stronger variable-size anisotropic kernel density estimates to spectral clustering algorithms. 

 Merging clusters obtained by mean shift is a well-known problem, and it was handled before 

by considering the distances in between pairs of the mode peaks. As compared to this earlier 

approach, MSSC provided slightly better results for image segmentation applications. However, 

the only point here is not the improvement in the performance itself. Since the distance measure 

defined here is explicitly a function of the density estimate implied by the mean shift, MSSC does 

not require another parameter to evaluate the mode distances and eliminates the necessity of a 

parameter search or optimization step here. The complete process is automated except the choice 

of number of clusters. At this point, one may argue that the computational complexity that (17) 

requires O(N2) computations, as compared to more inexpensive O(M2) complexity [18]. However, 

note that the pairwise kernels that are required in (17) have already been evaluated in the preceding 

mean shift step. Hence, (17) does not introduce any significant computational load, but one needs 

to save the pairwise similarity matrix in the first iteration of the mean shift.   



 For image segmentation applications, mode distances based method is able to provide 

satisfactory performance, most probably due to the characteristics of the commonly used feature 

space; x, and y coordinates, and the pixel intensities - the coordinate values generate evenly spaced 

samples in the feature space. On the other hand, using distances between peaks corresponds to 

modeling the mode just with the location of the peak, which is usually insufficient, and may lead to 

some unnatural clustering solutions for a general clustering problem. This drawback of the earlier 

approach is demonstrated with a simple illustration, where the Gaussian distributions are not 

spherical. But note that, the mode affinity that MSSC defines is able to model the linear or 

nonlinear shapes of the modes. In image segmentation literature, there are two main ways of using 

mean shift: (i) use a narrow kernel and merge the modes using peak distances (ii) use wide kernels 

and run mean shift several times until a performance measure is satisfied. Here, we compare our 

results with both of these approaches, and we obtain similar or better performances with no effort 

spent on parameter tuning. 

 While the mean shift procedure in its raw form has O(N2) complexity, this load can be reduced 

by clever choice of kernel supports, such as in the image segmentation examples, introduction of 

approximate iterations, such as the Fast Gauss Transform (reduces complexity to O(N)), use of 

suitable stopping criteria to eliminate unnecessary iterations, and employing other heuristic rules 

that save computations (checking conditions similar to the information force tree approach  [28]). 

Also, while discussing the computational load, one should also consider the number of required 

iterations.  From this aspect, using narrow kernels in mean shift and coupling this with a 

computationally inexpensive merging step is again preferable due to less number of iterations 

required as compared to using a wide kernel function in mean shift.  



 This paper lays the theoretical foundation for future work, where we will implement the 

techniques discussed above for further computational savings and an investigation of techniques 

for selecting a suitable threshold to identify mode connectivity for the purpose of automatic 

detection of the number of statistically significant clusters.  
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Figure 9. For each column the original image, the result of the mean shift step with the corresponding kernel size, the result of
MSSC, the result of peak distances method, and corresponding precision-recall curves are presented, respectively. The kernel
covariances used in the mean shift step for different points on the precision-recall curve is given by Σi = σ2 Ci , where Ci is the
local covariance estimate and  σ2= 0.25, 0.5, 1, 2, 4. 


