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Abstract 

 In this paper, we propose a Minimum Error Entropy with self adjusting step-size (MEE-SAS) 

as an alternative to the Minimum Error Entropy (MEE) algorithm for training adaptive systems. 

MEE-SAS has faster speed of convergence as compared to MEE algorithm for the same 

misadjustment. We attribute the self adjusting step size property of MEE-SAS to its changing 

curvature as opposed to MEE which has a constant curvature. Analysis of the curvature shows that 

MEE-SAS converges faster in noisy scenarios than noise free scenario, thus making it more 

suitable for practical applications as shown in our simulations. Finally in case of nonstationary 

environment, MEE-SAS loses its tracking ability due to the “flatness” of the curvature near the 

optimal solution. We overcome this problem by proposing a switching MEE and MEE-SAS 

algorithm for non-stationary scenario which effectively combines the speed of MEE-SAS when far 

from the optimal solution with the tracking ability of MEE when near the solution. We 

demonstrate the performance of the switching algorithm in system identification in nonstationary 

environment. 

Keywords: Minimum Error Entropy (MEE); MEE-SAS; Renyi’s Entropy; Supervised Training. 

 

I. INTRODUCTION 

  

[Figure 1. Adaptive System training using information theoretic criterion] 

Many adaptive signal processing problems such as system identification [1], noise canceling [2] and 

channel equalization [3] are typically solved in the framework of Figure 1, where the aim is to 
minimize the difference between the desired and the system outputs. For many years, the adaptive 
signal processing community has been using the mean-square-error (MSE) as the optimality criterion 
[4,5]. The main reason for the wide use of MSE lies in the various analytical and computational 

simplicities it brings coupled with the minimization of the error energy, which makes sense in the 
framework of linear signal processing. However, from a statistical point of view, MSE only takes into 
account the second order statistics and is therefore only optimal in the case of Gaussian signals and 
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linear filters. 

In an effort to take into account higher order statistics, the mean-fourth-error (MFE) and its 
family of cost functions had been proposed by Walach and Widrow [6]. MFE and its higher order 
counterparts have faster adaptation for additive noise having a light-tailed probability distribution 
function (PDF), but are stable only in a very narrow range and a proper selection of learning rate is 

very crucial. To overcome this difficulty, a linear combination of the cost functions of LMS and LMF 
filters using a single parameter 0 1λ≤ ≤  has been proposed [7,[8]. Many variations of these filters 
have already been developed by adaptively estimating the optimal parameter λ  or by recursive 

estimating the cost function [9]. 

In a statistical learning sense, especially for nonlinear signal processing, a better approach would 
be to constrain directly the information content of signals rather than simply their energy, if the 
designer seeks to achieve the best performance in terms of information filtering [10]. 

Entropy, first defined and proved useful by Shannon [11] and generalized by Alfred Renyi [12], 

is a scalar quantity that provides a measure for the average information contained in a given PDF. 
When entropy is minimized, all moments of the error PDF are constrained. The entropy criterion has 
been utilized as an alternative for MSE in supervised adaptation by Principe, Erdogmus and 
coworkers. For instance, minimization of error entropy (MEE) had been shown as a more robust 

criterion for dynamic modeling [13] and an alternative to MSE in other supervised learning 
applications using nonlinear systems [14]. 

The MEE cost function can be searched with gradient descent learning [10] or even second order 
search methods [15]. One of the difficulties with these search algorithms is the computational 

complexity that arises due to the estimation of entropy. Stochastic gradient algorithms have been 
derived to alleviate this problem [16]. This paper extends the class of search algorithms for the MEE 
by taking advantage of the fact that the cost maximizes the argument of the logarithm (a quantity that 
is called information potential), which is nonlinearly related to the samples. As will be demonstrated 

in this paper, a self adjusting step size can be defined, which requires only an initial stepsize selection 
for a more controlled gradient search (apart from the selection of the kernel size for information 
potential estimation). This new search algorithm will be called minimum error entropy with self 
adjusting step-size (MEE-SAS).  

We can see that μ  controls the behavior of the algorithm, and that two important goals are 
competing: for fast convergence, one would use a large step-size μ , but to achieve low steady-state 

MSE, a smaller step-size would be better. The ideal step size should decrease or increase as the 
overall system error decreases or increases.  Various schemes for controlling the step-size of LMS 

have proposed in [17-20]. These schemes provide a “measure of error” to control the step size using 
the additional parameters. However, MEE-SAS provides a natural “Target” that is available to 
automatically control the algorithm step size. One intuitive way to understand the MEE-SAS 
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algorithm is to consider it as a variant to MEE with a variable step-size [ ]( ) ( ) ( )n V Vμ μ= −0 e . When 

the error is large, adaptation is faster, when the error is small, adaptation is slower, resulting in a fast 
convergence with small steady-state error. We theoretically study and experimentally demonstrate 
that it also provides a faster adaptation than MEE for the same misadjustment.  

The previous discussion also explains one of the drawbacks of MEE-SAS. When close to the 

optimal solution the effective step size of MEE-SAS is very small. In nonstationary environment with 
small perturbations in optimal solution, MEE-SAS looses its tracking ability due to this small 
effective step size. We overcome this defect, by using a switched MEE/MEE-SAS algorithm for non 
stationary environment which tracks the changing solutions very effectively.    

The paper is organized as follows: First, Section II and III introduce MEE and MEE-SAS 
Information Theoretic Criteria. The structural analysis of the relation between MEE and MEE-SAS is 
discussed in section IV. In Section V we introduce the switching MEE and MEE-SAS for non 
stationary scenario. Section VI deals with simulation results and finally we conclude in section VII. 

 

II. MEE CRITERION AND GRADIENT SEARCH ALGORITHM 

Consider the supervised training scheme of Figure 1. For the evaluation of the error entropy, we 

seek to estimate entropy directly from the error samples. So, we will utilize initially the Parzen 

estimator of the error probability density function (PDF) ( )ξef̂
 given by 
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))((1ˆ ξξ σ                           (1) 

where ( )⋅σG  denotes the Gaussian function with a radially symmetric variance 2σ  for simplicity. 
This estimator can be substituted in the Renyi’s quadratic entropy definition given by 
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where [ ])(,),2(),1( Neee …=e . 
The information potential )(eV  is defined as the argument of the log. The maximum value 

)(0V  of the information potential will be achieved for a Dirac −δ distributed random variable 

( )(1) (2) ( )e e e N= = =… .  Using the fact that the integral of the product of two Gaussians is another 

Gaussian with a variance equal to the sum of the variances this procedure never needs the explicit 
evaluation of the integral, and yields a simple and effective nonparametric estimator for the 
information potential. It can be calculated in closed form from the samples using Gaussian kernel as 
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Minimizing the entropy is equivalent to maximizing the information potential since the log is a 
monotonic function. Therefore, the cost function )(eJ  for the MEE criterion is given by 

).(max)( ee
w

VJ MEE =                               (4) 

Since the information potential is smooth and differentiable by the Gaussian kernel properties, we can 
use its gradient vector to be used in the steepest ascent algorithm shown below 

( 1) ( ) ( )n n Vμ+ = + ∇w w e                           (5)              
where )(eV∇ denotes the gradient of the information potential and the gradient is 

22 2
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A batch estimation of the gradient over N samples provides a simple estimation of the gradient, but 
notice that this procedure is )( 2NO . For online training methods, the information potential can be 

estimated using the stochastic information gradient (SIG) as shown in (7). Here the outer summation 
is dropped to get the stochastic version of the information gradient and the sum is taken over the most 
recent L  samples at time n . Thus for a filter order of length M , the complexity of MEE is equal to 

)(MLO  per weight update. 

∑
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The selection of the kernel size σ is an important step in estimating the information potential 

and is critical to the success of these information theoretic criteria. In particular, increasing the kernel 
size leads to a stretching effect on the performance surface in the weight space, which results in 
increased accuracy of the quadratic approximation around the optimal point [21].  So, we use a large 

enough kernel size during the adaptation process to guarantee that the operating point lies in the 
convex hull, and anneal it during training [14]. 

 

III. MEE-SAS CRITERION AND GRADIENT SEARCH ALGORITHM 

As can be easily inferred from (3), )()( 0e VV ≤ always; hence )(0V  provides an upper bound on 
the achievable )(eV . Seen from a different perspective, )(0V  is the ideal “target” value to be reached 

in the information potential curve. Thus [ ])()( e0 VV −  is always a non-negative scalar quantity which 

does not change the direction of the weight vector but can be used to accelerate the conventional 
gradient search algorithm given in (5). This modified search algorithm is named MEE-SAS. The 
weight update in MEE-SAS becomes 
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where [ ])()()( e0 VVn −= μμ . 

We can further note that there exists a cost function which gives rise to this gradient descent 
algorithm which is given by, 

[ ] .)()(min)( 2e0e
w

VVJ SASMEE −=−                       (9) 

Maximizing the information potential is equivalent to minimizing the cost function (9). Taking the 
gradient of this cost function as shown below gives the gradient descent method of (8). 

[ ] )()()(2)( ee0e VVVJ SASMEE ∇⋅−−=∇ −                   (10) 

 

THEOREM 1: (Preservation of Optimal Solution) 
The stationary points of ( ))(eVf  and their nature (minima, saddle, maxima) in the w  space 

are the same as those of )(eV  if ( )⋅f  is strictly monotonic increasing on the range of )(eV . 

Proof: ( ) ( )
w

e
e
e

w
e

∂
∂
⋅

∂
∂

=
∂

∂ )(
)(
)()( V

V
VfVf . Since ( )( )

0
( )

f V
V

∂
>

∂

e
e

 for all ( )V e , ( )( )f V∂
=

∂

e
0

w
 iff 

( )V∂
=

∂
e 0

w
. Also, ( ) ( ) ( )2 2 2

2

( ) ( ) ( )( ) ( ) ( )
( )( )T T T

f V f V f VV V V
VV

⎡ ⎤∂ ∂ ∂∂ ∂ ∂
= ⋅ ⋅ + ⋅⎢ ⎥

∂ ∂∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

e e ee e e
w ew w e w w w

.  At all stationary 

points, ( )V∂
=

∂
e 0

w
, so ( ) ( )2 2( ) ( ) ( )

( )T T

f V f V V
V

∂ ∂ ∂
= ⋅

∂∂ ∂ ∂ ∂

e e e
ew w w w

. Since ( )( )
0

( )
f V

V
∂

>
∂

e
e

 for all ( )V e , the sign 

of the eigenvalues of the Hessian at the stationary points are unchanged, thus their nature is 
preserved. Q.E.D. 

 

COROLLARY: 

In MEE-SAS, ( ) [ ]2)()()( e0e VVVf −= , and the range of )(eV  is [ ])(,0 0V . In that case, the 
theorem holds. 

Proof:  In that case, the theorem holds except ( ) 0
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w
eV  since )(eV is smooth and differentiable and 

)()( e0 VV ≥ in (3). Q.E.D. 
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In order to continue with the convergence analysis of MEE-SAS, we consider a 
quadratic approximation for the information potential )(eV by employing a Taylor series 
expansion truncated at the linear term for the gradient around the optimal weight vector.  

)(~)(~
2
1)()( nnVV T wRwee w +=

∗
                       (11) 

where the optimal solution is defined as arg max ( )V∗ =
w

w e , and )()(~ nn www −= ∗  and 

)(: 2 eR V∇= . 

In fact, when the kernel size (the width of the window function used in the parzen 
estimator) tends to infinity, the local minima and maxima of the MEE disappear, leaving a 
unique, but biased, global minimum. This dilation property of the MEE is shown in [21]. 
Clearly, any continuous and (twice) differentiable cost function can be represented accurately 
with a quadratic approximation in some neighborhood of its global optimum. Then, provided 
that the kernel size is large enough during the adaptation process to guarantee that the 
operating point lies in the convex hull, one can perform global convergence analyzes of the 
steepest descent algorithm in the MEE and determine upper bounds on the step size of 
gradient-based optimization techniques to guarantee stability. 

 

THEOREM 2: (Step-size for Convergence) 
Assume that )(eV  is a quadratic surface with a Taylor series approximation given by 

)(~)(~
2
1)()( nnVV T wRwee w +=

∗
 where )()(~ nn www −= ∗  and )(: 2 eR V∇= . To ensure convergence of 

the MEE-SAS algorithm, a necessary condition is  

k
n

λ
μ 2)(0 −

<< ,                            (12) 

where [ ])()()( e0 VVn −= μμ  and kλ  is the smallest eigenvalue of the MEE cost function. 

Proof: Let TQΛQR = , where Q  and Λ  denote the orthonormal eigenvector and 
diagonal eigenvalue matrices, respectively. Subtracting both sides of (8) from ∗w  and 

substituting )(~)( nV wRe −=∇  and TQΛQR = , we get  
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The weight error along the natural modes ( )(~)( nn T wQv = ) is thus given by 
[ ] ).()()1( nnn vΛIv μ+=+                           (14) 

The expression for the kth mode then becomes, 
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( ) ).()(1)1( nvnnv kkk λμ+=+                        (15) 

From (15) for stability, the step size should satisfy the constraint  

.2)(01)(1
k

k nn
λ

μλμ −
<<⇔<+  Q.E.D.                (16) 

 

One intuitive way to understand the MEE-SAS algorithm is to consider it as a variant to MEE 
with a variable step size [ ])()()( e0 VVn −= μμ . The term [ ])()( e0 VV −  regulates automatically the step 

size by giving acceleration when far away from the optimal solution and reducing the step size as the 
solution is approached. This intuition can be mathematically proved as follows. 

 

IV. STRUCTURAL ANALYSIS OF CONVERGENCE 

THEOREM 3: (Hessian Relation between MEE-SAS and MEE) 

Let R~ and R  denote the Hessian of MEE-SAS and MEE respectively. The relation between 
the Hessian of the MEE and MEE-SAS is the following, 

( ) .)(~)(~2)(~)(~~ TTT nnnnc RwwRRwRwRR ++−=              (17) 

where [ ])()(2 e0 w∗
−= VVc . 

Proof: Differentiating (9) twice with respect to the weight vector produces 
[ ] TVVVVV )()(2)()()(2~ 2 eeee0R ∇∇+∇−−=  and (17) is obtained by substituting (11) 

and )(~)( nV wRe −=∇ . Q.E.D. 

 
From the above equation (17), using the eigen-decomposition of MEE-SAS ( TQΛQR ~~~~

= ) and 
MEE ( TQΛQR = ), and transforming the coordinates ( )(~)( nn T wQv = ) into the natural modes, we 

obtain, 
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where )]()([2 e0 w∗
−= VVc . If we can determine the eigendecomposition of the matrix 

( ) ])()(2)()([ ΛvvΛΛvΛvΛ TT nnnnc ++− , which is denoted by TΣDΣ , where Σ  is orthonormal and 

D  is diagonal, then (17) becomes 

TTT QΣDQΣQΛQ =
~~~

.                          (19) 
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By direct comparison, the eigenvectors and the eigenvalues are determined to be 

QΣQ =
~

, DΛ =
~

.                            (20) 

The entries of TΣDΣ  are found as follows: The ith diagonal entry is 22
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the (i, j)th entry is  jiji vvλλ2 , where iλ  is the ith diagonal entry of Λ  and iv  the ith entry of 

)(nv . 
However, especially if )(nv  is small, the matrix ( ) ])()(2)()([ ΛvvΛΛvΛvΛ TT nnnnc ++−  is 

diagonally dominant; hence (due to the Gershgorin theorem) its eigenvalues will be close to those of 

the diagonal portion Λc− . In addition, its eigenvectors will also be close to identity (i.e., the 
eigenvectors of the diagonal portion of the sum). 

Consider the special case when we are moving along one of the eigenvectors 
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kv ]0,,,,0[ ……=v ). Then the expressions simplify to the following. 
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In real scenarios, there exist modes which converge slower than others due to the eigenvalue spread. 

If we analyze the convergence along the principal axis of R , it is easy to see that we obtain 
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When the weights are close to the optimal solution 02 ≈kv , therefore the eigenvalues are proportional 

to the eigenvalues of the MEE cost which is quadratic. On the other hand, when the weights are far 
from the solution, 2

kv  is large and thus the second term dominates and the weights are proportional 

to the square of the original eigenvalues. A consequence of this is that MEE-SAS has the remarkable 
property of changing curvature. This is attributed to the fact that the eigenvalue of MEE-SAS kλ

~  is 
quadratically related to the eigenvalues of MEE kλ when the weights are far from the solution and is 

linearly related when near the optimal solution. Also note that the convergence along the kth natural 
mode is faster than other modes due to the extra 222 kk vλ  term when the weights are far from the 

optimal solution. 
For each natural mode kv  in (19), the relationship between the eigenvalue of MEE-SAS ( kλ

~ ) 
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and that of MEE ( kλ ) is  
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where )]()([2 e0 w∗
−= VVc . Since we maximize the cost function )(eV  in MEE, the eigenvalues kλ  

of its Hessian are negative. Similarly, for MEE-SAS, the minimization of its cost function makes kλ
~  

positive. The shape of the bowl is quadratic at each natural mode for MEE-SAS and the turning point 
of curvature occurs when  

13 2 =− kkvc λ  so that .~
kk λλ −=                       (24) 

From (21), we analyze specifically, 
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Using the non-negative property of c and the form of (22), we get  
.10 ≤≤ c                               (26) 

In (26), 0=c  implies )()( e0 w∗
=VV  , whereas 1=c  implies 0=kv (i.e., ∗= ww ). 

It is interesting to note that the location of the turning point of curvature depends on c  as seen 

in (25), which means that it depends on the achievable final error. The larger the final error, the faster 
is the convergence. 

 

 

THEOREM 4: (Turning Point of Curvature) 
The point at which the curvature changes from higher than second order to second order is closer 

to the optimal solution when )()( e0 w∗
≠VV  than in the case when )()( e0 w∗

=VV . 

Proof:  When )()( e0 w∗
=VV , the turning point of curvature is

k
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 when )()( e0 w∗
≠VV . So, we get the following result, )0(
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Q.E.D. 
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0=c  10 << c  1=c  

k
kv

λ3
1−

±=  
k

k
cv
λ3

1−
±=  0=kv  

[Table 1.Location of the turning point of curvature] 
 

Thus, the turning point kv  of curvature is farther from the optimal solution for the zero error 

adaptation case than for the non-zero error case. Since this point marks the change of curvature from 
4th order to 2nd order, this implies that for practical scenarios (i.e. )()( e0 w∗

≠VV ), the curvature is going 

to be 4th order, leading to much faster convergence than MEE for the same initial step size. 

 
 
 

V. SWITCHING SCHEME BETWEEN ADAPTIVE ALGORITHMS 

One disadvantage of MEE-SAS is the insensitivity of the algorithm due to the “flatness” of the 
surface near the optimal solution. In the case where we need to track small changes in weight vector, 
this property would hinder the tracking ability of MEE-SAS. This was exactly observed in prediction 

of non-stationary Mackey-Glass (MG) time series where there is small perturbation of the optimal 
weight [24]. The loss of “sensitivity” of MEE-SAS can be attributed to the extremely small value of 
[ ]( ) ( )V V−0 e  near the optimal solution which suppresses the transfer of information from the 

information potential gradient to the weight vectors. 

We are trying to apply MEE and MEE-SAS combined algorithm for nonstationary signals where 
tracking is very important. In order to decide the switching time to maximize convergence speed, an 
analytical criterion needs to be developed. 

The dynamics of adaptation can be understood in terms of energy minimization in the context of 

Lyapunov stability theory [25]. Lyapunov energy function is a method for analyzing the convergence 
characteristics of dynamic systems. In our case, we are using it to analyze the speed of convergence. 
Simply, the faster the Lyapunov energy decreases, the faster we are getting towards the optimal 
solution, especially since our energy function is based on the criterion that needs to be optimized. 

Specifically, consider the MEE-SAS criterion as a Lyapunov energy function. For simplicity, 
suppose that adaptation is being performed in continuous-time (which could be easily approximated 
by the typical discrete-time update rules used in practice). We have the following energy function and 
the continuous-time learning rule: 
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From this, we obtain the following temporal dynamics for the Lyapunov energy that describes the 

learning rule: 
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On the contrary, the regular MEE rule would have the following energy function and update rule: 
[ ])()( e0 VVJ MEE −=                             (30) 
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This corresponds to the following temporal dynamics for the minimization of energy: 
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From (29) and (32), the general switching time is determined as  

.MEESASMEE JJ �� =−                           (33) 

Therefore, in the region satisfying the condition MEESASMEE JJ �� >− , MEE-SAS should be used 

since MEE-SAS converges faster than MEE, otherwise MEE is used. However, the application of the 
switching decision expression (33) to the stochastic gradient search, high computational complexity 
(the computational complexity of both MEE and MEE-SAS) is required due to the parallel 

computation of both algorithms. Instead, we can modify simply (33) to read 
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                (34) 

In (34), we need to check just the information potential at each iteration and compare it with a 
constant, which is evaluated with the learning rates of MEE and MEE-SAS. 
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VI. SIMULATION RESULTS AND DISCUSSION 

In this section, we will present three numerical examples to demonstrate the theoretical 
conclusions drawn in the preceding section. These include the effect of kernel size and noise on the 
volume of the region of valid quadratic approximation. In addition, the results of a series of Monte 

Carlo simulations that illustrate the comparative performance of the proposed MEE-SAS criterion 
versus MEE in supervised training of moving average models. In our second simulation we present 
the performance of MEE-SAS and MEE for nonlinear system identification for completeness. Our last 
simulation shows the tracking ability of the switching algorithm in non stationary environment. To 

quantify the performance of different algorithms we create this environment using two linear systems 
by switching suddenly between the two systems. To make the problem more difficult we constantly 
change the gain of the linear systems in between the switching.   

A. First Study: Curvature Analysis of MEE and MEE-SAS 

In this simulation, for visualization purposes, we used a two-tap FIR filter for which the training 

data is also generated by a two-tap FIR filter with weight vector [ ]T2,1=∗w . Thus, in the system 
identification scheme, both the unknown system and the adaptive system have the same structure. The 

input to both the unknown system and the adaptive system is white Gaussian noise with unit power. 

 

          (a) MEE: ( ) ( )V V⎡ ⎤−⎣ ⎦0 e                      (b) MEE-SAS: ( ) ( ) 2
V V⎡ ⎤−⎣ ⎦0 e  

[Figure 2. Performance Surface of MEE and MEE-SAS] 
 
1). Effect of Kernel Size on the Performance Surface in zero final error case ( )()( e0 w∗

=VV ). 

This case study aims to illustrate how the performance surface (here represented by its contour 

and gradient vector plots) of MEE ( )()( e0 w∗
−VV ) and MEE-SAS ( [ ]2)()( e0 w∗

−VV ) are altered as a 
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consequence of changing the kernel size in the estimator. In order to avoid excessive computation 

time requirements, we have utilized 100 noiseless training samples to obtain the contour and gradient 
vector plots. A kernel size is set to 6.0,35.0,1.0=σ . 
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     (a) MEE: ( ) ( )V V⎡ ⎤−⎣ ⎦0 e                  (b) MEE-SAS: ( ) ( ) 2
V V⎡ ⎤−⎣ ⎦0 e  

[Figure 3. Contour and gradient plot of error information potential in supervised ADALINE 
training for kernel size=0.35] 
 

In Figure 3, we show that when the current weight is close to optimal solution, the magnitude of 
gradient vector increases quadratically in a radial direction. Note that the gradient vector decreases 
when far from the solution, since the performance has an upper bound ( ( ) )()( 0e0 VVV ≤− ) unlike MSE 

(see Figure 2). In order to distinguish the gradient relation between MEE and MEE-SAS, we plot the 
gradient difference between them. 
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(a) Kernel Size: 0.1                     (b) Kernel Size: 0.35 



February 1, 2007                                                          DRAFT 

15 

0.8 1 1.2 1.4 1.6 1.8 2
1

1.2

1.4

1.6

1.8

2

2.2

W1

W
2

σ = 0.6, grad[J(MEE)] - grad[J(MEE-SAS)]

 
           (c) Kernel Size: 0.6 
[Figure 4. Contour and gradient difference between MEE and MEE-SAS on error information 
potential for various choices of kernel size] 
 

In Figure 4, when using small kernel size ( 1.0=σ ), MEE-SAS is superior to MEE with respect 
to the magnitude of gradient; while for large kernel size ( 6.0=σ ), MEE is superior to MEE-SAS. We 

show that the smaller the kernel we use, the larger is the region over which MEE-SAS is superior to 

MEE. 
 
2). Effect of non-zero final error on the Performance Surface in ( )()( e0 w∗

≠VV ).  

The case of )()( e0 w∗
≠VV  includes two cases: Measurement Noise case and Error Modeling 

case. The simulation result of measurement noise case is similar to that of error modeling case, so, we 
just show the simulation result for the measurement noise case. We add the uniform distributed noise 
with three different powers (P = 1, 2, and 3) in the above example. 
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 (c) Noise Power: 2                    (d) Noise Power: 3 

[Figure 5. Contour and gradient difference between MEE and MEE-SAS on error information 
potential for three different measurement noises] 
 

As seen in Figure 5, the higher the noise power, the larger is the region over which MEE-SAS is 
superior to MEE in terms of gradient magnitude. This means that the point at which the curvature 
changes from higher than second order to second order is closer to the optimal solution when 

)()( e0 w∗
≠VV  than in the case of )()( e0 w∗

=VV  as elucidated by theorem 4. This also means that the 

larger the final error, the faster is the convergence. 
 

B. Second Study: Nonlinear System Identification 
 

We investigate the performance of the MEE and MEE-SAS criterion in identification of a 
nonlinear system, whose dynamic equations are given as [23] 
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       (35) 

A Time Delay Neural Network (TDNN) trained with the backpropagation algorithm will be used. 
The only difference in the application of the MEE or MEE-SAS to backpropagation is the injected 

error. We select the TDNN architecture of 10-15-1 with tanh non-linearity processing elements (PE) 
in the hidden layer and a linear output PE. The training is carried out in batch mode for 2000 epochs. 
The data set consists of N=100 input-output pairs. The Kernel size is experimentally set at 707.0=σ . 
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Once again Monte-Carlo simulations are performed using 20 different weight initializations and the 

average performance is selected for comparison. In order to compare two algorithms, we find the step 
size for each algorithm to be such that it produces similar probability densities of error within the last 
epoch as shown in Figure 6. Figure 7 show the identified outputs of both the algorithms. 
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[Figure 6. Probability density of error for last epoch] 
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[Figure 7. Identification Performance] 
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[Figure 8. Normalized Information Potential] 
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As seen from Figure 8, MEE-SAS converges in about 200 epochs whereas MEE need 750 

epochs to achieve the same level of performance. Recall that the inherent property of MEE-SAS is 
that it has large effective step size when the present solution is far from the optimal leading to large 
“jumps” in the bowl of the cost function. Since, in the initial phase of adaptation, large kernel size 
ensures a smoother learning curve surface, thus large transitions in these surfaces helps MEE-SAS to 

avoid most local solutions and reach directly in the vicinity of the global solution. 
 

C. Third Study: Nonstationary System Identification 
 

The nonstationary unknown plant transfer functions is given as 
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The FIR adaptive filter is selected with equal order. The input to both the plant and the adaptive 
filter is white Gaussian noise with unit variance. We choose a proper kernel size ( 707.0=σ ) based on 
Silverman’s rule and set the window length to 50=L . The System mismatch (weight error norm) is 

selected as a performance measure. 
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 [Figure 9. Weight error power]    [Figure 10. One of the nine weight tracks (W5)] 

 

Figure 9 depicts a nonstationary system identification problem to show the performance of the 
switching MEE and MEE-SAS compared to both MEE and MEE-SAS. The convergence performance 
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of the switching one is the similar to that of MEE-SAS, while better than that of MEE. Also, the 

tracking performance of the switching one is better than that of both MEE and MEE-SAS in Figure 10. 
As seen from Figure 11, in abrupt changing part (at initial and at iteration 1000), the switching MEE 
and MEE-SAS used the MEE-SAS. 
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[Figure 11. MEE or MEE-SAS used time on the switching MEE and MEE-SAS] 

 

VII. CONCLUSIONS 

In this paper, an information-theoretic supervised learning criterion for adaptive systems, 
namely, minimum error entropy with self adjusting step-size (MEE-SAS) has been proposed. We 

demonstrated that MEE-SAS extends MEE by using an automatic adaptive step size to accelerate the 
search for the optimal solution. 

In structural analysis part, we analytically found the turning point of curvature for MEE-SAS. It 
was observed that this contour of points in the cost function curvature depends on the SNR of the 

signal (provided that we have critical model order). Further, MEE-SAS is expected to perform well 
than MEE in the case where there is non-zero error (due to modeling error or measurement noise) 
since the turning point of curvature is going to be close to the optimal leading to faster convergence. 
For the case where zero error is achievable, though MEE-SAS retains its ability to converge faster 

than MEE, this property is lost as soon as MEE-SAS cross the contour of the turning point of 
curvature which in this case is farther away from the solution. 

The loss of tracking ability of MEE-SAS beyond the turning point of the curvature due to small 
effective step size hinders the performance of MEE-SAS in nonstationary environment. We solved 

this problem using a novel switching scheme between MEE and MEE-SAS. Starting with MEE-SAS 
for faster convergence when far from the solution, the algorithm switches to MEE near the optimal 
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solution for improved tracking ability. Simulation results in non stationary scenario shows that the 

proposed switching algorithms outperforms both MEE and MEE-SAS algorithms when used 
independently and quickly adapts to changing environment.  
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