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Abstract. In pattern recognition, a suitable criterion for feature selection is the mutual information (MI)

between feature vectors and class labels. Estimating MI in high dimensional feature spaces is problematic in

terms of computation load and accuracy. We propose an independent component analysis based MI estimation

(ICA-MI) methodology for feature selection. This simplifies the high dimensional MI estimation problem into

multiple one-dimensional MI estimation problems. Nonlinear ICA transformation is achieved using piecewise

local linear approximation on partitions in the feature space, which allows the exploitation of the additivity

property of entropy and the simplicity of linear ICA algorithms. Number of partitions controls the tradeoff

between more accurate approximation of the nonlinear data topology and small-sample statistical variations in

estimation. We test the ICA-MI feature selection framework on synthetic, UCI repository, and EEG activity

classification problems. Experiments demonstrate, as expected, that the selection of the number of partitions for

local linear ICA is highly problem dependent and must be carried out properly through cross validation. When

this is done properly, the proposed ICA-MI feature selection framework yields feature ranking results that are

comparable to the optimal probability of error based feature ranking and selection strategy at a much lower

computational load.
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1. Introduction

Feature selection and dimensionality reduction is an

important problem for pattern recognition and many

other applications. In the pattern recognition context,

feature selection and dimensionality reduction can

exploit the salient features and eliminate the irrele-

vant features. This results in increased robustness

and improved generalization performance of the

classification system. Dimensionality reduction can

be achieved by subspace projection or its special

case feature selection. In subspace projection, the

original features are projected linearly or nonlinearly

to a low dimensional space, which preserves the

desirable characteristics of the data. There are many

existing subspace projection methods, such as PCA,

ICA and LDA [1–5]. However, the projections that

PCA and ICA seek are unsupervised and not

necessarily related to the classification performance.

LDA overcomes this shortcoming by finding the

projections that maximize class separability assum-

ing class-Gaussianity. Torkkola [6] proposed an

approach using a quadratic divergence measure to

find an optimal transformation that maximizes the

MI between features and class labels. This approach,

being dependent on Parzen density estimation, is

inefficient for subspace projections to high dimension-

alities due to the joint density estimation requirement.



Lan et al. developed a subspace projection framework,

which applies linear ICA transformation and mutual

information maximization for dimensionality reduction

in EEG signal classification [7]. This method exhibits

several advantages, such as computationally efficiency

and flexibility. However, the linearity assumption in

ICA limits its applications.

Although subspace projections can effectively

remove redundant features, the relationship between

the projected features and the original features

becomes vague. In some applications, such as

multi-sensor array target detection and dense-array

EEG signal processing, a given system can only

collect and process signals from a certain number of

sensors in real-time, due to the limitation of

bandwidth and computation capacity. In these

particular cases, feature (or sensor) selection is more

suitable, which selects a subset from the original

feature space. It is widely accepted that some

classification algorithms, such as decision tree,

multi-layer perceptron neural networks have inher-

ent ability to focus on relevant features and ignore

irrelevant ones [8]. In general, feature selection is

achieved by a feature ranking procedure. Feature

selection methods can be divided into wrapper and

filter approaches. Wrapper approach uses classifica-

tion accuracy as the criterion coupled with a specific

classifier; it requires re-training the classifier for

different combinations of feature sets; hence, it is

slow and inflexible. Filter approach, on the other

hand, ranks and selects features by optimizing some

criteria independent of the classifier, and is more

flexible and suitable for adaptive learning.

In the filter approach, it is important to optimize a

criterion that is relevant to Bayes risk, which is

typically measured by the probability of error. A

suitable criterion is the MI between the selected

features and the class labels, motivated by lower and

upper bounds in information theory that relate this

quantity to probability of error [9, 10]. As opposed to

linear and second-order statistics such as correlation

and covariance, MI measures nonlinear dependencies

between a set of random variables taking into

account higher order statistical structures existing in

the data.

Many feature selection methods have been

developed in the past years [11–13]. Guyon &

Elisseeff also reviewed several approaches used in

the context of machine learning [14]. By extending

our previous work in dimensionality reduction [7],

we propose an ICA-MI framework for feature

selection. We exploit the fact that an invertible

linear transformation does not change the MI, and

assume that linear ICA transformation yields inde-

pendent features (globally or locally). So we can

conveniently estimate the MI between feature

vectors and class labels by directly summing the

MI between each independent projected feature

vector and class labels. In cases where the linearity

assumption does not hold, we use local linear ICA

to approximate nonlinear ICA and extend the ICA-

MI framework.

2. ICA-MI Feature Selection Framework

The MI based method for feature selection is

motivated by lower and upper bounds in information

theory [9, 10]. Fano_s and Hellman & Raviv_s
bounds demonstrate that probability of error is

bounded from below and above by quantities that

depend on the Shannon MI between the feature

vectors and class labels. Specifically, Hellman &

Raviv showed that an upper bound on Bayes error is

given by (H(C)-I(x,C))/2, where H(C) is the Shannon

entropy of the priori probabilities of the classes and

I(x,C) is the Shannon MI between the continuous-

valued feature vector and the discrete-valued class

label. Maximizing this MI reduces the upper bound

as well as Fano_s lower bound, therefore, forces the

probability of error to decrease.

2.1. Mutual Information

In feature selection, we are interested in the MI

between the continuous-valued feature vector x and

the discrete-valued class labels C. Shannon MI

between x and C is defined in terms of the entropies

of the overall data and the individual classes as

I x; Cð Þ ¼ H xð Þ �
X

c

pcH x=cð Þ ð1Þ

where pc are the prior class probabilities. The

entropy is given by

H xð Þ ¼ �
R

p xð Þ log p xð Þdx

H x Cjð Þ ¼ �
R

p x Cjð Þ log p x Cjð Þdx
ð2Þ
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where p(x|C) are the class conditional distributions

and the overall data distribution is

p xð Þ ¼
X

c

pcp x cjð Þ ð3Þ

2.2. Mutual Information Decomposition

Directly estimating MI between feature vectors x and

class label C requires estimating entropy and

conditional entropy, which is difficult for high

dimensional data. If the components of x are

mutually independent, the high dimensional joint

entropy can be obtained by the summation of

marginal entropies. However, in real word applica-

tions, x usually has mutually dependent components.

Assume that there exists a linear transformation that

transforms x to y such that components of y are

mutually independent.1 Since an invertible transfor-

mation does not change mutual information, we have

I(x;C)=I(y;C), and

I y; Cð Þ ¼
Xn

i¼1

I yi; Cð Þ ð4Þ

where I yi; Cð Þ ¼ H yið Þ �
P

c pcH yi cjð Þ, and yi is the

ith component of features. So we convert a

high dimensional MI estimation problem to the

ICA transformation and marginal MI estimation

problem.

2.3. ICA-MI Feature Selection

Given a high dimensional feature vector x, our goal

is to find the best m dimensional subset of features

(in terms of maximum MI with C). This is a

combinatorial search problem, and often m is not

defined a priori. An alternative strategy is to rank the

features and pick the top m features from this

ranking. Given previously ranked d-1 features

x(1),..., x(dj1) the dth feature is the one that max-

imizes the joint MI: I(x(1),..., x(dj1),x(?);C). The joint

mutual information takes into account any redun-

dancies in the new feature with the previously ranked

dj1 features. This ranking procedure requires the

repeated evaluation of d-dimensional MI values.

Assume the linear assumption holds, so the MI can

be estimated in the following procedure: (1) Apply

linear ICA on d dimensional overall data x consisting

of the previously ranked dj1 features and the

current candidate feature; repeat this using data only

from class C: xc, get independent features y, and yc,

the transformation matrixes are W and Wc; (2)

Estimate entropy and conditional entropy of H(y)

and H(y|C); (3) Estimate mutual information I(x;C).

The framework of linear ICA-MI for feature

selection is illustrated in Fig. 1a.

If the linearity assumption does not hold, a

nonlinear ICA transformation is desirable to achieve

independent y. Nonlinear ICA requires more data

samples and is computationally intense. Further-

more, if the transformation is not invertible, the

mutual information changes after transformation. So

it is not possible to estimate MI using the proposed

framework. Karhunen et al. proposed a local linear

ICA algorithm that uses piecewise linear ICA to

approximate nonlinear ICA [15]. The idea of local

linear ICA is: first segment the data into p partitions,

then assume that the linearity assumption holds in

each partition, and apply linear ICA within each

partition. It is easy to extend linear ICA-MI to local

linear ICA-MI (see Fig. 1b). Also, when the number

of partitions equals 1, local linear ICA reduces to

x1 
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Figure 1. Block Diagram of ICA-MI framework for feature selection. a Linear ICA; b Local linear ICA.
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linear ICA. We can formulate both cases together

and the algorithm is described as follows: First apply

a suitable clustering/quantization algorithm to seg-

ment the data into p partitions: x(1), x(2), ..., x(p);

assume that within each partition x(i), the data is d
dimensional (at the dth step of the ranking

procedure, this vector is comprised of previously

ranked dj1 features and the candidate feature from

the unranked ones), and distributed in accordance

with the linear ICA model; apply the linear ICA

transformation on each partition C+1 times (where C
is the number of classes. We apply ICA on overall

data x(i) and data from class C, x(i|c)) to get trans-

formed feature vectors for each partition: y(i|c), which

is transformed with class specific linear ICA matrix

W(i|c) and y(i), which is transformed with the overall

partition ICA matrix W(i), where C denotes class

labels. As a result of the linear ICA transformations,

we have:

H x ið Þ� �
¼ H y ið Þ� �

� log W ið Þ�� ��
H x i cjð Þ� �

¼ H y i cjð Þ� �
� log W i cjð Þ�� �� ð5Þ

where i=1,...,p. H(x(i)) is the entropy for cluster (i),
H(x(i|c)) is the conditional entropy for cluster (i) in

class C. If linear ICA works perfectly, then the joint

entropies of y
(i|c) and y

(i) reduce to the sum of

marginal entropies. However, this is not guaranteed,

therefore, the residual mutual information will

remain as an estimation bias. In practice, we have

an imperfect ICA solution and

H x ið Þ� �
¼
Pd

l¼1

H y
ið Þ

l

� �
� log W ið Þ�� ��� I y ið Þ� �

H x i cjð Þ� �
¼
Pd

l¼1

H y
i cjð Þ

l

� �
� log W i cjð Þ�� ��� I y i cjð Þ� �

ð6Þ

Mutual information satisfies the following additivity

property for any partition (qi denoting the probability

mass of the corresponding partition):

I x; Cð Þ ¼
Xp

i¼1

qiI x ið Þ; c
� �

ð7Þ

The mutual information within each partition can be

expressed as a linear combination of entropy values

as follows:

I x ið Þ;C
� �

¼ H x ið Þ
� �

�
X

c

picH x ið Þ cj
� �

ð8Þ

where pic denotes the probability mass of class C in

partition i. Substituting Eq. (6) in Eq. (8)

I x ið Þ;C
� �

¼
Pd

l¼1

H y
ið Þ

l

� �
�
P

c
pic

Pd

l¼1

H y
i cjð Þ

l

� �� �

� log Wi
�� ���

P
c

pic log Wi cj�� ��
� �

� I y ið Þ� �
�
P

c
picI y i cjð Þ� �� �

ð9Þ

The last parenthesis in Eq. (9) shows the estimation

bias one makes when estimating the MI within each

partition if it is assumed that the local linear ICA

solution in that partition achieved perfect separation.

Over all partitions, the total estimation bias

(estimated MI minus the actual MI) is averaged as

follows:

Bias ¼
Xp

i¼1

qi I y ið Þ
� �

�
X

c

picI y i cjð Þ
� � !

ð10Þ

Note that as the number of partitions approach

infinity asymptotically, one could utilize a grid

partitioning structure within which the probability

distributions would be uniform, thus local linear

ICA would achieve perfect separation within each

infinitesimal hypercube. However, in practice, one

cannot utilize infinitely many partitions given a

finite number of samples. Note that the analysis

above also holds for the case where linear ICA is

employed directly on the whole dataset without any

partitions.

The decomposition of mutual information into

overlapping segments (cover rather than partition)

has been previously studied by Szummer and

Jaakkola in the context of model regularization in

the presence of unlabeled data and semi-supervised

learning [16]. The partition approach we propose

here is along the same direction of reasoning, that is

the cumulative relevant information of a feature
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vector can be decomposed to local regions in the

vector space; however, while Szummer and Jaakkola

are interested in emphasizing discriminative and

dense regions in the data for density fitting, we are

interested in estimating the total useful information

in a feature vector.

3. Linear ICA and Local Linear ICA

In our experience, the bias of MI estimation does not

seem to influence the feature selection results

significantly. Eq. (10) indicates that this bias depends

on the performance of the ICA assumption as well as

the particular algorithm used in obtaining separation

solutions. The linear ICA signal model is as follows

[4, 5, 17]: there are n independent sources s(t)=[s1(t),
..., sn(t)]T, and n observations x(t)=[x1(t), ..., xn(t)]T,

where t is the sample index. The observations are

mixed versions of the sources by a full rank matrix

A:

x tð Þ ¼ As tð Þ ð11Þ

The goal of ICA is to find a separation matrix W

such that

y tð Þ ¼Wx tð Þ ð12Þ

where y(t)=[y1(t), ..., yn(t)]T are mutually independent.

Given arbitrary n-dimensional observations, one can

always find infinitely many nonlinear transformations

y=f(x) that result in independent components

y={y1,...,yn} [18]. In practice, however, especially in

situations involving small datasets, finding a robust

nonlinear ICA is difficult without a priori information

about the data distribution. A convenient and suitable

way to solve the nonlinear ICA problem is to

approximate it in a piecewise linear fashion using

local linear ICA.

The main principle of local linear ICA is that to

segment the data into p non-overlapping partitions.

In theory, for infinitesimal partitions the linearity

assumption always holds within partitions; however,

small sample size prevents reliable linear ICA

estimates. Therefore, the tradeoff between the num-

ber of partitions and samples per partition must be

considered in the bias-variance framework. Cross-

validation can be used to determine the proper

number of partitions.

4. Materials and Methods

We focus on the local linear ICA as a general case.

The data is partitioned using the K-means clustering

algorithm [19]. Linear ICA is solved in each

partition using generalized eigendecomposition of

2nd and 4th order cumulant matrices. One-dimen-

sional entropies are estimated using the sample

spacing approach.

4.1. K-means Clustering

The K-means algorithm tries to minimize the

average squared distance of the data to the centers

of clusters:

J ¼
X

i

X

x ið Þ2Si

x ið Þ �mi

�� ��2 ð13Þ

where mi is the center of each cluster. This algorithm

first selects K random cluster centers, and then

calculates the distance between all data points to these

clusters center, respectively. Samples are assigned to

the cluster corresponding to the nearest center and then

cluster centers are updated to the average of the

assigned samples. The process is repeated until J
converges to its minimum value (local minimum).

4.2. ICA Using Generalized Eigendecomposition
of Cumulant Matrices

Many effective and efficient algorithms based on a

variety of assumptions, including maximization of

non-Gaussianity and minimization of mutual infor-

mation, exist to solve the ICA problem [20–22].

Those utilizing fourth order cumulant could be

compactly formulated in the form of a generalized

eigen-decomposition problem that gives the ICA

solution in an analytical form [23].

According to this formulation, one possible as-

sumption set that leads to an ICA solution utilizes

the higher order statistics (specifically fourth-order

cumulant). Under this set of assumptions, the

separation matrix W is the solution to the following

generalized eigendecomposition problem:

RxW ¼ QxWL ð14Þ

where Rx is the covariance matrix and Qx is the

cumulant matrix estimated using sample averages:

Qx¼E xTxxxH
	 


�Rxtr Rxð Þ�E xxT
	 


E xxH
	 


�RxRx.
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Given the estimates for these matrices, the ICA

solution can be easily determined using efficient

generalized eigendecomposition algorithms (or using

the eig command in Matlab).

4.3. Entropy Estimator

We employ an estimator based on sample spacing

[20], which stems from order statistics. This estima-

tor is selected because of its consistency, rapid

asymptotic convergence, and simplicity. Consider a

one dimensional random variable Y. Given a set of

iid samples of Y {y1,...,yN}, first these samples are

sorted in increasing order such that y(1)e...ey(N). The

m-spacing entropy estimator is given by:

bHH Yð Þ ¼ 1

N � m

XN�m

i¼1

log
N þ 1ð Þ y iþmð Þ � y ið Þ

� �

m
ð15Þ

The selection of the parameter m is determined by a

bias-variance trade-off and typically m ¼
ffiffiffiffi
N
p

. In

general, for asymptotic consistency the sequence

m(N) should satisfy

lim
N!1

m Nð Þ ¼ 1 lim
N!1

m Nð Þ=N ¼ 0 ð16Þ

4.4. Feature Ranking Algorithm (Quasi-greedy
Search)

We use an incremental strategy to rank and select

features instead of exhaustive combinatorial search.

Given n-dimensional feature vector x with corre-

sponding class label variable C, the incremental

ranking proceeds as follows:

1. Let Unranked Feature Set (UFS) be {x1,...,xn}

Estimate the MI I(xj,C) between each feature

xj (j=1,...,n) and class label C. Find the feature with

maximum MI, label it as x(1), initialize Ranked
Feature Set (RFS) to{x(1)} and remove the feature

corresponding to x(1) from the UFS.

2. For d from 2 to n perform the following: Let

Candidate Set i (CSi) be the union of RFS and xi,

evaluate the MI I(CSi,C) between the features in

the candidate set and the class labels for every xi

in UFS. Label the feature xi with the highest

I(CSi,C) as x(d), redefine RFS as the union of RFS

and x(d), and remove the corresponding feature

from UFS.

5. Experimental Results

5.1. Experiments on a Synthetic Dataset

In order to illustrate the difference between linear

ICA and local ICA for MI based feature selection,

we apply both approaches on a synthetic dataset.

This dataset consists of four features: xi (i=1,...,4),

where x1 and x2 are nonlinearly related (Fig. 2-left),

x3 and x4 are independent from the first two features

and are linearly correlated Gaussian-distributed with

different mean and variance (Fig. 2-right). There are

two classes in this dataset (represented as different

grayscale levels in print). These two classes are

separable in the x1 and x2 plane, but overlapping in

the x3 and x4 plane. It is clear that this dataset can be

well classified only using x1 and x2, while x3 and x4

provides redundant and insufficient information for

perfect classification. From Fig. 1 we can see that x2

has less overlap compared with x1, while x3 has less

overlap than x4. So ideally, the feature ranking in

descending order of importance in terms of classifi-

cation rate should be x2, x1, x3, x4. In our experi-

ments, we choose the sample size as 1,000 and use

20 partitions.2 The F+_ in Fig. 2 represents the

partition centers. We also apply linear ICA without

any partitioning. We repeat the above experiment for

100 Monte Carlo runs. The linear ICA approach

finds the ranking to be x2, x1, x4, x3, while the local

linear ICA approach with 20 partitions finds the

expected correct ranking.

5.2. Experiments on UCI Dataset

5.2.1. Iris Data. In this experiment, we apply linear

and local linear ICA (with 2 partitions) approaches to

the ranking of the features for the Iris dataset from

the UCI database [24]. Due to the small sample size,

10 Monte Carlo rankings with randomly selected

training (used for ranking) and test sets are utilized,

each consisting of 50% of the available samples. For

each ranked subset, a Gaussian Mixture Model

(GMM) based Bayesian classifier is employed. The

frequency of rankings and classification accuracy are

shown in Table 1 and Fig. 3. Since both methods

agree on x4 as the top one, pairwise scatter plots of

this feature with the remaining features are shown in
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Fig. 4 for visual comparison. x3 seems to yield a

more compact class distribution, while x1 or x2 and

x4 seem to have less overlapping samples. Still, it is

difficult to judge and we rely on the GMM perform-

ances on the testing set for the final comparison. The

classification accuracy in Fig. 3 shows that local

linear ICA yields more accurate feature ranking than

linear ICA in Iris data.

5.2.2. Wisconsin Breast Cancer Data. We apply

linear ICA and local linear ICA for feature selection

on Wisconsin breast cancer dataset, which has higher

dimensionality than the previous two case studies.

Local linear ICA approach uses 2 partitions (for lack

of sufficient data per partition otherwise) and the

Monte Carlo ranking approach is employed as 5.2.1.

The ranking and classification accuracy are shown in

Table 2 and Fig. 5. Local linear ICA also exhibit

better performance than linear ICA. Consider the

number of data samples and the dimensions: if we

partition the data into more segments, the perfor-

mance degrades due to the lack of data for reliable

linear ICA transformation within each partition.

Table 1. Feature ranking frequencies on the Iris dataset.

Methods Ranking indices

Linear ICA 4 3 2 1 (10)

Local linear ICA 4 1 2 3 (5)

4 2 3 1 (3)

4 2 1 3 (2)
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Figure 3. Classification accuracy for Iris data by linear ICA-MI

and Local linear ICA-MI methods. The classification accuracy is

the average over 10 Monte Carlo simulations.
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Figure 2. Four-dimensional Synthetic dataset and corresponding cluster centers. Left: distribution of x1 and x2; Right: distribution of x3 and x4.
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5.3. Experiments on BCI Competition Dataset

In this experiment, we apply both methods on Brain

Computer Interfaces Competition III dataset V [25].

This dataset contains human brain EEG data from 3

subjects during 4 non-feedback sessions. The subject

sat in a chair, relaxed arms resting on their legs and

executed one of the three tasks: imagination of left

hand movements; imagination of right hand move-

ments; generation of words beginning with the same

random letter. The EEG data were collected during

the sessions. The data of all 4 sessions of a given

subject were collected on the same day, each lasting

4 min with 5–10 min breaks in between. We want to

classify one of the three tasks from the EEG data.

The raw EEG data contains 32 channels at 512 Hz

sampling rate. The raw EEG potentials were first

spatially filtered by means of a surface Laplacian.

Then, every 62.5 ms, the power spectral density

(PSD) in the band 8–30 Hz was estimated over the

last second of data with a frequency resolution of 2

Hz for the eight centro-parietal channels C3, Cz, C4,

CP1, CP2, P3, Pz, and P4. As a result, an EEG

sample is a 96-dimensional vector (8 channels � 12

frequency components).

We apply both ICA feature selection methods on

this dataset, and then use Support Vector Machine

(SVM) to classify them. For the SVM, we use Chang

& Lin_s library toolbox [26]. Based on the experi-

ment results, we select the parameter of SVM as:

penalty parameter c=10, and kernel size g=10. We

mix the first three sessions as training set and use the

Table 2. Feature ranking results on Wisconsin Breast Cancer data-

set for different ICA-MI methods in 10 Monte Carlo simulations.

Methods Ranking indices

Linear ICA 3 2 9 4 5 6 7 8 1 (9)

3 2 9 4 5 8 7 6 1 (1)

Local linear

ICA

3 1 2 4 5 6 7 8 9 (4)

3 4 6 8 7 1 9 2 5 (3)

3 1 4 5 9 6 8 2 7 (3)

The frequency of different ranking of 10 Monte Carlo simulations

are shown inside the bracket.
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Figure 5. Classification accuracy for Wisconsin Breast Cancer

data by different ICA-MI methods. The classification accuracy is

the average over 10 Monte Carlo simulations.
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Figure 4. Combinational distribution of 2 feature vectors of Iris dataset. Left: distribution of x4 and x2; Middle: distribution of x4 and x3;
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fourth session as testing set. For the local linear ICA,

we choose the cluster number K as 2, 5 and 10,

respectively.

As a comparison, we also apply Bayes error based

feature ranking using SVM. Two of the first three

sessions are used as training, and the other session is

used as validation. Rotating the training and valida-

tion sets, and applying 3-fold cross-validation, we

get the Bayes error based feature ranking using the

incremental searching strategy. Then we test the

error based ranking using SVM on the fourth session.

On average, the error based ranking is optimal for

the selected classifier and the given search strategy.

The feature ranking results for 3 subjects are shown

in Tables 3, 4, and 5. The classification results based

on the best features are shown in Figs. 6, 7, and 8.

The tables and figures only show the first 30 features.

The experiment results illustrate that: (1) Error

based feature ranking yields the best performance on

average; (2) For subject 1 and 2, linear ICA has

better performance than local linear ICA, and the

performance is close to error based feature ranking;

this also indicates the linear relationship among

feature vectors for subject 1 and 2; (3) For subject

3, local linear ICA has better performance than linear

ICA, which indicate nonlinear relationship of the

data; (4) For K=2, 5, 10, the feature ranking results

does not change drastically.

5.4. Experiments on AugCog Dataset

The comparison is repeated for the EEG classification

problem encountered in the context of Augmented

Cognition [27]. The EEG activity is measured to

estimate the cognitive state in order to assess the

mental load of the subject for the purpose of

modifying the computer/system information inter-

face. The goal is to increase the task performance of

the subject with closed loop cognitive interface

control. During data collection, two subjects are

asked to execute different mental tasks (playing an

action video game at different difficulty levels),

which are classified as high workload and low

workload. EEG data is collected using a BioSemi

Active Two system using 31 channels (AF3, AF4,

C4, CP1, CP2, CP5, CP6, Cz, F3, F4, F7, F8, FC1,

FC2, FC5, FC6, Fp1, Fp2, Fz, O1, O2, Oz, P3, P4,

P7, P8, PO3, PO4, CPz, FCz) EEG cap and eye

electrodes. Vertical and horizontal eye movements

Table 3. Feature ranking results on BCI competition III dataset

V subject 1.

Method Feature ranking indices

Error based 27 38 2 25 86 49 13 35 4 3 77 20 81 62 36 10

18 48 26 32 31 80 55 46 84 82 60 78 21 83

Linear ICA 38 3 26 27 58 2 4 87 39 85 46 68 91 7 35 33

31 32 52 92 37 72 70 63 75 18 8 79 90 41

Local Linear

ICA K=2

38 2 32 14 3 4 39 80 58 66 18 83 91 35 77 50

7 73 21 19 9 8 12 5 84 54 88 15 40 79

Local Linear

ICA K=5

38 3 2 14 77 32 8 4 94 49 7 6 9 90 19 18 54

21 12 37 84 36 33 56 39 70 67 34 60 20

Local Linear

ICA K=10

38 2 50 3 90 35 12 4 5 8 9 92 1 53 7 18 88 80

48 33 22 96 69 73 77 43 36 41 15 39

Table 4. Feature Ranking results on BCI competition III dataset

V subject 2.

Method Feature ranking indices

Error based 2 26 95 6 90 5 11 31 23 38 33 77 82 96 81 48

55 60 84 70 24 76 93 94 32 37 12 41 57 47

Linear ICA 26 2 45 13 85 34 74 75 58 27 21 94 89 73 68

1 4 50 84 7 72 96 46 29 71 60 22 63 20 11

Local Linear

ICA K=2

26 2 36 84 27 17 33 12 29 6 75 58 92 80 72

53 56 67 44 48 22 77 59 11 82 34 30 21 20

55

Local Linear

ICA K=5

26 2 33 83 11 93 58 34 42 46 29 16 95 94 19

36 38 54 7 81 50 79 48 82 10 43 80 90 8 75

Local Linear

ICA K=10

26 2 17 74 15 31 11 60 43 67 50 89 47 82 54

33 58 36 20 24 30 48 51 34 38 9 91 41 70

78

Table 5. Feature Ranking results on BCI competition III dataset

V subject 3.

Method Feature ranking indices

Error based 3 4 21 39 28 74 25 52 48 67 94 76 45 9 17 55

88 43 78 83 84 57 51 11 5 24 79 19 31 80

Linear ICA 3 74 93 31 90 30 95 4 39 65 44 34 1 5 35 12

24 10 58 51 8 84 11 37 53 69 43 21 23 81

Local Linear

ICA K=2

3 45 39 4 92 30 8 90 28 94 7 22 20 46 9 47 48

82 23 69 1 78 12 68 11 93 96 19 79 55

Local Linear

ICA K=5

3 9 4 1 80 92 29 35 31 36 52 28 11 66 76 96

39 30 93 95 32 46 12 90 23 78 54 20 65 72

Local Linear

ICA K=10

3 4 72 39 9 45 93 38 6 22 1 96 23 79 66 7 53

48 69 77 12 10 18 36 59 78 83 20 61 33
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and blinks were recorded with electrodes below and

lateral to the left eye. EEG is sampled and recorded

at 256 Hz.

EEG signals are pre-processed to remove eye

blinks using an adaptive linear filter based on the

Widrow-Hoff training rule (LMS) [28]. Information

from the VEOGLB ocular reference channel was

used as the noise reference source for the adaptive

ocular filter. DC drifts were removed using high pass

filters (0.5 Hz cut-off). A band pass filter (between 2

and 50 Hz) was also employed, as this interval is

generally associated with cognitive activity. The

power spectral density (PSD) of the EEG signals,

estimated using the Welch method [29] with 75%-

overlapping 1 s windows, is integrated over 5 frequen-

cy bands: 4–8 Hz (theta), 8–12 Hz (alpha), 12–16 Hz
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Figure 6. Classification accuracy for BCI competition III dataset V subject 1 by different feature ranking method. The cluster number K=5

for the local ICA-MI method in left figure.
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Figure 7. Classification accuracy for BCI competition III dataset V subject 2 by different feature ranking method. The cluster number K=5

for the local ICA-MI method in left figure.
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(low beta), 16–30 Hz (high beta), 30–44 Hz (gamma).

These bands, sampled every 0.25 s, are used as the

basic features for cognitive classification.

The novelty in this application is that the subjects

are freely moving in contrast to the typical brain-

computer interface (BCI) experimental setups where

the subjects are in a strictly controlled setting. The

assessment of cognitive state in ambulatory subjects

is particularly difficult, since the movements intro-

duce strong artifacts irrelevant to the mental task/

load.

To test the performance of local ICA for MI

estimation in feature selection, the EEG data is

processed by a classification system that contains

four parts: preprocessing, feature extraction and

selection, classification, and postprocessing. Prepro-

cessing is used to filter out noise and remove the

artifacts as mentioned above. Feature extraction and

selection generates features from the clean EEG

signal, and selects useful EEG channels (each

channel contains 5 frequency bands) using the

proposed method. We have approximately 2,500

data samples for each subject, and the number of

features is 155 (31 EEG channels, 5 frequency band

each). We use K=4 to have an average of 600

samples per partition. For classification, a K-Nearest-

Neighbor (KNN) classifier with 11 neighbors is

utilized (GMM-Bayes and SVM classifiers per-

formed poorly on this dataset). The postprocessing

uses the assumption that the cognitive state for a

given continuous task will vary slowly in time. A

median filter operating on a window of 2.25 s

eliminates a portion of outlier from the decisions

recently generated by the classifier.

The EEG channel selection results evaluated by

correct classification rate are shown in Fig. 9 (when

a channel is selected/discarded all five features
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Figure 8. Classification accuracy for BCI competition III dataset V subject 3 by different feature ranking method. The cluster number K=5

for the local ICA-MI method in left figure.
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associated with the channel are selected/discarded).

As a comparison, we also illustrate the performance

using linear ICA for EEG channel ranking on both

subjects. The solid line with stars illustrates the

classification results for local ICA, while the dashed

line with circles illustrates the classification results

for linear ICA for both subjects. We observe that

local ICA outperforms linear ICA in both subjects.

EEG channels ranked according to both methods are

shown in Table 6.

To compare feature ranking/selection results for

linear ICA and local ICA more clearly, we list the

EEG channel ranking in descend order in terms of

contribution to classification for both subjects in the

Table 6.

6. Discussion

In this paper, we propose a local linear ICA—

maximum mutual information framework for feature

selection in pattern recognition. As a special case of

this framework, the linear ICA-MI approach is

included for a single data partition. This framework

contains 3 components: (1) clustering algorithm to

partition the feature space; (2) linear ICA transfor-

mation to project the data within a partition to an

independent coordinate frame; (3) marginal entropy

estimator.

The proposed framework has the following advan-

tages: (1) using mutual information between feature

vectors and class labels consider the data structure

together with class separability; (2) this is a filter

approach, so it is flexible and computationally

efficient; (3) it works well in high dimensions; (4)

it is a general framework; any component can be

replaced by suitable counterparts.

We applied both linear ICA-MI and local linear

ICA-MI with different number of partitions on

different datasets. In the synthetic dataset, because

we construct the data with a nonlinear structure,

local linear ICA-MI obtains more accurate feature

selection results. In UCI datasets (Iris and Wisconsin

Breast Cancer), local linear ICA also exhibits better

performance than linear ICA. In BCI competition III

dataset V, linear ICA has better performance in the

datasets from two subjects and local linear ICA has

better performance for the third subject. This

indicates that the selection between linear and local

linear ICA is data and application dependent. In the

AugCog dataset, for both subjects local linear ICA

outperforms linear ICA in EEG channel selection.

An issue is how to select the number of partitions.

In most applications, we have only limited data.

Therefore, the number of partitions controls the

trade-off between bias and variance. When the

number of partitions is very large, the linearity

assumption holds well within each partition, but

there is not have enough data to apply linear ICA

within partitions. On the contrary, when the number

of partitions is very small, local linear ICA converge

to linear ICA, which is not proper for nonlinear data.

A good method to select this parameter is cross-

validation, which helps us identify whether the

available data supports a nonlinear model.
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Table 6. EEG channel ranking (descending order) in terms of

contribution to classification rate for subject 1 and subject 2 with

linear ICA and local ICA methods.

Subject Method EEG channel ranking

Sub 1 Linear

ICA

FC2, AF3, CPZ, FP1, CP5, CP1, C4, CP6,

P3, CP2, F4, F3, PO4, O2, P4, O1, PZ,

P8, FCZ, FC1, FC6, AF4, FC5, FZ, P7,

F8, CZ, FP2, F7, PO3, OZ

Local

ICA

FC2, AF3, CPZ, AF4, FC5, F7, CZ, O2, F3,

F4, FC6, C4, F8, P3, FP2, CP6, P8, PZ,

P7, FZ, FC1, OZ, PO3, FCZ, FP1, CP2,

CP1, P4, CP5, PO4, O1

Sub 2 Linear

ICA

FC1, CP1, CZ, O1, C4, F3, FCZ, FC2, FZ,

CP2, AF3, FP1, CP6, F4, P3, CPZ, CP5,

AF4, FC6, P7, PO4, OZ, PZ, PO3, P4,

F8, FC5, O2, F7, FP2, P8

Local

ICA

CP1, O1, FP1, CZ, _FC1, P8, PO4, FP2,

FCZ, P7, F4, P3, P4, PO3, CP6, FC6,

CPZ, FC5, AF4, FZ, F3, CP5, F7, F8,

AF3, CP2, C4, PZ, FC2, O2, OZ
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Notes

1. We assume there exists a linear transformation that decom-

poses the overall data x to y, as well as decomposes the data for

each class xc to yc. This assumption does not hold in most of

cases, we usually apply different transformation to overall data

and data from different classes, respectively. We will discuss

this in detail in Section 2.3.

2. The optimal number of partitions can be achieved by M-fold

cross-validation process.
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