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Abstract. Linear system identification with noisy input/output is a critical problem in 

signal processing and control. Conventional techniques based on the Mean Squared-Error 

(MSE) criterion can at best provide a biased parameter estimate of the unknown system 

being modeled. Recently, we proposed a new criterion called the Error Whitening 

Criterion (EWC) to solve the problem of linear parameter estimation in the presence of 

additive white noise. Accordingly, the central idea is to partially whiten the error signal 

beyond a predetermined correlation lag. In the first half of the paper, we will derive a fast 

Quasi-Newton type recursive algorithm to compute the optimal EWC solution in an 

online manner. The algorithm has O(N2) complexity where, N represents the length of the 

parameter vector to be estimated. One of the primary limitations of EWC is the 

assumption that the input noise must be white. In the second half of this paper, we will 

introduce a modified cost function that overcomes this assumption and allows the noise 

in the input to be colored. The analysis of this modified cost function is then presented 



followed by a sample-by-sample stochastic gradient algorithm to optimally compute the 

analytical solution. Finally, we will show the experimental results with EWC as well as 

the modified criterion in system identification and controller design problems.  

 

I. Introduction 

 Mean-squared Error (MSE) criterion has been around for many years and has been 

widely applied in a variety of signal processing and control problems [1], [2]. Inverse 

control and system identification are some of the key applications in automatic control 

where MSE plays a vital role. System identification is the problem of estimating the 

parameters of an unknown system using the observed input and output (desired) 

sequences [3]. The objective of inverse control is to design a controller that would work 

in tandem with the actual system to produce a desired reference output [2]. The existence 

of cost effective and efficient algorithms like the stochastic Least Mean-Squares (LMS) 

[4] and the Recursive Least Squares (RLS) [1] has benefited the extensive application of 

the MSE criterion for system identification and control. However, in the presence of 

additive disturbances (both correlated and white) on the input and the desired signals of 

interest, MSE can at best provide a biased solution.1 Further, the MSE based solutions 

change with changing noise statistics, which is highly undesirable. Noise-free data are 

seldom available in many real-world applications and significant amount of research over 

the past few decades has resulted in many engineering solutions, some of which are 

outlined in this paper. However, most of these methods have inherent drawbacks as we 

will see in the next section. 

                                                 
1 Wiener MSE solution with noise-free data gives unbiased parameter estimates. We refer to this 
mismatch in the parameters obtained with and without noise as the bias introduced by noise. 



 Recently, we proposed a new criterion called the Error Whitening Criterion (EWC), 

which can produce unbiased parameter estimates of a linear system in the presence of 

additive white noise [5,6]. Instead of minimizing the mean-squared error, the EWC 

formulation enforces zero autocorrelation of the error signal beyond a certain lag, and 

hence the name Error Whitening Criterion. In this paper, we will first derive a fast, 

recursive algorithm to solve for the optimal EWC solution and show its applicability in a 

controller design problem. One of the limitations of the EWC is that it cannot handle 

colored disturbances. In the second half of the paper, we will propose a modified cost 

function that allows input noise to be colored and derive a computable analytical solution 

as well as a stochastic gradient algorithm.  

 This paper is organized as follows. In the next section, we will briefly discuss some 

of the existing methods in the literature followed by an introduction to the Error 

Whitening Criterion in section III. In section IV, the Quasi-Newton EWC algorithm is 

presented. In section V, we will propose a modified cost function to handle colored noise 

and discuss a stochastic gradient method to estimate the optimal solution. Section VI has 

the simulation results followed by the discussions and conclusions in section VII. 

 

II. Existing Methods 

 A powerful class of solutions is based on input preprocessing primarily aimed at 

signal enhancement. Subspace Wiener filtering [1] is a data conditioning technique based 

on Principal Subspace Analysis (PSA). The idea is to first project the noisy input onto the 

signal subspace and then derive optimal Wiener filters in the reduced dimensional space. 

This method can be cumbersome especially when the data dimensionality is very high 



and also when the Signal-to-Noise (SNR) ratio is low. The latter will make the signal and 

noise subspaces indistinguishable.  

 The well-known Total Least Squares (TLS) method can provide bias-free solutions 

with noisy data [7,8]. Recall that the TLS can be formulated as the problem of solving an 

over-determined set of linear equations of the form bAx = , where nm×ℜ∈A  is the data 

matrix, mℜ∈b  is the desired data vector, nℜ∈x  is the parameter vector and m denotes 

the number of different observation vectors each of dimension n [8]. The optimal TLS 

solution is then obtained by computing the eigenvector corresponding to the smallest 

eigenvalue of the augmented data matrix ],[ bA . The result is unbiased only when both 

the noise in the input and the desired data are independent and identically distributed 

(i.i.d.) with the same variance. Further, when the noise is Gaussian-distributed, the TLS 

solution is also the maximum likelihood solution. However, the assumption of equal 

noise variances is very restrictive. The Generalized TLS (GTLS) problem [8] specifically 

deals with cases where the noise (still assumed to be i.i.d.) variances are different. But the 

caveat is that the ratio of noise variances is assumed to be known which is rarely valid. In 

order to overcome the i.i.d. assumption, Mathews and Cichocki have proposed the 

Extended TLS (ETLS) [9] that allows the noise to be colored. We will briefly describe 

the approach they adopted. Let the augmented input matrix ],[ bA  be represented as, 

],[ bAH = . The matrix HHT  can then be written as a combination of the clean data 

matrix HTH and the noise covariance matrix RN. 

 N
TT RHHHH +=         (1) 

The above equation is true when the noise is uncorrelated with the clean data. This 

assumption is reasonable as the noise processes in general are unrelated to (hence 



independent from) the physical sources that produced the data. Assume that there exists a 

matrix transformation H~ , such that 

 2/1~ −= NRHH  (2) 

The transformed data correlation matrix of H~  is simply 

 IRHHRHH += −− 2/12/1~~
N

T
N

T  (3) 

From (3), the overall problem reduces to the regular TLS with transformed data, the 

solution for which is once again obtained by estimating the minor eigenvector of the 

matrix HH ~~ T . In other words, the optimal ETLS solution for colored noise is given by the 

generalized eigenvector corresponding to the smallest generalized eigenvalue of the 

matrix pencil ( HHT , RN ). Thus, in order to compute the ETLS solution, we require the 

full knowledge of the correlation matrix of the noise RN, which is unreasonable.  

 The Instrumental Variables (IV) method proposed as an extension to the Least-

Squares (LS) has been previously applied for estimating parameters in white noise [3]. 

This method requires choosing a set of instruments that are uncorrelated with the noise in 

the input. It can be shown that the IV solution is a special case of the Quasi-Newton 

EWC algorithm [10] that is detailed in this paper. Although, the IV methods have been 

successfully applied to many engineering problems, the approach itself has limitations 

when the noise is colored. The generalizations to the colored noise require additional pre-

whitening filters or knowledge of the noise correlation depth, both of which are not 

practical. More details on IV can be found in [3] and the references therein. 

 

III. Error Whitening Criterion: A Review 

 Consider the problem of identifying a linear system characterized by the parameter 



vector N
T ℜ∈w  as shown in Fig 1. Let ),( kk dx  denote the actual input and output of 

the system. Further, we will model the measurement errors and system disturbances by 

uncorrelated additive white noise sequences ku  and kv  (with unknown variances) that 

appear at the output and input of the system respectively. The problem of system 

identification can now be stated as follows: Given the noisy data pair )ˆ,ˆ( kk dx  where 

N
kkk ℜ∈+= vxx̂  and 1ˆ ℜ∈+= kkk udd , determine the parameter vector Mℜ∈w  that 

best describes the underlying system. Without loss of generality, assume that the length 

of w  is at least N, the number of parameters in the actual system or NM ≥ . Since 

T
T
kkd wx= , the error is wvwwx T

kkT
T
kk ue −+−= )(ˆ . Defining a vector wwε −= T , the 

error autocorrelation at some arbitrary lag L is given by 

 wvvwεxxε ][][)(ˆ
T

Lkk
TT

Lkk
T

e EEL −− +=ρ  (4) 

If the chosen lag ML ≥ , it is obvious that 0vv =− ][ T
LkkE . Also, if the matrix ][ T

LkkE −xx  

is full rank, 0)(ˆ =Leρ  when Tww =  [5,6]. Therefore, if we make the error 

autocorrelation at any lag ML ≥  zero, then the estimated weight vector will be exactly 

equal to the true weight vector. In other words, the criterion tries to whiten the error 

signal for lags greater than or equal to the adaptive filter length, i.e., 0)(ˆ =Leρ  for 

ML ≥  and hence the name Error Whitening Criterion. Defining )ˆˆ(ˆ
Lkkk eee −−=& , 

equation (4) can be rewritten in a convenient form as [5,6] 

 )ˆ()ˆ()( 22
kk eEeEJ &β+=w  (5) 

where, β  is a constant. It is easy to see that when 5.0−=β , (5) reduces to the error 

autocorrelation )(ˆ Leρ . The goal is then to find the weight vector w that would make 



0)( =wJ . Note that when 0=β , (5) reduces to the MSE cost function. Therefore, MSE 

becomes a special case of EWC. Further, EWC has very interesting properties which are 

not discussed here for the sake of clarity. Refer [5,10] for details. 

 An online, stochastic gradient algorithm to compute the optimal EWC solution has 

been proposed in [6]. This stochastic gradient algorithm referred to as EWC-LMS 

resembles the MSE based LMS algorithm both in structure and computational 

complexity. Being a stochastic gradient method, it also suffers from the well-known 

limitations of stochastic gradient optimization, viz., step-size dependent convergence and 

sensitivity to the eigenvalue spread of the Hessian matrix.2 This motivates the need of 

fast converging algorithms that can accurately track the optimal EWC solution. In the 

next section, we will derive a Quasi-Newton type algorithm that shows improved 

convergence behavior when compared to the stochastic gradient based EWC-LMS. As 

expected, the improved rate of convergence and robustness is obtained at an increase in 

computational requirements. 

 

                                                 
2 The Hessian matrix is the second derivative of the cost function with respect to the weight vector w. It is 
well-known that stochastic gradient algorithms have convergence issues when this matrix has very high 
eigenspread. 
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Figure 1. System Identification block diagram. 



IV. Quasi-Newton Type Recursive EWC Algorithm 

 We will begin this section by defining some matrices that will be used in the rest of 

the paper. Define input correlation matrices as ][ T
kkE xxR = , ]ˆˆ[ˆ T

kkE xxR = , 

][ T
Lkk

T
kLkL E −− += xxxxR , and ]ˆˆˆˆ[ˆ T

Lkk
T
kLkL E −− += xxxxR  for noise-free and noisy signals 

(denoted by capped variables). Further, the input noise vector autocorrelation matrices 

are ][ T
kkE vvV =  and ][ T

Lkk
T
kLkL E −− += vvvvV . Additionally, we will define the   

matrices ][ T
kkE xxS &&=  and ]ˆˆ[ˆ T

kkE xxS &&= . The dot is used to symbolize difference 

between the current and Lth previous sample vector/scalar, for example, Lkkk −−= xxx& . 

Further, define cross-correlation vectors between the input vector and the desired signal 

as ][ kk dE xP = , ]ˆˆ[ˆ
kk dE xP = , ][ LkkkLkL ddE −− += xxP , and ]ˆˆˆˆ[ˆ

LkkkLkL ddE −− += xxP  for 

both noise-free and noisy data. Also, we will define vectors ][ kk dE &&xQ =  and 

]ˆˆ[ˆ
kk dE &&xQ = . Using the above definitions, we can rewrite )(wJ in (5) as 

 wQPwSRww TT
kk ddEJ )(2)(][)( 22 βββ +−+++= &  (6) 

The above equation can be easily derived by substituting wxT
kkk de ˆˆ −= and 

wxT
kkk de ˆˆˆ &&& −=  in (5). Taking the gradient with respect to w and equating to zero, we get 

 0QPwSR
w
w

=+−+=
∂

∂ )ˆˆ(2)ˆˆ(2)( ββJ   (7) 

Then the optimal weight vector *w  is given by 

 )ˆˆ()ˆˆ( 1 QPSRw * ββ ++= −   (8) 

When 0=β , (8) reduces to the RLS algorithm for MSE. Simple calculations show that 

LRRS ˆˆ2ˆ −=  and LPPQ ˆˆ2ˆ −= . Also, the noisy correlation matrices are related to the 



noise-free signal and noise correlation matrices through the following set of equations. 

 

LLkkLkk

kk

LL
T

LkkLkk

T
kk

ddE

dE
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PPxxQ

PxP

VRVRxxxxS

VRxxR
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==

−−+=−−=

+==

−−

−−

2)]ˆˆ)(ˆˆ[(ˆ
]ˆˆ[ˆ

)(2])ˆˆ)(ˆˆ[(ˆ
]ˆˆ[ˆ

 (9) 

Using (9), the expression for the optimal weight vector *w  can be further simplified as 

 [ ] [ ]LLL PPVRVRw ββββ −++−++= − )21()())(21( 1
*  (10) 

When ML ≥  and 5.0−=β , it is obvious that all the noise matrices in the above 

equation cancel out and the optimal solution reduces to 

 LL PRw 1
*

−=   (11) 

which is nothing but the true weight vector Tw  provided NM ≥ . We will now derive a 

Quasi-Newton type algorithm called the Recursive Error Whitening (REW) algorithm to 

adaptively estimate the optimal solution in (11). For the sake of notational simplicity, we 

will consider the noise-free case to derive the Recursive Error Whitening (REW) 

algorithm. With kkk SRZ β+=  and kkk QPθ β+= , a recursive relation for kZ  can be 

easily derived as 

 T
Lkkk

T
kLkkkk )()2(1 −−− −+−+= xxxxxxZZ βββ   (12) 

Recall the Sherman-Morrison-Woodbury identity, also known as the matrix inversion 

lemma [11]. 

 1111111)( −−−−−−− +−=+ ADB)ADB(CAABCDA TTT  (13) 

Define kZA = , ]2[ kLkk xxxB −−= ββ , 22xIC = , a 2x2 identity matrix, and 

])([ Lkkk −−= xxxD β . Then (12) reduces to 



 1
1

11
122

1
1

1
1

1 )( −
−

−−
−

−
−

−
−

− +−= k
T

k
T

xkkk ZDBZDIBZZZ  (14) 

Notice that this recursion for the inverse of kZ  is different than the conventional RLS 

algorithm. It requires the inversion of a 2x2 matrix 11
122 )( −−
−+ BZDI k

T
x , which is still 

trivial. With this, we are able to reduce the complexity of inverting a sum of two matrices 

from O(N3) to O(N2). The recursive estimator for kθ  is much simpler and can be 

expressed as 

 ])21[(1 kLkLkkkkkk ddd xxxθθ −−− −−++= βββ  (15) 

From (14) and (15), the optimal solution *w  is given by 

 kkk θZw 1−=  (16) 

To convert equation (16) into a recursive form, define a gain matrix (analogous to the 

Kalman gain in the RLS algorithm) as 

 ( ) 11
122

1
1

−−
−

−
− += BZDIBZκ k

T
xkk   (17) 

Using (17) in (14), we get 

 1
1

1
1

1 −
−

−
−

− −= k
T

kkk ZDκZZ  (18) 

Multiplying (17) from the right by ( )BZDI 1
122

−
−+ k

T
x , and using (18), we obtain 

 ( ) BZκBZBZDIκ 11
1

1
122

−−
−

−
− =⇒=+ kkkk

T
xk  (19) 

Substituting (15) in (16), 

 ])21[(1
1

1
kLkLkkkkkkkk ddd xxxZθZw −−

−
−

− −−++= βββ  (20) 

which can be further simplified as 

 ])21[(1
11 kLkLkkkkkk

T
kkk ddd xxxZwDκww −−

−
−− −−++−= βββ   (21) 

From the definition of B, ][)21( LkkkkLkLkkkk dddddd −−− −=−−+ ββββ ;Bxxx ,  where 



][ Lkkk ddd −− β;  is a column vector with elements kd  and Lkk dd −− β . Therefore, the 

update equation can then be written as 

 ][11 Lkkkkk
T

kkk ddd −−− −+−= β;κwDκww   (22) 

Note that the product T
Lkkkk

T yyy ][1 −− −= βwD , where 1−= k
T
kky wx , and 

1−−− = k
T

LkLky wx  represent the outputs with the weights of the previous iteration. 

Defining an apriori error vector ke  as 

 ];[)](;[ LkkkLkLkkkkkk eeeydydyd −−− −=−−−−= ββe   (23) 

we can simplify (22) to give us the REW update equation 

 kkkk eκww += −1   (24) 

A summary of the REW algorithm is shown in Table 1. 

 

Table 1. Summary of the REW Algorithm 
 
Initialize ,)0(1 IT c=−  c is a large positive constant 

0w =)0(  
At every iteration, compute  

])())()(2([ nLnn xxxB −−= ββ and ]))()(()([ Lnnn −−= xxxD β  

( ) 11
22

1 )1()1()( −−− −+−= BZDIBZκ nnn T
x  

)1()()( −= nnny T wx  and )1()()( −−=− nLnLny T wx  

⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−−−−−

−
=

)()(
)(

))()(()()(
)()(

)(
Lnene

ne
LnyLndnynd

nynd
n

ββ
e  

)()()1()( nnnn eκww +−=  
)1()()1()( 111 −−−= −−− nnnn T ZDκZZ  

 

Note that although the REW algorithm achieves partial error whitening for β = -0.5, the 

algorithm outlined in Table 1 can be used for any value of β. Further, the update equation 

in (24) implies that the REW algorithm tracks the optimal EWC solution at every 



iteration. Another noteworthy feature is the fact the REW algorithm converges in a finite 

number of steps unlike the stochastic gradient methods that converge only in the limiting 

sense. This is in agreement with other Newton type gradient optimization methods.  

Theorem 1. (No input noise case): The REW algorithm with β = -0.5 converges in the 

mean to the optimal solution in (8) in a finite number of steps.  

Proof. Recall that the REW algorithm with β = -0.5 is simply  

 )(ˆ)()( 1 nnn LL PRw −=    (25) 

where, the sample estimates of the matrix )(nLR  and vector )(ˆ nLP  are given by 

 

iLi

n

i
LiiL

T
iLi

T
Lii

n

i
L

ddn

n

ˆˆ)(ˆ

)(

1

1

−
=

−

−−
=

+=

+=

∑

∑

xxP

xxxxR
 (26) 

The above expressions are true for all minnn > , where, minn  is the smallest positive 

number for which the matrix )(nLR  is full-rank. Let the optimal EWC solution (which is 

also the true weights) be *w . Therefore, the noisy desired signal can be expressed as 

i
T
ii ud += *

ˆ wx . With this definition, the vector )(ˆ nLP  can be rewritten as 

 

iLi

n

i
LiiL

iLi

n

i
Lii

T
iLi

n

i

T
LiiL

uun

uun

xxwR

xxwxxxxP

−
=

−

−
=

−−
=

−

++=

++⎟
⎠

⎞
⎜
⎝

⎛
+=

∑

∑∑

1
*

1
*

1

)(          

)(ˆ

 (27) 

Multiplying the above equation from the left by )(1 nL
−R  we get, 

 iLi

n

i
LiiL uunn xxRww −

=
−

− ++= ∑
1

1
* )()(  (28) 

Taking the expected value on both sides of (28) and realizing that ))|(()( yxEExE = , 



we get 

 ⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−=++= −
=

−
− ∑ nLiuunEEnE iiLi

n

i
LiiL ,...,1  ,)()]([

1

1
* xxxRww  (29) 

It is easy to see that )(nLR  is constant with respect to the inner conditional expectation 

as it is completely determined by the sample vectors nLii ,...,1  , −=x . Since the noise 

iu  is zero mean and uncorrelated with the input, (29) reduces to 

 *)]([ ww =nE  (30) 

It is important to note that (30) is true for all minnn >  and hence the REW algorithm 

converges to the optimal EWC solution in the mean within a finite number of iterations.■  

Corollary 1. Even in the presence of input noise, the REW algorithm with β = -0.5 

converges in the mean to the optimal solution in (8). 

Proof. With noisy data, the REW algorithm becomes 

 )(ˆ)(ˆ)( 1 nnn LL PRw −=  (31) 

However, the noisy matrix )(ˆ nLR  is exactly the same as its noiseless equivalent )(nLR  

owing to the white noise assumption. Thus, the previous proof can be immediately 

applied following this observation and hence *)]([ ww =nE . ■ 

 Convergence of the REW algorithm in the mean does not fully address its overall 

behavior. In our experiments, we have observed that the transient response of the REW 

algorithm is dependent on the input data correlation and hence the eigenvalues of the data 

correlation matrix )(ˆ nLR . This is in concurrence with the fact that the MSE based RLS 

algorithm is susceptible to the smallest eigenvalue of the input covariance matrix during 

the initial stages of adaptation.   



Theorem 2. Trace of REW error covariance matrix ][ T
nnE εε , where *)( wwε −= nn  is 

always bound from above during the initial stages of adaptation. 

Proof. For simplicity, we will assume noise-free input. By the arguments listed in 

corollary 1, this proof can be extended to the noisy data case. Recall that the REW 

estimate at time index (iteration) n is given by, 

 iLi

n

i
LiiL uunn xxRww −

=
−

− ++= ∑
1

1
* )()(  (32) 

The error vector is then given by, 

 iLi

n

i
LiiLn uunn xxRwwε −

=
−

− +=−= ∑
1

1
* )()(  (33) 

From (33), we can compute the error covariance as 

 ⎥
⎦

⎤
⎢
⎣

⎡
++= −

= =
−−−−

− ∑∑ )())(()(][ 1

1 1

1 nuuuunEE L

n

j

n

i

T
jLj

T
LjjiLiLiiL

T
nn RxxxxRεε  (34) 

Expanding the terms inside the summations, we get 

⎥
⎦

⎤
⎢
⎣

⎡
+++

=

−

= =
−−−−−−−−

− ∑∑ )()()(

][

1

1 1

1 nuuuuuuuunE

E

L

n
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n

i

T
Lj

T
Liji

T
LjijLi

T
jLiLji

T
jiLjLiL

T
nn

RxxxxxxxxR

εε
 (35) 

Again, by utilizing the relationship ))|(()( yxEExE =  and the fact that the white noise 

iu  is zero mean and uncorrelated with the input, we can further simplify the above 

equation. 

 ⎥
⎦

⎤
⎢
⎣

⎡
+++= −

=
−−−++−

− ∑ )()()(][ 1

1

12 nnEE L

n

i

T
LiLi

T
LiLi

T
LiLi

T
iiLu

T
nn RxxxxxxxxRεε σ  (36) 

Define the matrices )(0 nR  and )(2 nLR  as in (37). Note that both the matrices are 

symmetric and further, )(0 nR  is positive definite and is similar to the covariance matrix.  



 

∑

∑

=
−++−

=
−−

+=

+=

n

i

T
LiLi

T
LiLiL

n

i

T
LiLi

T
ii

n

n

1
2

1
0

)(

)(

xxxxR

xxxxR
 (37) 

With the above definitions the expression for the error covariance becomes 

 )]()}()(){([][ 1
20

12 nnnnEE LLLu
T
nn

−− += RRRRεε σ  (38) 

In general, there is no tractable closed form solution for the above expression.3 Instead, 

we will attempt to derive an approximate upper bound on the trace of the error covariance 

matrix. In order to do so, assume that the matrices defined in (37) and the matrix )(nLR  

are constant, i.e., 00 )( RR =n , LL n 22 )( RR =  and LL n RR =)( . This basically implies 

that the matrices are the same irrespective of the n-length block of data which is a valid 

assumption for a reasonably large n.  

 ( ) ])([][][ 1
20

12 −− +== LLLun
T
n

T
nn TrEETr RRRRεεεε σ  (39) 

Using the property of the trace invariance under cyclic permutations,4 (39) reduces to 

 )]()([)]([][ 2
2

0
22

20
22

LLLuLLun
T
n TrTrTrE RRRRRRRεε −−− +=+= σσ  (40) 

By using the singular values instead of the eigenvalues, equation (40) is bound as shown. 

  )()(][ 2
2

1
0

22
LLi

M

i
Liun

T
n ssE RRRRεε −

=

− +≤ ∑σ  (41) 

where, si denotes the ith singular value. In order to simplify further, we exploit the 

arithmetic-geometric mean inequality for singular values by Bhatia and Kittaneh [12]. 

Accordingly, if A and B are two Hermitian matrices, and )(Zis denotes the ith singular 

value of a matrix Z, then, arithmetic-geometric mean inequality states that,  

                                                 
3 For the RLS algorithm, the error covariance is estimated by invoking the Gaussianity assumptions which 
allows the use of Wishart distribution and the results therein [1].   
4 ][][][ BCACABABC TrTrTr == . 



  )()(2 BBAABA HH
i

H
i ss +≤  (42) 

From our matrix definitions, 0R , L2R  and LR  are all symmetric matrices with real 

entries. Therefore, applying the above inequality to these matrices in equation (41) we get 
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2
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4
2

LLi
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i
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u
n

T
n ssE RRRRεε +++≤ −
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−∑σ
 (43) 

Realizing that the singular values coincide with the eigenvalues for the above symmetric 

matrices in (43), we can rewrite (43) as 
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From the above bound, it is clear that the quantity ][ n
T
nE εε  is mainly affected by the 

smallest eigenvalue of the matrix LR  estimated using n data samples.■ 

Although this result is intuitively satisfying, as a consequence, the REW algorithm can 

produce noisier transient response when compared to the RLS algorithm. It further 

emphasizes the fact the clean input data must have sufficient correlation depth to result in 

a well conditioned data matrix LR . However, as in the case of RLS, extensive 

experiments have revealed that the sensitivity of the REW algorithm fades with 

increasing number of iterations as the matrix LR  becomes well conditioned. 

 An alternative recursive algorithm that truly tracks the EWC solution can be derived 

by using minor component analysis. By reformulating the EWC as a problem of solving 

an over-determined set of linear equations, we can effectively apply the computational 

principles of TLS. It can be shown that, the optimal EWC solution is obtained by 



estimating the minor eigenvector corresponding to the zero eigenvalue of the augmented 

data matrix G which is given by 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

)(2 Ld
T
L

LL

ρP
PR

G  (45) 

where, the term )(Ldρ  denotes the autocorrelation of the desired signal at lag L. 

Although the eigenvectors of G are real, the matrix itself is indefinite and can have mixed 

eigenvalues. Most of the existing methods for computing the minor eigenvector assume 

that the matrix is positive-definite and hence cannot be used in our case. However, the 

classical inverse iteration method [11] can be utilized to solve the problem. It is beyond 

the scope of this paper to outline the details of the method. For a detailed derivation and 

description of the algorithm, see [10,13]. 

 

V. Parameter Estimation in Colored Input Noise 

 In the theory of error whitening criterion, we made a crucial assumption that the 

input noise is uncorrelated with itself or is white. Although, in many problems, the white 

noise model holds, this assumption can be certainly restrictive in other applications. From 

the discussions in the previous sections, it is clear that EWC fails to remove the bias in 

the parameter estimates when the input noise is correlated or colored. Our goal in this 

section is to derive a method to accurately estimate the parameters of a linear system in 

the presence of colored input noise by exploiting the signal correlations at different lags 

similar to the EWC. In this paper, we will only consider the case wherein the input noise 

can be correlated whereas the desired signal is either noise-free or assumed to be 

corrupted with white noise. The general case of having colored noise in both the input 



and desired data will be dealt in a later paper. 

 Consider the system identification framework shown in Fig 1. The additive input 

noise kv  can now have an arbitrary covariance matrix ][ T
kkE vvV = , whereas, the noise 

in the desired signal ku is assumed to be white. Also, the noises kv  and ku  are 

independent from the data pair and independent of each other. Further, we will assume 

sufficient order for the model i.e., Nℜ∈w . All other quantities that appear in this section 

have the same definitions as before. Consider the cost function in equation (46). 
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where, ∆  denotes a lag. Consider a single term in the summation of the above equation. 

It is easy to see that the cross products ]ˆˆ[ ∆−kk deE  and ]ˆˆ[ kk deE ∆−  are given by 
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Since the noise ku  is assumed to be white, 0][ =∆−kk uuE , and (47) reduces to a function 

of only the clean data (input and desired) and the weights. The input noise never 

multiplies itself; hence it gets eliminated. Further, the cost function in (46) simplifies to 
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where, the matrix ∆R is given by 
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The matrix ∆R  is symmetric, but indefinite and hence can have mixed eigenvalues. Also, 

observe that the cost function in (49) is linear in the weights w. If for instance, there was 

a single term in the summation, and we force 0)( =wJ , then it is easy to see that one of 



the solutions for w will be the true parameter vector Tw . However, when the number of 

terms in the summation becomes equal to the length of our estimated filter, there is 

always a unique solution for w, which will be the true vector Tw . 

Lemma 1. For suitable choices of lags, there is a unique solution *w  for the equation 

0)( * =wJ  and Tww =* . 

Proof. If 0)( =wJ , wRwwRw ∆∆ − T
TT

T
T  must be zero for all selected lags ∆ . For 

simplicity assume N,...,1=∆ . Therefore, we have N linear equations in w given by, 

T
T
T

T
T wRwwRw ∆∆ =][ . This system of equations can be compactly written as 
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If the rows of the composite matrix on the left of w in (50) are linearly independent (full-

rank matrix), then there is a unique inverse and hence 0)( =wJ  has a unique solution. 

We will prove that this unique solution has to be Tw  by contradiction. Let the optimal 

solution be εww += T* . Then, 0)( * =wJ  implies 0=∆εRwT
T  for all ∆  which is 

possible only when 0ε =  (composite matrix if full rank) and this completes the proof. ■ 

 Note that each term inside the summation of equation (46) can be perceived as a 

constraint on the cross correlation between the desired data and the error. By forcing 

these sums of cross correlations at N different lags to simultaneously approach zero, we 

can obtain an unbiased estimate of the true filter.  

 The optimal solution for the proposed criterion in terms of the noisy input and the 

desired responses is given in (51). Each row of the composite matrix can be estimated 



using simple correlators having linear complexity.  
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Also, a recursive relationship for the evolution of this matrix over iterations can be easily 

derived. However, this recursion does not involve simple reduced rank updates and hence 

it is not possible to use the matrix inversion lemma efficiently to reduce the complexity 

of matrix inversion. The overall complexity of the recursive solution in equation (51) is 

O(N3). This necessitates the development of a low cost stochastic algorithm to compute 

and track the optimal solution given by equation (51). The derivation of the stochastic 

gradient algorithm is similar to that of the EWC-LMS algorithm in [6]. 

 Consider the cost function in (52). It is easy to see that (52) corresponds to the 

stochastic version of the cost ∑
=∆

∆−∆− +=
N

kkkk dedeEJ
1

|]ˆˆˆˆ[|)(w  which is an upper bound on 

the actual objective function in (46). 
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The goal is to find the minimum of the above function. Notice that the gradient direction 

depends on the instantaneous cost and therefore, the weight update is given by 
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where, 0>η  is a small step-size. The step-size has been chosen to be a constant in the 

above update equation, but it is possible to have a time-varying step-size. Owing to the 

presence of multiple terms (constraints) in the gradient, the complexity of the update is 



)( 2NO  which is higher than that of the regular LMS type stochastic updates. However, 

we are still at a gain because the complexity is significantly lower when compared to the 

recursive solution in (51). We will now discuss the convergence of this stochastic 

gradient algorithm to the optimal solution in the noisy as well as noise-free scenarios. 

Theorem 3. In the noise-free case, (53) converges to the stationary point Tww =*  

provided that the step size satisfies the following inequality at every iteration. 
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Proof. It is obvious from the previous discussions that the cost function in (52) has a 

single stationary point Tww =* . The weight update becomes zero only when the cost 

goes to zero thereby zeroing the gradient. Consider the weight error vector defined as 

kk wwε −= * . From (53), we get 
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Taking the norm of this error vector on both sides gives, 
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Observe that in the noiseless case, kk
T
k e=xε  and ∆−∆− = kk

T
k exε . Hence (56) can be 

simplified further to 
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By allowing the error vector norm to decay asymptotically i.e., 22
1 kk εε <+ , we obtain 

the bound in (54). The error vector will eventually converge to zero by design, and since 



the gradient becomes null at the true solution, 0lim 2 →
∞→ kk
ε , and hence 

Tkk
www =→

∞→ *lim . ■ 

Theorem 4. In the noisy data case, the stochastic algorithm in (53) converges to the 

stationary point Tww =*  in the mean provided that the step size is bound as below. 
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Proof. Again, the facts about the uniqueness of the stationary point and it being equal to 

the true filter hold even for the noisy data case. The convergence to this stationary point 

in a stable manner will be proved in this theorem. Following the same steps as in the 

proof of the previous lemma, the dynamics of the error vector norm can be determined by 

the difference equation 
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where, kkkkk dedez ˆˆˆˆˆ , ∆−∆−∆ += . Applying the expectation operator on both sides of (59) and 

letting 22
1 kk EE εε <+  as in the previous case results in the following inequality. 
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Simplifying further, we get, 
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Using Jensen’s inequality, (61) can be reduced further to result in a loose upper bound on 

the step-size. 
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Notice that the RHS of (62) now resembles the cost function in (46). Rearranging the 

terms, we get the upper bound in (58). ■ 

The important point is that this upper bound is practical as it can be numerically 

computed without any knowledge of the actual filter or the noise statistics. Further, the 

upper bound itself can be included in the update equation to result in a normalized 

stochastic gradient algorithm with improved speed of convergence. 

 

VI. Simulation Results 

 Until this point, we presented new criteria and their associated algorithms to 

accurately estimate the parameters of a linear system in the presence of input noise. In 

this section, we will present some simulation results that validate the claims made earlier. 

A. Estimation of System Parameters in White Noise using REW 

 The REW algorithm can be used effectively to solve the system identification 

problem in noisy environments. As we have seen before, by setting the value of 

5.0−=β , noise immunity can be gained for parameter estimation. We performed several 

experiments with different length filters and input SNRs. The results have been 

summarized in [10,13]. Accordingly, the REW algorithm significantly outperforms the 

RLS and the analytical TLS methods.  

B. Effect of β and Weight Tracks of REW Algorithm 

 Recall that the REW algorithm can be used for any value of β . Interestingly, when 

β  is positive, the EWC cost function is always positive (also convex) and the )( 2eE &  is 



nothing but the sample derivative of the error. Therefore, minimizing EWC with β >0 is 

equivalent to the joint minimization of MSE along with a smoothness constraint on the 

error. The benefits of such an augmented MSE minimization can perhaps be significant 

when modeling physical plants with constrained error dynamics. Yet another interesting 

aspect is the relationship of the EWC cost to the sample error entropy. It can be shown 

that the error derivative term )( 2eE &  is proportional to a sample estimate of the error 

entropy [5]. Thus minimization of EWC cost with β >0 implies a simultaneous 

minimization of MSE and error entropy. It is well-known that the error entropy 

optimization produces superior model estimates of nonlinear systems when compared to 

MSE [14].  

 However, when there is noise in the data and the objective is to obtain an unbiased 

parameter estimate of the underlying model, we claimed that 5.0−=β  gives the best 

(unbiased) solution. We will now show the effect of β  on the EWC parameter estimates. 

The SNR of the input signal was fixed at values 0dB and –10dB, the number of filter taps 

was set to 4 and the desired signal was noise free. We performed 100 Monte Carlo 

experiments and analyzed the average error vector norm defined in (63) values for 

11 ≤≤− β . The results of the experiment are shown in Fig 2. 
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Notice that there is a dip at 5.0−=β  (indicated by a “*” in the figure) and this clearly 

gives us the minimum parameter bias. This corresponds to the EWC solution. For 0=β , 

(indicated by a “o” in the figure) the REW algorithm reduces to the regular RLS giving a 

fairly significant bias in the parameter values. 



 

Next the parameter β  is set to –0.5 and SNR to 0dB, and the weight tracks are 

estimated for the REW and the RLS algorithms. Fig 3 shows the averaged weight tracks 

for both REW and RLS algorithms averaged over 50 Monte Carlo trials. Asterisks on the 

plots indicate the true parameters. The tracks for the RLS algorithm are smoother, but 

they converge to wrong values, which we have observed quite consistently. The weight 

tracks for the REW algorithm are noisier compared to those of the RLS, but they 

eventually converge to values very close to the true weights. Also, note that the REW 

weight tracks are noisier only during the initial stages of adaptation. This is in agreement 

with the theoretical arguments presented in section IV according to which the REW 

algorithm is sensitive to the smallest eigenvalue of the matrix )(nLR . Typically, the 

eigenvalues of )(nLR  can be smaller than those of )(nR  because the latter is a 

diagonally dominant matrix unlike )(nLR . This is true because the diagonal of )(nLR  

has )(2 Lxρ  whereas the regular covariance )(nR  has )()0( Lxx ρρ >  on the diagonal. 

 

 
       (a)               (b) 
 
       Figure 2. Performance of REW with different values of β when input SNR is (a) 0dB (b) -10dB.  



 

C. System Identification with Colored Input Noise 

 The experimental setup is similar to the block diagram shown in Fig 1. We generated 

50000 samples of correlated clean input signal and passed it through an unknown random 

FIR filter to create a clean desired signal. Gaussian random noise was passed through a 

random coloring filter (FIR filter with 400 taps) and then added to the clean input signal. 

Three different input SNR values of 5, 0 and -10dB and three different true filter lengths 

of 5, 10 and 15 taps were used in the experiment. For each combination of SNR value 

and number of taps, 100 Monte Carlo runs were performed. For each trial, a different 

random coloring filter as well as input/desired data was generated. For the purpose of 

comparison, we computed the Wiener solution for MSE as well as the optimal solution 

given by equation (51). As before, we will utilize the error vector norm (dB) to quantify 

the performance of the methods. Fig 4 shows the histograms of the error vector norms for 

the proposed method as well as MSE. The inset plots in the figure show the summary of 

the histograms for each method. Clearly, the performance of the new criterion is superior  

 

* denotes true weights  

* denotes true weights  

 
     (a)              (b) 
 
       Figure 3. Weight tracks of the (a) REW algorithm and (b) RLS algorithm.  
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Figure 4. Histograms of the error vector norm obtained using MSE and the proposed criterion. 
n every experiment given the fact that the criterion neither requires any knowledge of the 

oise statistics nor does it try to estimate the same from data.  

. System Identification with Stochastic Gradient Algorithm  

We will use the stochastic gradient algorithm given by equation (53) to identify the 

arameters of a FIR filter in the presence of correlated input noise. A random four tap 

IR filter was chosen as the true system. The input SNR (colored noise) was fixed at 5dB 

nd the output SNR (white noise) was chosen to be 10dB. The step-sizes for the proposed 



method and the classical LMS algorithm were fixed at 1e-5 and 8e-4 respectively. One 

hundred Monte Carlo runs were performed and the averaged weight tracks over iterations 

are plotted for both algorithms in Fig 5. Note that our method gives a better estimate of 

the true parameters (shown by the square markers) than the LMS algorithm. The weight 

tracks of the proposed gradient method are noisier compared to those of LMS. One of the 

difficulties with the stochastic gradient method is the right selection of step-size. We have 

observed that in cases when the noise levels are very high, we require a very small step-

size and hence the convergence time can be high. Additional gradient normalizations can 

be included to speed up the convergence. Also, the shape of the performance surface is 

dependent on the correlations of the input and the desired signals at different lags. If the 

performance surface is relatively flat around the optimal solution, we have observed that 

including a trivial momentum term in the update equation increases the speed of 

convergence. Additional experiments on the local stability of the method and the effects 

of undermodeling can be found in [15].  

              Figure 5. Weight tracks of the LMS and the proposed method. 



E. Inverse Modeling and Control Using REW Algorithm 

 We will show the application of EWC for designing a model reference inverse 

controller. Fig 6 shows a block diagram of model reference inverse control [2]. Clearly, 

we require the plant parameters (which are typically unknown) to devise the controller. 

Once we have a model for the plant, the controller can be easily designed using 

conventional MSE minimization techniques. In this example, we will assume that the 

plant (AR system) transfer function is )3.05.08.01/(1)( 321 −−− −−+= zzzzP . The 

reference model is chosen to be an FIR filter with 5 taps. The block diagram for the plant 

identification is shown in Fig 7. Notice that the output of the plant is noise corrupted with 

white noise due to measurement errors. The SNR at the plant output was set to 0dB. We 

then ran the REW and RLS algorithms to estimate the model parameters given the noisy 

input and desired signals. The model parameters thus obtained are used to derive the 

controller (see Fig 6) using standard backpropagation of error. We then tested the 

adaptive controller-plant pair for trajectory tracking by feeding a random time series and 

observing the responses. Ideally, the controller-plant pair must follow the trajectory 

generated by the reference model. Fig 8 shows a histogram of the tracking errors. Notice 
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              Figure 6. Block diagram for model reference inverse control. 
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              Figure 7. Block diagram for inverse modeling. 
hat the errors with REW controller are all concentrated around zero, giving an almost 

erfect controller for the plant. In contrast, the errors produced by the MSE based 

ontroller are high and could become worse if the SNR levels drop further. 

II. Discussion and Conclusions 

Accurate parameter estimation with noisy data is a difficult problem that 

nfortunately becomes critical in many practical applications. Conventional MSE based 

ethods have been shown to give biased parameters with noisy data. As a matter of fact, 

or the linear parameter estimation problem, the optimal Wiener solution for MSE 
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              Figure 8. Histogram of tracking errors. 



changes with noise statistics which is highly unacceptable. Other methods like TLS, and 

its extended versions as well as the Instrumental Variables (IV) have been widely used to 

solve this problem; but the underlying assumptions restrict their applicability. We 

recently proposed a new criterion called the Error Whitening Criterion (EWC) that can 

produce unbiased parameter estimates for linear systems even the data is corrupted by 

additive white noise. The criterion works with the error correlation instead of the error 

energy and achieves partial whiteness of the error which in turn results in an unbiased 

parameter estimate even with noisy data. In this paper, we first presented a Quasi-Newton 

type algorithm to solve for the optimal EWC solution. This algorithm is a truly fixed-

point type method with O(N2) complexity similar to the RLS algorithm. A detailed 

analysis of the algorithm was also presented. 

 EWC gives unbiased parameters only when the input noise is white. In the later half 

of this paper, we proposed another criterion which again exploits data correlations to 

accurately estimate the parameters when the input noise is colored. A stochastic gradient 

algorithm was developed to estimate the optimal solution. Brief convergence analysis of 

this gradient algorithm was presented.  

 Lastly, we showed the advantages of the proposed algorithms in the problem of 

system identification with noisy data. The algorithms can be used in many applications 

that require accurate parameter estimation which is exemplified in the design of a model 

based inverse controller described in this paper.  

 The Error Whitening Criterion and the modified criterion for colored noise coupled 

with the fast algorithms presented in this paper form a powerful tool that can be used in 

several engineering applications requiring accurate parameter estimation. The extensions 



of these methods to estimation problems involving colored input and colored output noise 

scenarios are currently being studied and preliminary successes are reported in [16]. 
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