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 Abstract. Matched filters are the optimal linear filters 
for signal detection under linear channel and white noise 
conditions. Their optimality is guaranteed in the additive 
white Gaussian noise channel due to the sufficiency of 
second order statistics. In this paper, we introduce a nonlinear 
filter for signal detection based on the Cauchy-Schwartz 
quadratic mutual information (CS-QMI) criterion. This filter 
is still implementing correlation but now in a high 
dimensional transformed space defined by the kernel utilized 
in estimating the CS-QMI. Simulations show that the 
nonlinear filter significantly outperforms the traditional 
matched filter in nonlinear channels, as expected.  In the 
linear channel case, the proposed filter outperforms the 
matched filter when the received signal is corrupted by 
impulsive noise such as Cauchy-distributed noise, but 
performs at the same level in Gaussian noise. A simple 
nonparametric sample-estimator for CS-QMI is derived for 
real-time implementation of the proposed filter. 
 
1. INTRODUCTION 
 Detection of known signals transmitted through linear 
and nonlinear channels is an important fundamental problem 
in signal processing theory with a wide range of applications, 
communications, radar, and biomedical engineering to name 
just a few [1,2]. Traditionally the matched filter, which is 
based on the assumptions of linear channel with second order 
optimality criteria, has been used for tackling the signal 
detection problem. Theoretically, it is known that among all 
linear filters, the matched filter maximizes the signal-to-noise 
ratio (SNR) in the case of linear additive white noise (AWN) 
channels [3]. The known signal shape is utilized to construct 
an impulse response, hence the name matched filter. 
 The limitations of the matched filter are already clearly 
defined by the assumptions under which its optimality can be 
proven. Specifically, if the channel causes nonlinear 
distortions on the transmitted signal, as the template used to 
construct the impulse response will not be optimal anymore, 
the matched filter is expected to yield suboptimal signal 
detection and false alarm performance. Even in the case of a 
linear channel, if the noise is impulsive (i.e., has infinite 
variance) then the SNR optimality of the matched filter is not 
valid anymore, as theoretically the noise power at the output 
of the matched filter is still infinite. 
 In order to address these shortcomings of the linear 
matched filter theory, we propose in this paper a nonlinear 
filter topology for signal detection based on a mutual 
information (MI) criterion. In earlier work, we have 

demonstrated the superior performance of information 
theoretic measures over second order statistics in signal 
processing [4]. In this general framework, we assume an 
arbitrary instantaneous channel and additive noise with an 
arbitrary distribution. Specifically in the case of linear 
channels, we will consider Cauchy noise, which is a member 
of the family of symmetric α-stable distributions, and is an 
impulsive noise source. These types of noise distributions are 
known to plague signal detection [5, 6]. 
 Specifically, the proposed nonlinear signal detection 
filter is based on the Cauchy-Schwartz Quadratic Mutual 
Information (CS-QMI) measure that has been proposed by 
Principe et al. [7]. This definition of mutual information is 
preferred because of the existence of a simple nonparametric 
estimator for the CS-QMI, which in turn forms the basis of 
the nonlinear filter topology that is being proposed here. 
 The performance of the proposed nonlinear signal 
detection filter will be compared with that of the traditional 
matched filter in a variety of scenarios including linear and 
nonlinear channels, and Gaussian and impulsive noise 
distributions. The metric for comparison is the receiver 
operating characteristics (ROC), which is a standard 
technique for evaluating the performance of a classifier by 
demonstrating the trade-off between probability of detection 
and probability of false alarms [1]. For the sake of simplicity, 
throughout the paper, we will assume discrete-time signals. 
 
2. MATCHED FILTER 
 Consider a signal template sk existing in the time interval 
[0,T], corrupted by an AWN nk with zero mean and variance 
σ2. The received signal is simply rk=sk+nk. A matched filter is 
then defined by the impulse response [1,3] 
 kTk sh −=  (1) 
The matched filter output is then yk=hk*rk=hk*sk+hk*nk, where 
* denotes convolution. Thus, the filter output is composed of 
a signal and a noise component. The output achieves its 
maximum average value at the time instant T, since there is 
maximum correlation between the matched filter impulse 
response and the template at this lag, thereby maximizing the 
SNR. The SNR has been defined as the ratio of the total 
energy of the signal template to the noise variance [1]: 
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If the proper lag T to sample the output of the matched filter 
is known, this output statistic can then compared with a 
threshold, to detect the presence or absence of the signal sk. 



3. MUTUAL INFORMATION 
Mutual information indicates the amount of shared 

information between two or more random variables. In 
information theory, the MI between two random variables X 
and Y is traditionally defined by Shannon as [8] 
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where pXY(x,y) is the joint probability density function (pdf) 
of X and Y, and pX(x) and pY(y) are the marginal pdfs. The 
crucial property of mutual information for our purposes is the 
fact that if there is a nonlinear function between X and Y, 
such that Y=f(X), the MI achieves its maximum value [8].1 On 
the other hand, if X and Y are independent MI becomes zero. 
In a sense, MI can be considered a generalization of 
correlation to nonlinear dependencies; that is MI can be used 
to detect nonlinear dependencies between two random 
variables, whereas the usefulness of correlation is limited to 
linear dependencies. 
 Although Shannon’s MI is the traditionally preferred 
measure of shared information, essentially it is a measure of 
divergence between the variables X and Y from 
independence. Based on this understanding, a different, but 
qualitatively similar measure of independence can be 
obtained using the Cauchy-Schwartz inequality for inner 
products in vector spaces: <x,y> ≤ ||x|| . ||y||. The following 
expression is defined as the CS-QMI between X and Y [7]: 

 2

222

)()(),(

)()(),(
log

2
1),(









=

∫∫
∫∫∫∫

dxdyypxpyxp

dxdyypxpdxdyyxp
YXI

YXXY

YXXY
CS  (4) 

This measure evaluates to zero when the variables are 
independent. The inverse of the argument of the log is 
bounded between one (independence) and zero (maximal 
dependence). Computation of CS-QMI involves the 
estimation of the joint and marginal pdfs of the random 
variables. However using the Parzen window density 
estimate, CS-QMI can be estimated nonparametrically in a 
straightforward manner as demonstrated below. 

The Parzen window estimate for the pdf pX(x) of a 
random variable X is given in terms of the iid samples 
{x1,…,xN} as [9] 
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where Kσ(.) represents the kernel (or the window) function. 
Parzen windowing, also referred to as kernel density 
estimation, is known to have very good convergence 
properties [10]. The parameter σ determines the kernel size 
(sometimes called the window size or the bandwidth) and it 
presents a trade-off between estimation bias and variance. On 

average, the estimated density is the convolution of the true 
underlying density with the kernel function. Consequently, 
decreasing the kernel size towards zero, such that the kernel 
function approaches a delta function, reduces estimation bias. 
On the other hand, larger kernel sizes lead to smaller 
estimation variance. Nevertheless, it is possible to obtain an 
asymptotically unbiased and consistent density estimate, as 
the number of samples tends to infinity, if a suitable kernel 
function, such as Gaussian, is utilized. 

                                                 
1 Theoretically, MI can become infinite, however, in practice, when 
a nonparametric estimator is used to estimate it from samples, this 
will not happen. 

 In addition, a Gaussian kernel facilitates the derivation of 
a simple expression for the CS-QMI measure.2 Specifically, 
if we assume a separable kernel K(x,y)=G1(x)G2(y), where 
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the corresponding nonparametric estimator for CS-QMI can 
be obtained after some calculations to be 
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 This nonparametric estimator for CS-QMI also facilitates 
a deeper understanding of the measure itself. Consider the 
argument of the log in the original measure defined in (4). 
This is simply the inverse-square of the inner product 
between the joint pdf of X and Y, and the product of their 
marginal pdfs. Consequently, the denominator of this term, 
being the correlation of the joint pdf with the product of 
marginal pdfs, indicates some sort of link to second order 
statistics of the signals X and Y after the nonlinear 
transformation produced by the kernels. 
 Now consider the nonparametric estimator in (7). We 
will focus on the argument of the log in each term of the 
expression on the right hand side. Since the Gaussian kernel 
Gi(.) satisfies Mercer’s conditions [11], the following 
eigenfunction expansion exists:3 

                                                 
2 In the rest of this paper, we will assume Gaussian kernels. 
However, everything that we present is valid for any kernel function 
that satisfies the conditions of Mercer’s theorem. These kernels 
include, but are not limited to, symmetric and unimodal pdfs with 
finite variances. 
3 For convenience, we denote the infinite-length inner product 
summation by a vector-matrix product notation. 
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Figure 1. Normalized outputs of the traditional matched filter
(dotted) and the proposed nonlinear filter (solid) versus time. The
expected time of the filter output peak is indicated by the star. In this
illustration, both filters detect the transmitted signal, however the
proposed nonlinear filter exhibits better false alarm rejection
capabilities due to the reduced background clutter amplitude. 

In (8), {λ1>λ2>…} are the eigenvalues of the Gaussian kernel 
and (.)~(.) 2/1

lll ϕλϕ =

(.)
 are the scaled eigenfunctions, where 

~
lϕ  are the orthonormal eigenfunctions. Substituting this 

expansion in (7) for each of the corresponding Gaussian 
kernels and reorganizing the terms, we obtain 
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Defining the first and second-order moments of the 
transformed data as 
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we obtain a more compact expression for (7) in the so called 
feature space defined by the transformations ϕ  and ϕ : 1 2
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 Hence, we conclude that the CS-QMI estimator that we 
propose is, in fact, using second order statistical information 
about the signals X and Y in a transform domain determined 
by the kernel functions used in (7). The transform domain, 
called the feature space, is infinite dimensional in the case of 
Gaussian kernels, however, polynomial kernels for which the 
feature space is finite dimensional exists. The eigenfunctions 

of the Gaussian kernel form a basis for the Hilbert space of 
bounded continuous functions, thus such kernels are also 
referred to as reproducing kernels in Hilbert spaces (rkhs) 
[12]. Therefore, the proposed CS-QMI estimator contains 
higher-order statistical information regarding the original 
random variable X and Y. 
 
4. NONLINEAR SIGNAL DETECTION FILTER 
 Consider a signal template sk existing in the time interval 
[0,T], a nonlinear channel f(.), and AWN nk with an arbitrary 
distribution. The received signal is  

  (12) Tk
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The samples {r0,r1,…,rT} and {s0,s1,…,sT} are assumed to be 
samples drawn from the joint distribution of random 
variables R and S, corresponding to the received signal and 
the template, respectively. The nonlinear matched filter 
evaluates  using (7) and its output is compared 
with a threshold to determine whether the signal exists or not. 
Large values of  indicate the existence of f(S), a 
nonlinearly distorted version of the template signal, in the 
received signal. In contrast, the traditional matched filter 
simply evaluates the correlation between R and S by 

);(ˆ SRICS

ÎCS

TT sr

);( SR

sr ++ ...00  to be compared with a threshold. 
 In order to illustrate the two filter outputs comparatively, 
we present in Figure 1 the outputs of both filters in a simple 
signal detection example, where the template (transmitted 
signal) is distorted by a sinusoidal channel (described in the 
next section). In addition, an AWGN corrupts the received 
signal at 20dB SNR level. Clearly, the proposed nonlinear 
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Figure 2. ROC curve for linear channel with additive white
Gaussian noise for MI and MF (solid) at 0dB SNR basically
coincide. The difference in probability of false alarm of MI and MF
(dotted) and difference in probability of detection of MI and MF
(dash-dotted) are also shown. 
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Figure 3. ROC curve for linear channel with additive white
Gaussian noise for MI and MF (solid) at 10dB SNR also overlap.
The difference in probability of false alarm of MI and MF (dotted)
and difference in probability of detection of MI and MF (dash-
dotted) are also shown. 
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Figure 4. ROC curve for linear channel with additive white
Laplacian noise for MI and MF (solid) at 0dB SNR still coincide.
The difference in probability of false alarm of MI and MF (dotted)
and difference in probability of detection of MI and MF (dash-
dotted) are also shown. 

filter exhibits better peak-to-background clutter ratio, thus 
resulting in superior detection and false alarm rates as will be 
demonstrated in the following section extensively. 
 The size σi of the Gaussian kernel functions are 
important parameters that must be carefully chosen in order 
to achieve the best performance possible. There is a wide 
literature on selecting the kernel size in the statistics literature 
[10,13,14] and it is out of the scope of this paper. Here we 
selected the kernel size experimentally for each case 
according to )1(/)(0 += Txstdσσ , where σ0 is typically 
in the interval [1,10] and std(x) denotes the sample standard 
deviation of the template or the received signal at any given 
time instant. 
  A practical consideration for real-time implementation of  
the matched nonlinear filter is computation complexity. 
Clearly, the total computational complexity is much more 
than the matched filter. In fact, a straightforward 
implementation of (7) in a DSP would require O(T2) 
Gaussian function evaluations, which is still reasonable for 
short templates. Sample evaluation times for the proposed 
nonlinear filter are presented at the end of Section 5. 
However, it is also possible to design a specialized circuit 
(perhaps using an FPGA or a VLSI chip) that would 
implement the necessary computations in parallel. The 
second approach aims at distributing the necessary 
computation load in space rather than in time. Therefore, a 
simple feedforward circuit structure could be designed to 
generate an output instantaneously, as soon as the necessary 
input samples are captured at the outputs of a tap-delay line. 
 
5. SIMULATIONS AND RESULTS 
 Monte-Carlo simulations were performed for detecting a 
known signal through both linear and nonlinear channels in 
the presence of different additive noise distributions such as 
Cauchy, Gaussian, and Laplacian distributions. Specifically, 
simulations were performed at three different setups:  

1. Linear channel, different noise distributions, proper 
sampling time known. 

2. Nonlinear channel, Gaussian noise, proper sampling time 
known. 

3. Nonlinear channel, Gaussian noise, unknown sampling 
time. 

The performance comparisons are presented using the ROC 
curves of each filter. The ROC curves simply show the 
probability of detection (vertical axis) versus the probability 
of false alarm (horizontal axis) for various threshold values. 
Since the performance in some cases is very similar, we also 
plot the differences in false alarms and probability of 
detection between the two detectors in the ROC. 

Experiment 1: The transmitted signal is a random 
sequence of length 20 with values selected from {-1,+1} 
uniformly. The channel is linear (f(S)=S) and the noise 
distribution is varied between Gaussian, Laplacian, and 
Cauchy. For each noise distribution, 10,000 Monte Carlo 



detection simulations are performed where in each simulation 
the probability of the transmitted signal was set at 0.5.  

The results for the linear additive channel are shown in 
Figures 2-6. It is clear from Figures 2-3 that for the Gaussian 
noise case, the proposed nonlinear filter (denoted by MI) 
performs identically to the traditional matched filter (denoted 
by MF) and cannot outperform it, showing the optimality of 
the matched filter in this case. We have noticed that the 
performance of the nonlinear filter becomes worse than the 
MF for smaller SNR (results not shown here). On the other 
hand, for Laplacian noise, especially at high SNR, MI 
slightly outperforms MF as depicted in Figures 4-5. 
Eventually, for the impulsive Cauchy noise case, MI 
significantly outperforms MF at both SNR levels, as shown 
in Figure 6.4 
 Experiment 2: The transmitted signal is composed of 21 
samples from a Gaussian-shaped waveform. The channel is 
nonlinear (f(S)=1/(1+exp(-10(S-0.3)))-0.5 or f(S)=sin(2πS)) 
and the noise distribution is Gaussian. For both nonlinear 
channels, 10,000 Monte Carlo detection simulations are 
performed where in each simulation the probability of the 
transmitted signal is set at 1/2. The ROC of the traditional 
matched filter (MF) and the proposed nonlinear MI-based 
filter (MI) are estimated as before for different SNR levels. In 
the nonlinear channel case, the SNR level refers to the SNR 
measured at the received signal. 
 The results for these two nonlinear channels are shown 
in Figures 7-8. In both cases, MI outperformed MF at both 
SNR levels. The difference in performance is larger for the 
sinusoidal channel, because it distorts the template more to 
reduce correlation relative to the sigmoidal channel. 
 Experiment 3: The experimental setup is identical to 
experiment 2 except that the transmitted signal occurs at 
unknown lags in a long sequence of received signal values: 
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Consequently, the streaming outputs of the MF and MI have 
to be searched for transmitted signals. We assume that there 
is no overlap between transmitted signals. Furthermore, we 
know that the filter outputs rise and fall over a period of 
2(T+1)+1 achieving, on average their maximum values at the 
midpoint of this interval. Hence, by combining the 
thresholding scheme with the condition that there cannot be 
two signal detections within any interval of length 2(T+1)+1, 
many false alarms can be avoided. The sigmoidal nonlinear 
channel mentioned earlier is used with Gaussian noise. The 
ROC curves are shown in Figure 9 only up to a false alarm 
rate of 0.4 (due to long simulation time required for lower 
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4 Although technically it is not correct to speak of the SNR of a 
signal corrupted by Cauchy-distributed noise, for the sake of 
illustration, the actual sample variance of the noise in the 
simulations can be used as a measure of noise strength in the 
received signal. 
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re 5. ROC curve for linear channel with additive white
acian noise for MI and MF (solid) at 10dB SNR. The difference 
obability of false alarm of MI and MF (dotted) and difference
robability of detection of MI and MF (dash-dotted) are also 
n for better clarity. 
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re 6. ROC curves for linear channel with additive white Cauchy 
 for MI (solid) and MF (dotted) at 20dB SNR and MI (dash-
d) and MF (dashed) at 10dB SNR. 
hold values) for MI and MF at two SNR levels. The 
osed MI approach significantly outperforms the 
tional MF. As discussed in section 4, the computational  
plexity of MI is O(T2). The average time taken for 
uating the output of the MF and MI in MATLAB, over 
rent sample lengths (# of iterations = 10,000) is 
lated in Table 1. The figures in the table indicate a 
ratic increase in the evaluation time of MI with an 
ase in the sample length and reasonable evaluation times 
horter sample lengths. 

CONCLUSION 
Signal detection is a fundamental problem in signal 
essing and traditionally, based on linearity and 
ssianity assumptions, the matched filter has been used for 
ling this problem. Clearly, the matched filter, being based 
second-order correlations alone, has shortcomings 
cially when nonlinear distortions are introduced by the 
nel. In addition, the matched filter performance degrades 
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Tab
iter
Sample 
Length 

10 20 50 100 

MF 
seconds) 

0.97 1.00 1.07 1.18 

MI 
seconds) 

9.32 9.32 42.30 44.00 

le 1: Speed of computation (in seconds) of MI and MF in 10,000 
ations 
the presence of impulsive noise disturbances at the 
eiver. 

Motivated by these shortcomings of the matched filter 
 the promise of mutual information as an extension of 
ar correlation to nonlinear dependencies, we have 
igned a nonlinear matched filter, based on the Cauchy-
wartz Quadratic Mutual Information measure. A 
linear filter design based on a nonparametric estimator for 

-QMI has been proposed. Based on the theory of 
roducing kernels in Hilbert spaces, it has been shown that 
 proposed filter is able to capture all essential statistical 
perties of the nonlinearly transformed signals by virtually 
ating an infinite dimensional feature space.  

Finally, extensive simulation results that demonstrate 
arly the superiority of the mutual information based 
linear filter over the traditional matched filter have been 
sented in a variety of signal detection conditions including 
ar and nonlinear channel distortions, as well as various 
se distributions including Gaussian, Laplacian, and 
chy, the latter being a troublesome impulsive noise type 

 the matched filter. Despite the similarities, the nonlinear 
tched filter utilizes the information available in the 
ples differently. According to eq. 11, CS-QMI estimates 

relation in the transformed space. But the transformation 
olves a nonlinear function of pairs of samples and 
refore the temporal information about the template is lost. 
s is one of the reasons the nonlinear filter outperforms the 
tched filter in nonlinear channels where the template shape 
nges due to the channel distortion. On the other hand, in 
ar channels the CS-QMI is bound to loose its 
formance advantage, especially at low SNR where the 
se may take over. Another problem is the variance of the 
-QMI estimate which is dictated by the number of samples 
the template (i.e. small templates should degrade 

formance).  
The implementation of the CS-QMI is more 
putationally demanding when compared with the 

tched filter, but for small templates it is still manageable. 
 choice of the Gaussian kernel in the simulations, does 

 exclude the use of other kernel types, although the 
hors are of the opinion that there would be insignificant 
rovement in the performance using other kernel types. 

rrections to non-white noise are readily available for the 
tched filter but they have not been attempted for the CS-
I. Another area that was not investigated here is the 
act in performance when the template suffers time 

warping distortions, which plague many practical 
applications of matched filters.  
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Figure 7. ROC curves for a sigmoidal channel with additive white
Gaussian noise for MI (solid) and MF (dotted) at 15dB SNR and MI 
(dash-dotted) and MF (dashed) at 10dB SNR. 
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Figure 8. ROC curves for a sinusoidal channel with additive white
Gaussian noise for MI (solid) and MF (dotted) at 15dB SNR and MI
(dash-dotted) and MF (dashed) at 10dB SNR. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of False Alarm 

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

 
Figure 9. ROC curves for a sigmoidal channel with additive white
Gaussian noise in the case of unknown sampling time for MI (solid)
and MF (dotted) at 20dB SNR and MI (dash-dotted) and MF 
(dashed) at 10dB SNR. 



 The contributions of this paper are not merely limited to 
the development of a nonlinear signal detection filter. It 
should be clear that nonlinear techniques such as kernel 
methods based on information theoretic measures hold the 
promise of changing the way signal processing is done. 
These and other recent results with information theoretic 
learning indicate that many traditional signal processing 
solutions based on linear systems theory and second order 
statistics, should be re-examined because relatively straight 
forward nonlinear extensions exist that show potential in 
outperforming the conventional signal processing solutions. 
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