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Abstract. Principal components analysis is an important and well-studied subject in statistics and signal processing. 
The literature has an abundance of algorithms for solving this problem, where most of these algorithms could be 
grouped into one of the following three approaches: adaptation based on Hebbian updates and deflation, 
optimization of a second order statistical criterion (like reconstruction error or output variance), and fixed point 
update rules with deflation. In this paper, we take a completely different approach that avoids deflation and the 
optimization of a cost function using gradients. The proposed method updates the eigenvector and eigenvalue 
matrices simultaneously with every new sample such that the estimates approximately track their true values as 
would be calculated from the current sample estimate of the data covariance matrix. The performance of this 
algorithm is compared with that of traditional methods like Sanger’s rule and APEX, as well as a structurally similar 
matrix perturbation-based method. 
 
 
1. INTRODUCTION 
 Principal component analysis (PCA) is a well-
known statistical technique that has been widely applied 
to solve important signal-processing problems like 
feature extraction, signal estimation, detection and 
speech separation [1-4]. Many analytical techniques 
exist, which can solve PCA once the entire input data is 
known [5]. However, most of the analytical methods 
require extensive matrix operations and hence they are 
unsuited for real-time applications. Further, in many 
applications such as direction of arrival (DOA) tracking, 
adaptive subspace estimation, etc., signal statistics 
change over time rendering the block methods virtually 
unacceptable. In such cases, fast, adaptive, on-line 
solutions are desirable. Majority of the existing 
algorithms for PCA are based on standard gradient 
procedures [2,3,6-9], which are extremely slow 
converging, and their performance heavily depends on 
step-sizes used. To alleviate this, subspace methods 
have been explored [10-12]. However, many of these 
subspace techniques are computationally intensive. The 
recently proposed fixed-point PCA algorithm [13] 
showed fast convergence with little or no change in 
complexity compared with gradient methods. However, 
this method and most of the existing methods in 
literature rely on using the standard deflation technique, 
which brings in sequential convergence of principal 
components that potentially reduces the overall speed of 
convergence. We recently explored a simultaneous 
principal component extraction algorithm called SIPEX 
[14] which reduced the gradient search only to the space 
of orthonormal matrices by using Givens rotations. 
Although SIPEX resulted in fast and simultaneous 
convergence of all principal components, the algorithm 
suffered from high computational complexity due to the 
involved trigonometric function evaluations. A recently 

proposed alternative approach suggested iterating the 
eigenvector estimates using a first order matrix 
perturbation formalism for the sample covariance 
estimate with every new sample obtained in real time 
[15]. However, the performance (speed and accuracy) of 
this algorithm is hindered by the general Toeplitz 
structure of the perturbed covariance matrix. In this 
paper, we will present an algorithm that undertakes a 
similar perturbation approach, but in contrast, the 
covariance matrix will be decomposed into its 
eigenvectors and eigenvalues at all times, which will 
reduce the perturbation step to be employed on the 
diagonal eigenvalue matrix. This further restriction of 
structure, as expected, alleviates the difficulties 
encountered in the operation of the previous first order 
perturbation algorithm, resulting in a fast converging 
and accurate subspace tracking algorithm. 
 This paper is organized as follows. First, we present 
a brief definition of the PCA problem to have a self-
contained paper. Second, the proposed recursive PCA 
algorithm (RPCA) is motivated, derived, and extended 
to non-stationary and complex-valued signal situations. 
Next, a set of computer experiments is presented to 
demonstrate the convergence speed and accuracy 
characteristics of RPCA. Finally, we conclude the paper 
with remarks and observations about the algorithm. 
 
2. PROBLEM DEFINITION 
 PCA is a well-known problem and it is extensively 
studied in the literature as we have pointed out in the 
introduction. However, for the sake of completeness, we 
will provide a brief definition of the problem in this 
section. For simplicity and without loss of generality, 
we will consider a real-valued zero-mean, n-
dimensional random vector x and its n projections 
y1,…,yn such that , where wxwT

jjy = j
’s are unit-norm 



vectors defining the projection dimensions in the n-
dimensional input space. 
 The first principal component direction is defined 
as the solution to the following constrained optimization 
problem, where R is the input covariance matrix: 
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The subsequent principal components are defined by 
including additional constraints to the problem that 
enforce the orthogonality of the sought component to 
the previously discovered ones: 
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 The overall solution to this problem turns out to be 
the eigenvector matrix of the input covariance R. In 
particular, the principal component directions are given 
by the eigenvectors of R arranged according to their 
corresponding eigenvalues (largest to smallest) [5]. 
 In signal processing applications, the needs are 
different. The input samples are usually acquired one at 
a time (i.e., sequentially as opposed to in batches), 
which necessitates sample-by-sample update rules for 
the covariance and its eigenvector estimates. In this 
setting, this analytical solution is of little use, since it is 
not practical to update the input covariance estimate and 
solve a full eigendecomposition problem per sample. 
However, utilizing the recursive structure of the 
covariance estimate, it is possible to come up with a 
recursive formula for the eigenvectors of the covariance 
as well. This will be described in the next section. 
 
3. RECURSIVE PCA DESCRIPTION 
 Suppose a sequence of n-dimensional zero-mean 
wide-sense stationary input vectors xk are arriving, 
where k is the sample (time) index. The sample 
covariance estimate at time k for the input vector is1 
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Let  and , 
where Q and Λ denote the orthonormal eigenvector and 
diagonal eigenvalue matrices respectively. Also define 

. Substituting these definitions in (3), we 
obtain the following recursive formula for the 
eigenvectors and eigenvalues: 
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1 In practice, if the samples are not generated by a zero-mean 
process, a running sample mean estimator could be employed 
to compensate for this fact. Then this biased estimator can be 
replaced by the unbiased version and the following derivations 
can be modified accordingly. 

Clearly, if we can determine the eigendecomposition of 
the matrix , which is denoted by 

, where V is orthonormal and D is diagonal, 
then (4) becomes 
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By direct comparison, the recursive update rules for the 
eigenvectors and the eigenvalues are determined to be: 
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In spite of the fact that the matrix [(  
has a special structure much simpler than that of a 
general covariance matrix, determining the 
eigendecomposition  analytically is difficult. 
However, especially if k is large, the problem can be 
solved in a simpler way using a matrix perturbation 
analysis approach. This will be described next.  
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3.1. Perturbation Analysis for Rank-One Update 
 When k is large, the matrix [(  
is strongly diagonally dominant; hence (due to the 
Gershgorin theorem) its eigenvalues will be close to 
those of the diagonal portion (k-1)Λ

])1 1
T
kkkk ααΛ +− −

k-1. In addition, its 
eigenvectors will also be close to identity (i.e., the 
eigenvectors of the diagonal portion of the sum). 
 In summary, the problem reduces to finding the 
eigendecomposition of a matrix in the form (Λ+ααT), 
i.e. a rank-one update on a diagonal matrix Λ, using the 
following approximations: D=Λ+PΛ and V=I+PV, 
where PΛ and PV are small perturbation matrices. The 
eigenvalue perturbation matrix PΛ is naturally diagonal. 
With these definitions, when VDV  is expanded, we 
get 
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Equating (7) to , and assuming that the terms 
 and  are negligible, we get 
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T
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The orthonormality of V brings an additional equation 
that characterizes PV. Substituting V=I+PV in VVT=I, 
and assuming that , we have . 0PP VV ≈T T

VV PP −=
 Combining the fact that the eigenvector 
perturbation matrix PV is anti-symmetric with the fact 
that PΛ and D are diagonal, the solution for the 



perturbation matrices are found from (8) as follows: the 
ith diagonal entry of PΛ is  and the (i,j)2

iα
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3.2. The Recursive PCA Algorithm 
 The RPCA algorithm is summarized in Table 1. 
There are a few of practical issues regarding the 
operation of the algorithm, which will be addressed in 
this subsection. 
 Selecting the memory depth parameter: In a 
stationary situation, where we would like to weight each 
individual sample equally, this parameter must be set to 
λk=1/k. In this case, the recursive update for the 
covariance matrix is as shown in (3). In a non-stationary 
environment, a first-order dynamical forgetting strategy 
could be employed by selecting a fixed decay rate. 
Setting λk=λ corresponds to the following recursive 
covariance update equation: 
  (9) T

kkkk xxRR λλ +−= )1(
Typically, in this forgetting scheme, λ∈(0,1) is selected 
to be very small. Considering that the average memory 
depth of this recursion is 1/λ samples, the selection of 
this parameter presents a trade-off between tracking 
capability and estimation variance. 

Initializing the eigenvectors and the eigenvalues: 
The natural way to initialize the eigenvector matrix Q0 
and the eigenvalue matrix Λ0 is to use the first N0 
samples to obtain an unbiased estimate of the 
covariance matrix and determine its eigendecomposition 
(N0>n). The iterations in step 2 can then be applied to 
the following samples. This means in step 2, 
k=N0+1,…,N. In the stationary case (λk=1/k), this means 
in the first few iterations of step 2, the perturbation 
approximations will be least accurate (compared to the 
subsequent iterations). This is simply due to 

 not being strongly diagonally 
dominant for small values of k. Compensating the errors 
induced in the estimations at this stage might require a 
large number of samples later on. 

T
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This problem could be avoided if in the iteration 
stage (step 2), the index k could be started from a large 
initial value. In order to achieve this without introducing 
any bias to the estimates, one needs to use a large 
number of samples in the initialization (i.e., choose a 
large N0). In practice, however, this is undesirable. The 
alternative is to perform the initialization still using a 
small number of samples (i.e., a small N0), but setting 
the memory depth parameter to λk=1/(k+(τ-1)N0). This 
way, when the iterations start at sample k=N0+1, the 
algorithm thinks that the initialization is actually 
performed using γ =τ N0 samples. Therefore, from the 
point-of-view of the algorithm, the data set looks like 
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The corresponding covariance estimator is then 
naturally biased. At the end of the iterations, the 
estimated covariance matrix is 
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where . Consequently, we 

conclude that, the bias introduced to the estimation by 
tricking the algorithm can be asymptotically diminished 
(as 

∑ =
=

M
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 In practice, we actually do not want to solve for an 
eigendecomposition problem at all. Therefore, one 
could simply initialize the estimated eigenvector to 
identity (Q0=I) and the eigenvalues to the sample 
variances of each input entry over N0 samples 
(Λ0=diag ). We then start the iterations over the 
samples k=1,…,N and set the memory depth parameter 
to λ

0NR

k=1/(k-1+γ). Effectively this corresponds to the 
following biased (but asymptotically unbiased as 

∞→N ) covariance estimate: 
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This latter initialization strategy is utilized in all the 
computer experiments that are presented in the 
following sections.2 
 In the case of a forgetting covariance estimator (i.e., 
λk=λ ), the initialization bias is not a problem, since its 
effect will diminish in accordance with the forgetting 
time constant any way. Therefore, in the non-stationary 
case, once again, we suggest using the latter 
initialization strategy: Q0=I and Λ0=diag R . In this 
case, in order to guarantee the accuracy of the first order 
perturbation approximation, we need to choose the 
forgetting factor λ such that the ratio (1-λ

0N

 )/λ is large. 
Typically, a forgetting factor λ <10-2 will yield accurate 
results, although if necessary values up to λ = 10-1 could 
be utilized. 
 
3.3. Extension to Complex-Valued PCA 
 The extension of RPCA to complex-valued signals 
is trivial. Basically, all matrix transpose operations need 
to be replaced by Hermitian (conjugate-transpose) 
operators. Below, we briefly discuss the derivation of 
the complex-valued RPCA algorithm following the 
steps of the real-valued version. 

                                                 
2 A further modification that might be installed is to use a 
time-varying γ value. In the experiments, we used an 
exponentially decaying profile for γ , γ=γ0exp(-k/τ). This 
forces the covariance estimation bias to diminish even faster. 



Table 1. The Recursive PCA Algorithm Outline 
1. Initialize Q0 and Λ0. 
2. At each time instant k do the following: 

a. Get input sample xk. 
b. Set memory depth parameter λk. 
c. Calculate α . k

T
kk xQ 1−=

d. Find perturbations PV and PΛ corresponding to
  T

kkkkk ααΛ λλ +− −1)1(
e. Update eigenvector and eigenvalue matrices: 
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f. Normalize the norms of eigenvector estimates
by kkk TQQ ~

= , where Tk is a diagonal matrix
containing the inverses of the norms of each
column of Q . k

~

g. Correct eigenvalue estimates by 2~ −= kkk TΛΛ
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where  is a diagonal matrix containing the
squared norms of the columns of . 
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Figure 1. Distribution of eigenspread values for AAT, where
A3x3 is generated to have Gaussian distributed random entries.
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Figure 2. The convergence time histograms for RPCA in the
3-dimensional case for three different target accuracy levels. 

 The sample covariance estimate for zero-mean 
complex data is given by 
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where the eigendecomposition is . 
Note that the eigenvalues are still real-valued in this 
case, but the eigenvectors are complex vectors. Defining 

 and following the same steps as in (4) to 

(8), we determine that . Therefore, as 
opposed to the expressions derived in section 3.1, here 
the complex conjugation * and magnitude |.| operations 
are utilized. The i
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iα  and the (i,j)th entry of PV is 
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algorithm in Table 1 is utilized as it is except for the 
modifications mentioned in this section. 
 
4. NUMERICAL EXPERIMENTS 
 The PCA problem is extensively studied in the 
literature and there exist an excessive variety of 
algorithms to solve this problem. Therefore, an 
exhaustive comparison of the proposed method with 
existing algorithms is not practical. Instead, a 
comparison with a structurally similar algorithm (which 
is also based on first order matrix perturbations) will be 
presented [15]. We will also comment on the 
performances of traditional benchmark algorithms like 

Sanger’s rule and APEX in similar setups, although no 
explicit detailed numerical results will be provided. 
 
4.1. Convergence Speed Analysis 
 In the first experimental setup, the goal is to 
investigate the convergence speed and accuracy of the 
RPCA algorithm. For this, n-dimensional random 
vectors are drawn from a normal distribution with an 
arbitrary covariance matrix. In particular, the theoretical 
covariance matrix of the data is given by AAT, where A 
is an nxn real-valued matrix whose entries are drawn 
from a zero-mean unit-variance Gaussian distribution. 
This process results in a wide range of eigenspreads (as 
shown in Fig. 1), therefore the convergence results 
shown here encompass such effects.  
 Specifically, the results of the 3-dimensional case 
study are presented here, where the data is generated by 
3-dimensional normal distributions with randomly 
selected covariance matrices. A total of 1000 
simulations (Monte Carlo runs) are carried out for each 
of the three target eigenvector estimation accuracies 



(measured in terms of degrees between the estimated 
and actual eigenvectors): 10o, 5o, and 2o. The 
convergence time is measured in terms of number of 
iterations it takes the algorithm to converge to the target 
eigenvector accuracy in all eigenvectors (not just the 
principal component). The histograms of convergence 
times (up to 10000 samples) for these three target 
accuracies are shown in Fig. 2, where everything above 
10000 is also lumped into the last bin. In these Monte 
Carlo runs, the initial eigenvector estimates were set to 
the identity matrix and the randomly selected data 
covariance matrices were forced to have eigenvectors 
such that all the initial eigenvector estimation errors 
were at least 25o. The initial γ value was set to 400 and 
the decay time constant was selected to be 50 samples. 
Values in this range were found to work best in terms of 
final accuracy and convergence speed in extensive 
Monte Carlo runs. 
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Figure 3. The average eigenvector direction estimation errors
versus iterations are shown for the first order perturbation
method (thin dotted lines) and for RPCA (thick solid lines). 
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Figure 4. The average eigenvector direction estimation errors
versus iterations for the first order perturbation method (thin
dotted lines) and for RPCA (thick solid lines) in a
piecewise stationary situation are shown. The eigenstructure
of the input abruptly changes every 5000 samples. 

 It is expected that there are some cases, especially 
those with high eigenspreads, which require a very large 
number of samples to achieve very accurate eigenvector 
estimations, especially for the minor components. The 
number of iterations required for convergence to a 
certain accuracy level is also expected to increase with 
the dimensionality of the problem. For example, in the 3 
dimensional case, about 2% of the simulations failed to 
converge within 10o in 10000 on-line iterations, whereas 
this ratio is about 17% for 5 dimensions. The failure to 
converge within the given number of iterations is 
observed for eigenspreads over 5x104. 
 In a similar setup, Sanger’s rule achieves a mean 
convergence speed of 8400 iterations with a standard 
deviation of 2600 iterations. This results in an average 
eigenvector direction error of about 9o with a standard 
deviation of 8o. APEX on the other hand converges 
rarely to within 10o. Its average eigenvector direction 
error is about 30o with a standard deviation of 15o. 
 
4.2. Comparison with First Order Perturbation PCA 
 The first order perturbation PCA algorithm [15] is 
structurally similar to the RPCA algorithm presented 
here. The main difference is the nature of the perturbed 
matrix: the former works on a perturbation 
approximation for the complete covariance matrix, 
whereas the latter considers the perturbation of a 
diagonal matrix. We expect this structural restriction to 
improve performance in terms of overall algorithm 
performance. To test this hypothesis, an experimental 
setup similar to the one in section 4.1 is utilized. This 
time, however, the data is generated by a colored time-
series using a time-delay line (making the procedure a 
temporal PCA case study). Gaussian white noise is 
colored using a two-pole filter whose poles are selected 
from a random uniform distribution on the interval 
(0,1). A set of 15 Monte Carlo simulations was run on 3 
dimensional data generated according to this procedure. 

The two parameters of the first order perturbation 
method were set to ε=10-3/6.5 and δ=10-2. The 
parameters of RPCA were set to γ0=300 and τ=100. The 
average eigenvector direction estimation convergence 
curves are shown in Fig. 3.  
 Often, signal subspace tracking is necessary in 
signal processing applications dealing with 
nonstationary signals. To illustrate the performance of 
RPCA for such cases, a piecewise stationary colored 
noise sequence is generated by filtering white Gaussian 
noise with single-pole filters with the following poles: 
0.5, 0.7, 0.3, 0.9 (in order of appearance). The forgetting 
factor is set to a constant λ=10-3. The two parameters of 
the first order perturbation method were again set to 
ε=10-3/6.5 and δ=10-2. The results of 30 Monte Carlo 
runs were averaged to obtain Fig. 4. 
 



4.3. Direction of Arrival Estimation 
 The use of subspace methods for direction of 
arrival estimation in sensor arrays has been extensively 
studied (see [14] and the references therein). In Fig. 5, a 
sample run from a computer simulation of DOA 
according to the experimental setup described in [14] is 
presented to illustrate the performance of the complex-
valued RPCA algorithm. To provide a benchmark (and 
an upper limit in convergence speed, we also performed 
this simulation using Matlab’s eig function several 
times on the sample covariance estimate. The latter 
typically converged to the final accuracy demonstrated 
here within 10-20 samples. The RPCA estimates on the 
other hand take a few hundred samples due to the 
transient in the γ value. The main difference in the 
application of RPCA is that typical DOA algorithm will 
convert the complex PCA problem into a structured 
PCA problem with double the number of dimensions, 
whereas the RPCA algorithm works directly with the 
complex-valued input vectors to solve the original 
complex PCA problem. 
 
4.4. An Example with 20 Dimensions 
 The numerical examples considered in the previous 
examples were 3-dimensional and 12-dimensional (6 
dimensions in complex variables). The latter did not 
require all the eigenvectors to converge since only the 
6-dimensional signal subspace was necessary to 
estimate the source directions; hence the problem was 
actually easier than 12 dimensions. To demonstrate the 
applicability to higher dimensional situations, an 
example with 20 dimensions is presented here. The 
PCA algorithms generally cannot cope well with higher 
dimensional problems because the interplay between 
two competing structural properties of the eigenspace 
becomes increasingly difficult to make a compromise 
from one or the other. Specifically, these two 
characteristics are the eigenspread (maxλi/minλi) and 
the distribution of ratios of consecutive eigenvalues  
(λn/λn-1,…,λ2/λ1) when they are ordered from largest to 
smallest (where λn>…>λ1 are the ordered eigenvalues). 
Large eigenspreads lead to slow convergence due to the 
scarcity of samples representing the minor components. 
In small dimensional problems, this is typically the 
dominant issue that controls the convergence speeds of 
PCA algorithms. On the other hand, as the 
dimensionality increases, while very large eigenspreads 
are still undesirable due to the same reason, smaller and 
previously acceptable eigenspread values too become 
undesirable because consecutive eigenvalues approach 
each other. This causes the discriminability of the 
eigenvectors corresponding to these eigenvalues 
diminish as their ratio approaches unity. Therefore, the 
trade-off between small and large eigenspreads becomes 
significantly difficult. Ideally, the ratios between 
consecutive eigenvalues must be identical for equal 

discriminability of all subspace components. Variations 
from this uniformity will result in faster convergence in 
some eigenvectors, while others will suffer from almost 
spherical subspaces indiscriminability. 
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Figure 5. Direction of arrival estimation using complex-valued
RPCA in a 3-source 6-sensor case. 
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Figure 6. The angle error between the estimated eigenvectors
(using RPCA) and their corresponding true eigenvectors in a
20 dimensional PCA problem is shown versus on-line
iterations. 

 In Fig. 6, the convergence of the 20 estimated 
eigenvectors to their corresponding true values is 
illustrated in terms of the angle between them (in 
degrees) versus the number of on-line iterations. The 
data is generated by a 20-dimensional jointly Gaussian 
distribution with zero-mean, and a covariance matrix 
with eigenvalues equal to the powers (from 0 to 19) of 
1.5 and eigenvectors selected randomly.3 This result is 
typical of higher dimensional cases where major 
components converge relatively fast and minor 
components take much longer (in terms of samples and 
iterations) to reach the same level of accuracy. 
 

                                                 
3 This corresponds to an eigenspread of 1.519 ≈ 2217. 



5. CONCLUSIONS 
 In this paper, a novel approximate fixed-point 
algorithm for subspace tracking is presented. The fast 
tracking capability is enabled by the recursive nature of 
the complete eigenvector matrix updates. The proposed 
algorithm is feasible for real-time implementation since 
the recursions are based on well-structured matrix 
multiplications that are the consequences of the rank-
one perturbation updates exploited in the derivation of 
the algorithm. Performance comparisons with traditional 
algorithms, as well as a structurally similar perturbation-
based approach demonstrated the advantages of the 
recursive PCA algorithm in terms of convergence speed 
and accuracy. 
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