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Abstract 

Minimum output mutual information is regarded as a natural criterion for 

independent component analysis (ICA) and is used as the performance measure in 

many ICA algorithms. Two common approaches in information theoretic ICA 

algorithms are minimum mutual information and maximum output entropy 

approaches. In the former approach, we substitute some form of probability 

density function (pdf) estimate into the mutual information expression, and in the 

latter we incorporate the source pdf assumption in the algorithm through the use of 

nonlinearities matched to the corresponding cumulative density functions (cdf). 

Alternative solutions to ICA utilize higher order cumulant-based optimization 

criteria, which are related to either one of these approaches through truncated 

series approximations for densities. In this paper, we propose a new ICA algorithm 

motivated by the Maximum Entropy Principle (for estimating signal distributions). 

The optimality criterion is the minimum output mutual information, where the 

estimated pdfs are from the exponential family, and are approximate solutions to a 



constrained entropy maximization problem. This approach yields an upper bound 

for the actual mutual information of the output signals, hence the name Minimax 

Mutual Information ICA algorithm. In addition, we demonstrate that for a specific 

selection of the constraint functions in the maximum entropy density estimation 

procedure, the algorithm relates strongly to ICA methods using higher order 

cumulants. 

 

Keywords: Independent components analysis, maximum entropy principle, 

minimum mutual information. 

 

1. Introduction 

Independent component analysis (ICA) deals with the problem of finding a set 

of directions such that when the input random vector x is projected on these 

directions, the projected random variables are as independent as possible. As a 

natural measure of independence between random variables, mutual information is 

commonly used in this framework. Shannon’s definition of mutual information 

between n random variables Y1,…,Yn, whose joint pdf is fY(y) and marginal pdfs 

are f1(y1),…, fn(yn), respectively, is given by (Cover and Thomas, 1991) 
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where the vector y is composed of the entries , oy no ,...,1= . The mutual 

information is related to the marginal entropies and the joint entropy of these 

random variables through (Cover and Thomas, 1991) 
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where the marginal and joint entropies are defined as (Cover and Thomas, 1991) 
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 Minimization of output mutual information is “the canonical contrast for 

source separation” as Cardoso states (Cardoso and Souloumiac, 1993). Many 

researchers agree with this comment (Yang and Amari, 1997; Hyvarinen, 1999a; 

Almeida, 2000). However, three of the most well known methods for ICA, namely 

JADE (Cardoso and Souloumniac, 1993), Infomax (Bell and Sejnowski, 1995), 

and FastICA (Hyvarinen, 1999b), use the diagonalization of cumulant matrices, 

maximization of output entropy, and fourth order-cumulants, respectively. The 

difficulty encountered in information theoretic measures is the estimation of the 

underlying density of the output signals (or, in the case of Infomax, an accurate 

guess of the independent source densities). Algorithms that do not utilize robust 

estimations for the probability density functions (pdf) suffer from sensitivity to 

samples. 

 One commonly taken approach in designing information theoretic ICA 

algorithms is the use of some form of polynomial expansion to approximate the 

pdf of the signals. Some of the commonly used polynomial expansions include 

Gram-Charlier, Edgeworth, and Legendre, where the pdf estimation is performed 

by taking a truncated polynomial estimate of the signal pdfs evaluated in the 



vicinity of a maximum entropy density (Comon, 1994; Amari et al., 1996; 

Hyvarinen, 1998; Hyvarinen, 1999a; Erdogmus et al., 2001). Even the higher-

order cumulant-based contrasts can be understood in this framework (Cardoso, 

1999). Since the truncation of these infinite polynomials is necessary to keep 

computational requirements at a minimum, errors are naturally generated in these 

approaches. Another density estimation method used in the Minimum Mutual 

Information (MMI) context is Parzen windowing. Hild et al. combine the Parzen 

window pdf estimation method (Parzen, 1962) with Renyi’s mutual information 

(Renyi, 1970) to derive the Mermaid algorithm, which uses the same topology 

proposed by Comon (Comon, 1994; Hild et al., 2001). Alternative algorithms 

using Parzen windowing include the quadratic information divergence approach 

(Xu et al., 1998) and Pham’s sum-of-marginal-Shannon’s-entropy approach 

(Pham, 1996). In addition, the use of orthonormal basis functions in pdf estimation 

could be pursued for ICA (Girolami, 2002). However, such pdf estimates might 

become invalid when truncated (i.e., have negative values and do not integrate to 

one).   

 Alternative techniques that do not use minimization of mutual information 

include second-order methods that achieve source separation through decorrelation 

of the outputs (Weinstein et al., 1993; Wu and Principe, 1997; Parra and Spence, 

2000; Pham, 2001), nonlinear principal component analysis (NPCA) approaches 

(Oja, 1999), maximization of higher auto-statistics (Simon et al., 1998), 

cancellation of higher-order cross statistics (Comon, 1996; Cardoso, 1998; 

Hyvarinen, 1999a; Sun and Douglas, 2001), non-Gaussianity measures like the 



negentropy (Girolami, and Fyfe, 1997; Torkkola, 1999; Wu and Principe, 1999a), 

maximum likelihood techniques, which are parametric by definition, (Girolami, 

1997; Wu and Principe, 1999b; Karvanen et al., 2000), and finally maximum 

entropy methods (Amari, 1997; Torkkola, 1996; Principe and Xu, 1999). 

 In this paper, we will take the minimum output mutual information approach 

in order to come up with an efficient and robust ICA algorithm that is based on a 

density estimate stemming from Jaynes’ maximum entropy principle. The 

commonly used whitening-rotation scheme, which is also described by Comon 

(Comon, 1994), will be assumed, where the orthonormal portion of the separation 

matrix (the rotation stage) will be parameterized using Givens angles (Golub and 

van Loan, 1993). In this framework, approximations to the maximum entropy pdf 

estimates that are “consistent to the largest extent with the available data and least 

committed with respect to unseen data” (Jaynes, 1957) will be used. Upon 

investigation, under the specific choice of polynomial moments as the constraint 

functions in the maximum entropy principle, the resulting criterion and the 

associated algorithm are found to be related to the kurtosis and other higher-order 

cumulant methods. 

 

2. The Topology and the Cost Function 

 Suppose that the random vector z is generated by a linear mixture of the form 

z=Hs, where the components of s are independent. Assume that the mixture is 

square with size n and that the source vector s is zero-mean and has a covariance 

matrix of identity. In that case, it is well known that the original independent 



sources can be obtained from z through a two-stage process: spatial whitening to 

generate uncorrelated but not necessarily independent mixture x =Wz, and a 

coordinate system rotation in the n dimensional mixture space to determine the 

independent components, y=Rx (Comon, 1994; Cardoso, 1999; Hild et al., 2001). 

The whitening matrix W is determined solely by the second order statistics of the 

mixture. Specifically, W=Λ-1/2 ΦT, where Λ is the diagonal eigenvalue matrix and 

Φ is the corresponding orthonormal eigenvector matrix of the mixture covariance 

matrix Σ=E[z zT], assuming that the observations are zero mean. The rotation 

matrix R, which is restricted to be orthonormal by definition, is optimized through 

the minimization of the mutual information between the output signals (Comon, 

1994; Hild et al., 2001). Considering (2), and the fact that the joint entropy is 

invariant under rotations; mutual information simplifies to the sum of marginal 

output entropies for this topology. 
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In (5), the vector Θ  contains the Givens angles, which are used to 

parameterize the rotation matrix (Golub and van Loan, 1993). According to this, 

an n-dimensional rotation matrix is parameterized by n(n-1)/2 parameters, ijθ , 

where i=1,…,n-1 and j=i+1,…,n. The rotation matrix R  is constructed by 

starting with an nxn identity matrix and replacing the entries (i,i)

)( ij
ij θ

th, (i,j)th, (j,i)th, 

and (j,j)th with cos ijθ , -sin ijθ , sin ijθ , and cos ijθ , respectively. The total rotation 

matrix is then found as the product of these 2-dimensional rotations:  
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 The described whitening-rotation scheme using the Givens angle 

parameterization of the rotation matrix has been utilized in ICA algorithms by 

many researchers and efficient ways of handling the optimization of these 

parameters have been studied before. Especially, the Jacobi iteration approach for 

sweeping the Givens angles, thus splitting the high-dimensional optimization 

problem into a sequence of 1-dimensional problems, has found great interest 

(Comon, 1994).  

 

3. The Maximum Entropy Principe 

 Jaynes’ maximum entropy principle states that in order to determine the pdf 

estimate that best fits the known data without committing extensively to unseen 

data, one must maximize the entropy of the estimated distribution under some 

constraints. The reason for this is that the entropy of a pdf is related with the 

uncertainty of the associated random variable. In addition, the optimality 

properties of density estimates obtained using generalized maximum entropy 

principles has been discussed previously (Shore and Johnson, 1980; Kapur and 

Kesavan, 1992). The constrained entropy maximization problem is defined as 

follows: 
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It can be shown using calculus of variations that the solution to this problem is 

given by (Cover and Thomas, 1991) 
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where  is the Lagrange multiplier vector and C  is the 

normalization constant. The constants α

T
m ][ 1 λλ K=λ )(λ

k are pre-specified or in the case of 

adaptive ICA, determined from the data. The Lagrange multipliers need to be 

solved simultaneously from the constraints. This, however, is not an easy task in 

the case of continuous random variables. Analytical results do not exist and 

numerical techniques are not practical for arbitrary constraint functions due to the 

infinite range of the definite integrals involved. In order to get around these 

problems, we will take a different approach. Consider now, for example, the ith 

constraint equation. 
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Applying the integrating by parts method with the following definitions 
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where  is the derivative of the constraint function, we obtain )(xf k′
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 If the functions  are selected such that their integrals  do not 

diverge faster than the decay rate of the exponential pdf 

)(xfi )(xFi

)(xp X , then the first term 

on the right hand side of (11) goes to zero. For example, if the constraint functions 

were selected as the moments of the random variable, this condition would be 

satisfied, since  will become a polynomial and )(xFi )(xp X  decays exponentially. 

This yields 
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 Note that the coefficients ikβ  can be estimated using the samples of X by 

approximating the expectation operators by sample means.1 Finally, introducing 

the vector  and the matrix T
m][ 1 αα K=α ][ ikβ=β , the Lagrange 

multipliers are given by the following solution of the linear system of equations 

shown in (12). 

  (13) αβλ 1−−=

                                                 
1 The expectation is over the maximum entropy distribution, but using the sample 

mean will approximate these values by equivalently taking the expectation over 

the actual data distribution. This estimation will become more accurate as the 

actual density of the samples approaches the corresponding maximum entropy 

distribution. However, the irrelevance of the accuracy of this approximation for 

the operation of the algorithm will become clear with the following discussion. 



 The approach presented above provides us a computationally simple way of 

finding the coefficients of the estimated pdf of the data directly from the samples, 

once α and β are estimated using sample means. Besides being an elegant 

approach to find the Lagrange multipliers of the constrained entropy maximization 

problem using only a linear system of equations, the proposed approach has an 

additional advantage. Since in the evaluation of β the sample mean estimates are 

utilized, the pdf obtained with the corresponding Lagrange multiplier values will 

satisfy additional consistency conditions with the samples besides the normally 

imposed constraints in the problem definition. These extra conditions satisfied by 

the determined pdf will be of the form 

 for i=1,…,m and k=1,…,m. In order 

to understand this effect better, consider the choice  for the constraint 

functions. In that case, 
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. Consequently, the first 2m moments of the pdf estimate given by 

(8) are consistent with those of the samples. However, it should be noted that the 

pdf possesses the maximum entropy among all pdfs that have the same first m 

moments.    
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4. Gradient Update for the Givens Angles 

 In order to find the optimal ICA solution according to criterion (5), using the 

entropy estimate described in the previous section, a gradient descent update rule 



for the Givens angles can be employed. The derivative of  with respect to )( oYH

pqθ  is given in (14) (derivation in Appendix A). 
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 Here, oλ  is the parameter vector for the pdf of the oth output signal and  is 

the value of the k

o
kα

th constraint for the pdf of the oth output. The former is found by 

solving the linear equations in (13), and the latter is easily determined from the 

corresponding output samples using 
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where  is the jjoy ,
th sample at the oth output for the current angles. Finally, the 

derivative of (15) with respect to the angle pqθ  is given by 
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where the subscript in  and :oR ( )
:opqθ∂∂R  mean the oth row of the 

corresponding matrix. The derivative of the rotation matrix with respect to pqθ  is 

also calculated from 
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The over all update rule for the Givens angles is the sum of contributions from 

each output. 
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where η is a small step size. The computational complexity could be reduced by 

alternatively following the Jacobi iteration approach (Golub and van Loan, 1993; 

Comon, 1994; Cardoso, 1994). 

 

5. Discussion on the Algorithm 

 In the previous sections, we have described an ICA algorithm where the 

selected exponential density estimate for the outputs is motivated by Jaynes’ 

maximum entropy principle. Due to existing difficulties in solving for the 

Lagrange multipliers analytically, we proposed an approximate numerical 

solution, which replaces the expectation operator over the maximum entropy 

distribution by a sample mean over the data distribution. This approximation 

causes the estimated cost function and the gradient update to deviate from theory. 

In this section, we will show that this deviation is not critical to the operation of 

the proposed algorithm. In addition, we will provide an argument on how to 

choose the constraint functions fk(.) in the formulation, as well as demonstrating 

how the criterion reduces to one based simply on higher order moments/cumulants 

for a specific choice of constraint functions. 

 Consider the gradient update given in (14) in vector form 

, and recall from (13) that . ( ) ( pq
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Thus, the gradient contribution from the oth output channel is 
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proposed algorithm is understood to be essentially minimizing the following cost 

function. 
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 Our brief investigation on the effect of the selected constraint functions on the 

separation performance of the algorithm revealed that the simple moments of the 

form  yield significantly better solutions.2 Therefore, this choice of 

constraints becomes particularly interesting for further analysis. One motivation 

for using these constraint functions is the asymptotic properties of the exponential 

2 We have performed Monte Carlo comparisons using the following heuristically 

selected alternative constraint functions: fk(x)=arctan(kx), fk(x)=|x|1/k, fk(x)=tan(kx), 

and fk(x)=e-k|x|. The cost functions associated with these alternatives exhibited 

numerous local minima, which hindered the performance of the gradient descent 

algorithm greatly. The performance surface corresponding to the moment 

constraints was found to be much smoother.   



density estimates of the form ( )∑ =+= m
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infinite support distributions that could be approximated by the following Taylor 

series expansion: ( ) ( )∑∞
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that if the Taylor series expansion exists and the infinite summation of q(x) 

converges uniformly, then the exponential density of order m converges uniformly 

as the order m→∞ (Barndorff-Nielsen, 1978; Crain, 1974). In addition, since the 

family of exponential distributions form a linear manifold with orthogonality 

properties in the space of natural parameters, the maximum entropy distribution is 

the orthogonal projection of the ∞-dimensional density to the m-dimensional linear 

manifold (Amari, 1985; Crain, 1974). 

 Besides the desirable asymptotic convergence properties of the exponential 

family of density estimates, the selection of moments as constraint functions result 

in gradient updates that are simply gradients of higher order-moments with respect 

to the Givens angles. Specifically, for this selection of constraints the gradient for 

the cost function in (19) becomes 
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 Consider the simple case, where m=4, constraint functions are the moments, 

and the source distributions (and the particular samples in the finite-sample case) 

are symmetric3. In this case, the odd moments vanish, and also due to the 

whitening, the second order moments are fixed to unity. Thus the gradient in (20) 

becomes 
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 The directional contribution from each output to the gradient is along the 

gradient of the kurtosis of that output. The sign and the magnitude are controlled 

                                                 
3 In the finite case, the odd-sample-moments need not become zero. If we extend 

the observation sample set by including –x samples (so that the total set consists of 

{xk,–xk} k=1,…,N), the odd-sample-moments of the extended data set becomes 

zero. This corresponds to modifying the source distributions to become symmetric, 

yet all the measurements are mixtures of the new symmetric sources through the 

same mixing matrix H.  
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ooooo ααααα −− 4 In order to demonstrate how the 

sign of this term detects sub- or super-Gaussianity to adjust the update direction 

accordingly, we present an evaluation of this quantity for the generalized Gaussian 

family in Fig. 1 (sample approximations with 30000 samples are utilized for each 

distribution). Since the cost function in (19) is minimized, negative-gradient 

direction is used so the updates using the gradient in (21) try to minimize the 

kurtosis for sub-Gaussian signals and maximize kurtosis for super-Gaussian 

signals (as expected). In general, the overall gradient includes the terms up to 

,pq
o
m θα ∂∂ therefore the update direction is not only determined by the gradients 

of the output kurtosis, but also the gradients of higher order moments. 

                                                 
4 Notice that the constants 3 and 5 in this expression correspond to the fourth and 

sixth order moments of a zero-mean unit-variance Gaussian distribution. 

Consequently, if the output distribution approaches a unit-variance Gaussian, the 

numerator approaches zero. 
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Figure 1. The coefficient evaluated for the

generalized Gaussian family for a range of the parameter. The generalize
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d

Gaussian family includes Laplacian (β=1), Gaussian (β=2), and Uniform

(β→∞) as special cases. 

 According to the analysis above, for the choice of moment constraints, 

Minimax ICA becomes an auto-cumulant method (identical to Fast ICA, in 

principle, when moments up to order 4 are considered). Other cumulant methods, 

for instance JADE (Cardoso, 1999), consider cross-cumulants of the outputs. If, at 

the density estimation stage we employ the maximum entropy principle to obtain 

an estimate of the joint output distribution, which can then be utilized to find the 

marginal output distributions, the resulting algorithm would also involve updates 

based on the cross-moments/cumulants of the outputs. This extension to cross-

cumulants will be demonstrated and studied in a future paper. 
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Figure 2. Average performance of the Minimax ICA algorithm using the

sample moments as constraints evaluated for combinations of sample size and

number of constraints. 

6. Numerical Results 

 In this section, we will investigate the performance of the proposed Minimax 

ICA algorithm. Comparisons with other benchmark ICA algorithms will be 

provided. The performance measure that will be used throughout this section is the 

commonly used average signal-to-interference ratio (SIR) 
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where O is the overall matrix after separation, i.e. O=RWH (Hild et al., 2001).5 In 

each row, the source corresponding to the maximum entry is assumed to be the 

                                                 
5 The subscript ‘o:’ means the oth row and ‘ok’ indicates the corresponding entry. 



main signal at that output. The averaging is done over the dB values of each row to 

eliminate the possibility of one very good row becoming dominant in the SIR 

calculation. Although for arbitrarily selected O matrices, the above SIR measure 

could have some problems (e.g., if two rows of O are identical with one dominant 

entry, SIR would be large, but source separation would not have been achieved, 

since two outputs would yield the same source signal), such occurrences are 

prevented by the selected topology, i.e. the whitening-rotation scheme. As long as 

the mixing matrix is invertible and all sources have non-zero power, the overall 

matrix will be full rank and this problem is avoided. 

 Our first case study investigates the effect of sample size and the number of 

constraints on the performance of the Minimax ICA algorithm. In this experiment, 

we use a 2x2 mixture, where the sources are zero-mean, independent Gaussian and 

uniformly distributed random variables. For each combination of sample size and 

number of constraints (m,N) selected from the sets {4,5,6,7,8} and 

{100,200,500,750,1000} respectively, we performed 100 Monte Carlo 

simulations. In each run, a mixing matrix H is selected randomly (each entry 

uniform in [-1,1]) and new independent and identically distributed (iid) samples 

are generated. The constraint functions are selected as the moments. The average 

SIR levels obtained for each combination are shown in Fig. 2. As expected, 

regardless of the number of constraints, increasing the number of training samples 

increases performance. In addition, the worst performance is obtained for the 

combination m=8 N=100. This is also expected since the estimation of higher 

order moments require a larger sample set for robust estimation. As a consequence 
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Figure 3. Average SIR (dB) obtained by Minimax ICA (dot), JADE (diamond),

Comon MMI (circle), Fast ICA (cross), and Mermaid (square) versus the

number of training samples. 

the performance of the Minimax ICA algorithm suffers from sensitivity to 

samples. However, we note that the performance increases as the number of 

constraints (the order of moments) is increased (under the condition that the 

number of samples is sufficient to accurately estimate these higher order 

statistics). In conclusion, if the training set is small one must use a small number 

of constraints (lower order moments), and if the training set is large, one can 

increase the number of constraints (the order of moments) without compromising 

robustness. 

 In the second case study, we will conduct Monte Carlo simulations to compare 

the performance of five algorithms based on the minimum output mutual 

information contrast: Minimax ICA (with 4 moment constraints), JADE (Cardoso, 

1999), Comon’s minimum mutual information algorithm (MMI) (Comon, 1994), 



Fast ICA (Hyvarinen, 1999b), minimum Renyi’s mutual information algorithm – 

Mermaid (Hild et al., 2001). Although we initially aimed to include Yang and 

Amari’s minimum mutual information method (Yang and Amari, 1997), the 

preliminary results obtained with it were not competitive with the five methods 

listed. Among the considered five approaches, Mermaid was the computationally 

most expensive one, whose requirements increase as O(N 
2) with the number of 

samples (Hild et al., 2001) followed by Minimax ICA, whose complexity 

increases as O(Nm) with the number of samples (N) and the number of moment 

constraints (m). 

 In each run, N samples of a source vector composed of one Gaussian, one 

Laplacian (super-Gaussian), and one uniformly (sub-Gaussian) distributed entry 

were generated. A 3x3 random mixing matrix, whose entries are selected from the 

interval [-1,1], is also fixed. The mixed signals are then fed into the four 

algorithms. Evaluation of the overall performance is done by considering the 

average final SIR value obtained by each algorithm after convergence is achieved. 

The averaging is done over 100 runs and the results are summarized in Fig. 3. 

According to these batch-adaptation results, Minimax ICA and JADE perform 

identically for very small number of samples, outperforming the other three 

methods. However, as the number of samples increase, Minimax ICA takes more 

advantage of this and yields better separation solutions. The example presented 

here is a particularly difficult case since all three types of distributions (Gaussian, 

super-Gaussian, and sub-Gaussian) are represented in the sources. Experiments 

(not shown here) performed with all-same-type source distributions (with not more 



than one Gaussian source) showed that the performance of all algorithms increase 

significantly and the difference between performance becomes much less, 

especially for small training sets.  

 

7. Conclusions 

 Jaynes’ maximum entropy principle has found successful applications in many 

areas, starting with statistical physics and including the problem of spectral 

estimation. It basically states that one should use the probabilistic model that best 

describes the observed data, yet commits minimally to any possible unseen data. 

In order to achieve this, the density estimates are obtained through a constrained 

entropy maximization procedure. The constraints assure that the final density is 

consistent with the current data. On the other hand, entropy maximization 

guarantees the selection of the model with maximum uncertainty, in other words, 

the model that is least committed to unseen data. In this paper, we proposed a 

novel ICA algorithm that is based on Jaynes’ maximum entropy principle in the 

pdf estimation step. The commonly used whitening-rotation topology is borrowed 

from the literature, whereas the criterion used, minimum output mutual 

information, is considered to be the natural information theoretic measure for ICA. 

We have shown that the Lagrange multipliers of the maximum entropy pdf can be 

easily estimated from the samples by solving a system of linear equations. In 

addition, the gradient of the output mutual information with respect to the rotation 

angles, which characterize the rotation matrix, turned out to have a simple 

expression in terms of these Lagrange multipliers. 



 Numerical case studies have shown that the sample moments form a useful set 

of constraint functions that result in a smooth cost function, free of local minima, 

and with accurate solutions. Although the specific alternative nonlinear constraint 

functions investigated in this paper resulted in surfaces with many local minima, 

for some applications the designer might have a priori knowledge about the form 

of the constraints that the data might satisfy. The selection of these functions 

provides some freedom to the designer in that respect. 

 Comparisons with benchmark algorithms like Comon’s MMI, Fast ICA, and 

Jade in problems involving mixed-kurtosis sources (Gaussian, sub-Gaussian, and 

super-Gaussian) showed that the average performance of Minimax ICA equal to 

that of JADE for small sample sets and gets better with increasing number of 

samples. In simulations not reported in this paper, the authors have observed that 

in cases where all sources are uniformly distributed (or have densities with light 

tails), Fast ICA provides very good results that compete with Minimax ICA. On 

the other hand, since Minimax ICA specifically looks for the maximum entropy 

density estimates, in some extreme situations, the performance could degrade, 

especially if the actual densities do not belong to the exponential family arising 

from the maximum entropy assumption. Future investigation will focus on 

extensions of the Minimax ICA algorithm to cross-cumulants by incorporating the 

joint moments of the outputs into the estimation. In addition, we will determine 

the effect of using series expansions other than Taylor’s (which leads to the 

moment constraints). This will allow the algorithm to extend beyond the 

exponential family of sources and the cumulant-based weight updates. 
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Appendix A 

In this appendix, we present the step-by-step derivation of the derivative of output 

marginal entropy with respect to one of the Givens angles. 
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