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Abstract

This paper proposes a divide-and-conquer strategy for designing brain machine interfaces. A nonlinear combination of competitively

trained local linear models (experts) is used to identify the mapping from neuronal activity in cortical areas associated with arm movement to

the hand position of a primate. The proposed architecture and the training algorithm are described in detail and numerical performance

comparisons with alternative linear and nonlinear modeling approaches, including time-delay neural networks and recursive multilayer

perceptrons, are presented. This new strategy allows training the local linear models using normalized LMS and using a relatively smaller

nonlinear network to efficiently combine the predictions of the linear experts. This leads to savings in computational requirements, while the

performance is still similar to a large fully nonlinear network.
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1. Introduction

Brain machine interfaces (BMI) are a developing

technology that aims to directly transfer the subject’s intent

of movement to a machine. Our goal is to engineer devices

that are able to interpret neural activity originating in the

motor, premotor, and posterior parietal cortices and

generate accurate predictions of hand position. We envision

the application of these devices in BMI, where movement

can be restored in individuals suffering from neurological

disorders.

Recently, a number of groups have demonstrated that

linear and nonlinear adaptive system identification

approaches can lead to BMI that effectively predict the

hand position of primates using only neural signals (Chapin,

Moxon, Markowitz, & Nicolelis, 1999; Moran & Schwartz,

1999; Serruya, Hatsopoulos, Paninski, Fellows, & Dono-

ghue, 2002; Wessberg et al., 2000). The topologies studied

thus far include FIR filters, time-delay neural networks

(TDNN), Kalman filter and extensions, and recursive

multilayer perceptrons (RMLP). In the BMI experimental

paradigm, large arrays of microelectrodes are implanted in

the cortical areas listed above and the corresponding neural

activity is recorded. Spike-detection and sorting algorithms

are used to process these analog potentials to determine the

firing times of single neurons. Typically, the spike-time

information is summarized into bin counts using short

windows (100 ms in this paper). In all previous work, the

approach had been to try to determine a functional/

dynamical mapping between these bin counts and the

hand position. In this paper, we follow the same approach.

An important consideration in designing BMI is the

feasibility of the approach taken. The target applications

necessitate real-time implementations with minimal com-

putational and hardware requirements. On one hand, linear

models are usually the best in terms of their computational

requirements. On the other hand, a simple linear model is

often insufficient to accurately capture the complex input–

output relationships between neural activity and hand

position. Recently, our group has conducted a performance

comparison between linear and nonlinear modeling

approaches, and the latter was found to be favorable

(Sanchez et al., 2002).

In this paper, our aim is to demonstrate that the target

input–output mapping can be discovered using a divide-

and-conquer approach. In this approach, we combine the

simplicity of training linear models with the performance

boost that can be achieved by nonlinear methods.
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Specifically, a two-stage structure is used where the first

stage consists of a bank of competitively trained linear

filters and the second stage consists of a single hidden layer

MLP (see Fig. 1). Performance comparisons with simple

linear, TDNN, and RMLP approaches are provided.

2. The models

In this section, we describe the modeling approaches that

will be considered in the experimental comparisons of

study. The main focus will be on the nonlinear mixture of

competitive linear models (NMCLM). However, a brief

description of the other three topologies will also be

provided for completeness.

2.1. Nonlinear mixture of competitive linear models

The overall architecture is identical to a single nonlinear

layer TDNN. However, the training procedure undertaken

here is significantly different. This modeling method uses

the divide-and-conquer approach. Our reasoning is that, a

complex nonlinear modeling task can be elucidated by

dividing it into simpler linear modeling tasks and combining

them properly (Farmer & Sidorowich, 1987). Previously,

this approach was successfully applied to nonstationary

signal segmentation, assuming that a nonstationary signal is

a combination of piecewise stationary signals (Fancourt &

Principe, 1996). Hypothesizing that the neural activity will

demonstrate varying characteristics for different localities in

the space of the hand trajectories, we expect the multiple

model approach, in which each linear model specializes in a

local region, to provide a better overall input–output

mapping. However, here the problem is different since

the goal is not to segment a signal but to segment the joint

input/desired signal space.

The local linear models can be conceived as a committee

of experts each specializing in one segment of the hand

trajectory space. The MLP is introduced to the system in

order to nonlinearly combine the predictions generated by

all the linear models. For BMI applications, it has the further

advantage that it does not require a selection scheme in

testing, which can only be accurately done using the desired

output. For example, in a prosthetic arm application, the

desired hand position is not available in practice.

The topology allows a two-stage training procedure that

can be performed sequentially in off-line training: first,

competitive learning for the local linear models and then

error backpropagation learning for the MLP. It is important

to note that in this scheme, both the linear models and the

MLP are trained to approximate the same desired response,

which is the hand trajectory of the primate.

The training of the multiple linear models is accom-

plished by competitively (hard or soft) updating their

weights in accordance with previous approaches using the

normalized-least-mean-squares (NLMS) algorithm (Hay-

kin, 1996). The winning model is determined by comparing

the (leaky) integrated squared errors of all competing

models and selecting the model that exhibits the least

integrated error for the corresponding input (Fancourt &

Principe, 1996). In competitive training, the leaky inte-

grated squared error for the ith model is given by

1iðnÞ ¼ ð1 2 mÞ1iðn 2 1Þ þ me2
i ðnÞ; i ¼ 1;…;M ð1Þ

where M is the number of models, and m is the time constant

of the leaky integrator. If hard competition is employed,

then only the weight vector of the winning model is updated.

Specifically, the hard competition update rule for the weight

Fig. 1. An overall architecture of the proposed model. The box illustrates the selection of the winner using integrated squared errors from each linear model.

Outputs from M trained linear models are fed to a MLP, which is trained using the conjugate gradient algorithm. dðnÞ denotes the desired response.
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vector of the winning model is

wwinnerðn þ 1Þ ¼ wwinnerðnÞ þ
hewinnerðnÞxðnÞ

gþ kxðnÞk2
ð2Þ

where wwinner is the weight vector, xðnÞ is the current input,

ewinnerðnÞ is the instantaneous error of the winning model, h

is the learning rate and g is the small positive constant. If

soft competition is used, a Gaussian weighting function

centered at the winning model is applied to all competing

models.

Every model is then updated proportional to the weight

assigned to that model by this Gaussian weighting function

wiðn þ 1Þ ¼ wiðnÞ þ
hðnÞLi;jðnÞeiðnÞxðnÞ

gþ kxðnÞk2
;

i ¼ 1;…;M

ð3Þ

where wi is the weight vector of the ith model, jth model is

the winner, and Li;jðnÞ is the weighting function

Li;jðnÞ ¼ exp 2
d2

i;j

2s2ðnÞ

 !
ð4Þ

where di;j is the Euclidean distance between index i and j;

which is equal to lj 2 il; hðnÞ is the annealed learning rate,

and s2ðnÞ is the kernel width, which decreases exponentially

as n increases. The learning rate also decreases exponen-

tially with time.

Soft competition preserves the topology of the input

space, updating the models neighboring the winner; thus it is

expected to result in smoother transitions between models

specializing in topologically neighboring regions (of the

state space). However, in the experimental results that will

be provided in Section 3, we will utilize the hard

competition rule since comparisons on the data sets utilized

in these experiments did not show any significant difference

in generalization performance (possibly due to the nature of

the data set used in these experiments).

The competitive training of the first layer of linear

models to match the hand trajectory using the neural activity

creates a set of basis signals from which the following single

hidden layer MLP can generate a more accurate overall

prediction than any one of the individual competing linear

models (thus the name nonlinear mixture of competitive

linear models).

2.2. Alternative modeling approaches

The rich variety of alternative modeling approaches for

BMI design is evident from the relevant literature and the

works of independent groups. In this paper, results are

compared with the following three approaches: single

moving average (MA) model, single hidden layer TDNN,

single recursive hidden layer RMLP. Below, a brief

description of each topology is provided for the sake of

completeness.

Single moving average model. This approach tries to

model the mapping from neural activity to hand position

using a linear combiner, which is structurally equivalent to

each one of the multiple local linear models used in the

competitive framework of Section 2.1. It creates a

prediction of the hand position by a product of its weight

matrix W and its input vector xðnÞ at time n; i.e. d̂ðnÞ ¼
WTxðnÞ: The input vector consists of L lags of the bin counts

for each of the neurons that measurements are taken from.

The desired hand trajectory dðnÞ; depending on the

experiment, has one, two, or three dimensions. Optimal

weights are determined either from the Wiener-Hopf

equations or by gradient descent learning (Haykin, 1996).

Time-delay neural network. This approach models the

mapping from neural activity to hand position using a

nonlinear combination of delayed bin counts from every

neuron. The memory is preset to the length of the tap-delay

lines used in the input layer. The single hidden layer uses

sigmoid nonlinearities. The output of the TDNN is given by

d̂ðnÞ ¼ W2f ðWT
1 xðnÞ þ b1Þ þ b2; where W1; W2; b1; b2 are

the weights of the TDNN that are trained with error

backpropagation (Haykin, 1994).

Recurrent multilayer perceptron. This network is built

from a hidden layer of nonlinear processing elements (PEs)

with state feedback and linear outputs. Different from a

TDNN, the input vector xðnÞ of this network consists only of

the instantaneous values of the bin counts from the neurons.

In addition, its hidden layer has a fully connected feedback

to itself with a feedback weight matrix Wf ; which is capable

of adjusting its time-resolution to various levels depending

on the requirements of the optimization criterion. The

output of the RMLP is obtained by the following recursive

equation: d̂ðnÞ ¼ W2f ðW1xðnÞ þ Wfy1ðn 2 1Þ þ b1Þ þ b2:

The hidden layer state vector is denoted by y1: This network

is trained using the backpropagation through time algorithm

(Principe, Euliano, & Lefebvre, 2000).

3. Simulations and analysis

In this section, experimental results obtained with the

multiple models trained with hard competition are presented

and the performance is compared with the single linear

model, TDNN, and RMLP.

3.1. Data collection

Synchronous, multichannel neuronal spike trains were

collected at Duke University using owl monkeys (Aotus

trivirgatus). Microwire electrodes were implanted in

cortical regions where motor associations are known

(Wessberg et al., 2000). The firing times of individual

neurons were recorded while the primate performed a 3D

reaching task that consists of a reach to food and followed

by placing it in the mouth. The primate’s hand position was

also recorded (with a shared time clock) and digitized with
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a 200 Hz sampling rate. The neuronal firings were binned in

nonoverlapping windows of 100 ms, which represents the

local firing rate for each neuron. These spike counts were

directly used as inputs to the model to estimate hand

positions. The digitized hand position signal was down-

sampled to 10 Hz to synchronize with spike counts in time.

In order to take the reaction time into account, the spike

trains were delayed by 0.23 s with respect to the hand

position.

3.2. Experimental environments

The spike counts from 104 neurons, a set of 20,000

consecutive time bins (2000 s), were used to train the

models. After training, the weights of all models are fixed to

their optimal values identified from the training set and the

performance of the models are evaluated on an independent

test set of 3000 consecutive bins (300 s).

Single moving average model. The MA model accepts an

input vector that consists of 10 delayed versions of the bin

counts of 104 neurons, and has three outputs ðx; y; zÞ: The 10

tap memory depth (1 s) is based on the suggestion of

Wessberg et al. (2000). The model is trained with NLMS

with a step size of 0.01.

Nonlinear mixture of competitive linear models. This

topology consists of 10 competing linear models for each

coordinate ðx; y; zÞ and a single hidden layer MLP with 30

inputs (three coordinates £ 10 models), 30 hidden PEs with

tanh nonlinearity, and three linear output PEs to predict the

x; y; and z coordinates of the primate’s hand. The number of

multiple linear models and the number of hidden PEs were

chosen empirically by examining the prediction perform-

ance on the test set. Each linear model is the same as the MA

model. In the competition, the leaky integrator used a

forgetting factor of m ¼ 0:1: This corresponds to an

approximate memory depth of 1 s, which is consistent

with the memory depth of the linear models (Fancourt &

Principe, 1996). The model was trained using NLMS for the

local linear models and backpropagation for the MLP, both

using a step size of 0.01. Training of the MLP is repeated

with 100 random initial conditions and the minimum mean

square error (MSE) solution is accepted.

Time-delay neural network. In the experiments, a TDNN

(1040:30:3) is trained with the 104 neurons and their 10

delay bin counts as the input. The 30 hidden PEs use tanh

nonlinearities and the output have three linear PEs.

Effectively, this is the same topology as the competitive

linear models and MLP combination, except it is trained

completely based on error backpropagation with MSE

criterion.

Recursive multilayer perceptron. The RMLP used here is

a 104:5:3 network whose input consists of 104 instan-

taneous bin counts from all neurons. The hidden layer uses

nonlinear PEs with tanh activation. Training is performed

using Neurosolutionsw, where 3 s trajectories are employed

for gradient calculations.

3.3. Results

The accuracy of these estimations are evaluated using

several measures: the correlation coefficient (CC) is used to

quantify the linear relationship between the estimated and

actual trajectories; the signal to error ratio (SER) between

actual and estimated hand trajectories is used to account for

the deficiency of CC in identifying the bias and scaling

errors in trajectories; the cumulative error metric (CEM) is

used to provide a global statistical picture of how well the

models perform in terms of following the actual trajectory;

the number of movement hits and misses a model obtains.

Specifically, the SER is defined as the ratio of the

powers of the actual hand trajectory and the error of

the estimated trajectory (Sanchez et al., 2002). The CC and

SER are computed using 4 s overlapping windows (each

reaching movement takes approximately 4 s). The CEM is

defined as the probability that the L2-norm (or radius

in 3D space) of the error vector is less than or equal to some

r : CEMðrÞ ¼ Pðkek2 # rÞ (Sanchez et al., 2003). This is, in

fact, the empirical cumulative distribution function of the

error radius. During a reaching movement, a model is said to

hit the movement if 70% of the time, the instantaneous error

norm is less than half of the norm of the hand position

vector. Otherwise, the model is said to miss the movement.

The performances of all models are summarized in

Table 1 using these measures. In the test set, there are a total

of 10 reaching movements. The hit and miss counts are

provided in the first two rows. The SER and CC values are

segmented in movement and rest. The average and standard

deviation of SER and CC for moving and resting portions

are reported separately. For a fair comparison, this

averaging is performed over only the six common move-

ments that the TDNN, RMLP and multiple models hit.

The z-coordinates of the estimated hand positions with

each model for the test set are shown along with the actual

hand position in Fig. 2a. Also, in Fig. 2b, we present the

changes in SER over time. It is observed that the SER

increases when the hand is moving, and decreases when the

hand is at rest, for all models. The multiple models achieve

Table 1

Performances of the four models compared (number in parenthesis are the

free parameters). The average and the standard deviation were computed

for the correlation coefficient (CC) and the SER over samples and three

dimensions

Measures Single MA

(3123)

TDNN

(31,323)

RMLP

(568)

NMCLM

(32,253)

No. of hits 2 8 7 7

No. of misses 8 2 3 3

CC: move 0.83 ^ 0.07 0.86 ^ 0.10 0.88 ^ 0.11 0.89 ^ 0.07

SER: move (dB) 4.69 ^ 1.19 6.64 ^ 1.99 7.40 ^ 2.00 7.02 ^ 2.47

CC: rest 0.06 ^ 0.27 0.04 ^ 0.25 0.06 ^ 0.25 0.07 ^ 0.26

SER: rest (dB) 20.19 ^ 4.27 2.95 ^ 5.69 7.13 ^ 4.01 4.53 ^ 4.99
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higher SER levels than the TDNN when the hand is at rest.

The RMLP, however, performs better than the multiple

models on average.

In Fig. 3, the CEM curves of all models are presented for

the entire test set and for only the six common movements.

Overall, the RMLP and the multiple models exhibit better

performance in these curves compared to the TDNN and the

single linear model. On the other hand, when we only

consider movements, three models (RMLP, TDNN, and

multiple models) produce similar performance.

We further investigate the localization properties of the

multiple linear models in the hand trajectory space. In order

to demonstrate this, two example reaching movements

(taken from the training set) are shown in Fig. 4. For each

trajectory, winners at every sample are indicated by

different markers. It can be observed that the winning

models localize in different regions of the movement. For

instance, the 10th model specializes in the portion of the

trajectory from mouth to the rest position, while the seventh

model learns the trajectory from the rest position to the food.

3.4. Evaluation of training performance

The topology proposed in NMCLM is basically equiv-

alent to a three-layer network: the first layer of weights

consists of the competitive model coefficients, the second

and third layer of weights are simply the weights of the

following MLP. In this topology, the first hidden layer and

the output layer have linear PEs, whereas the second hidden

layer has nonlinear PEs. In the NMCLM approach, the first

layer weights are trained competitively to predict the

desired signal, whereas the MLP is optimized using standard

error backpropagation.

In order to quantify the performance of this training

procedure from an information-theoretic point-of-view, we

evaluate the mutual information (Cover & Thomas, 1991),

IðzC; dÞ; between the outputs of the competitive models, zC;

and the desired output, d: Using a Parzen window

estimator for mutual information (Erdogmus, 2002) on 10

segments of the hand trajectory (each of length 1000

samples), the average and standard deviation of IðzC; dÞ is

found to be 8.97 nats (^1.21 nats). The maximum mutual

information allowed by this model and data, obtained by

estimating IðzC; d̂Þ is 9.83 nats (^1.19 nats). Percentage-

wise, the information contained in the competitive model

outputs pertaining to the desired output is thus 92% (^6%).

From this, we conclude that the information loss in the first

layer is just 8% (^6%).

For comparison, a second network with the same

topology is trained as follows: The MLP weights are

Fig. 2. (a) The z-coordinate of the actual hand trajectory (dotted) and that of the estimated hand trajectories (solid) on testing data for the single linear MA

model, TDNN, RMLP, and the NMCLM, respectively. (b) The signal to error ratio (SER) for the z-coordinate in dB using a 4 s sliding window over time.

S.-P. Kim et al. / Neural Networks 16 (2003) 865–871 869



borrowed from the one trained with competition (in order to

ensure identical information loss at this stage). The first

layer weights are then trained using standard backpropaga-

tion through these MLP weights, instead of using compe-

tition. This second network, therefore, uses the minimum

MSE solution for the first layer weights. Similarly, the

mutual information IðzB;dÞ between the output of the first

layer of this network zB; and the desired output d is

calculated to be 7.42 nats (^1.35 nats). For this network,

the maximum mutual information is 10.90 nats (^0.40

nats). These correspond to an information-transfer percen-

tage of 68% (^11%). Therefore, the information loss in the

first layer of the second network is 32% (^11%).

5. Discussions

In this paper, we have investigated the performance of a

nonlinear mixture of competitively trained multiple linear

models in predicting the hand position of a primate using

neural activity recorded from cortical areas related to arm

movement. This approach possesses significant advantages

compared to both the single MA model and the standard

TDNN, although it is essentially a combination of both. The

multiple models follow a divide-and-conquer approach to

identify the nonlinear mapping from neuronal data to hand

positions. Its performance did not exceed that of an RMLP,

probably because the RMLP has the most parsimonious

architecture (568 free parameters).

The biggest difficulty with any of these BMI models is

the enormous set of free parameters produced by the large

neural input vector (104 dimensions). For example, the

TDNN and the NMCLM presented above had more than

30,000 weights. Training the first layer of the TDNN with

backpropagation is a difficult task due to the attenuation of

the error by the hidden layer PEs. By competitively training

the first layer of linear models, on the other hand, the

training complexity is made more practical, since standard

LMS-type linear filter adaptation rules can be employed.

However, the problem of large data requirements still

remains, and we conclude that we did not have enough data

to train these models sufficiently well. The performance of

the single MA model is the worst of the group, which means

that the constraint of linearity for this specific reaching task

is taxing performance (in spite of having ‘only’ 10% of the

TDNN weights). From the CEM of Fig. 3, we can conclude

that the precision in tracking a trajectory needs further

improvements to be useful.

The performance of the NMCLM can be improved

further in several respects. First and foremost, pruning the

linear model is a viable alternative because not all the

neurons are important all the time. A simple test with weight

decay on the single MA model shows that we are able to

prune less important inputs significantly. For instance, the

portion of weights whose magnitudes are less than 0.1,

Fig. 3. Comparison of the CEM of the four models evaluated for the entire

test set (top), and for the six common reaching movements (bottom).

Fig. 4. Demonstration of the localization of multiple linear models for two

different reaching movements. Each symbol represents a different winning

model during training.

S.-P. Kim et al. / Neural Networks 16 (2003) 865–871870



increases from 22.4 to 36.3%. It consequently helps

generalization in testing such that the SER increases to

5.56 dB (^1.11 dB) (compared to 4.69 ^ 1.19 dB) for the

movement, and 2.88 dB (^2.76 dB) for the rest (compared

to 20.19 dB ^ 4.27 dB).

In a purely competitive framework, one could use the

output generated by only the winning linear model.

However, the selection of the winner in the testing phase

is not possible since the desired output is not available.

Nevertheless, it is interesting to investigate how much

performance loss occurs due to the use of the MLP as

compared to the selection of the winner alone. To this end,

we have calculated the CC and SER for the purely

competitive prediction scheme for the same test set used

in the experiments (assuming that the desired hand position

is available for the selection). For the six reaching

movements that have been considered throughout the

experiments, the CC is 0.94 (^0.03) (compared to

0.89 ^ 0.07 with the mixture), and the SER is 9.79 dB

(^1.62 dB) (compared to 7.02 ^ 2.47 dB with the mix-

ture). Hence, we conclude that there is room for improve-

ment in the selecting of the winner in testing.

From the models presented, the NMCLM is the only

one that uses explicit competition to divide the trajectory

among models. This is an advantage if we are interested

in creating a system that models each piece of the

trajectory, as may be required in the future for BMIs with

a large repertoire of trajectories. The other approach to

segmentation that we are testing is a Hidden Markov

Model (HMM) (Darmanjian et al., 2003). For a two

segment task (rest and movement), the segmentation

performance of the HMM is high, but it still requires lots

of data for training (1620 free parameters when the input

data is quantized in 128 levels). Each HMM can then be

coupled with an MA model and fitting performance can

be increased up to 20% with respect to the single MA

model (we are in the process of validating this approach).

However, it is still unclear how to extend the technique to

finer segmentation (e.g. rest to food, food to mouth,

mouth to rest).

Overall, the multiple model approach produced better

CC and SER than both the TDNN and the single linear filter

at a reasonable additional cost in terms of training

complexity. Additionally, it produced a CC profile identical

to the RMLP. However, the SER of RMLP is on average

slightly higher than the multiple models. This can be

attributed to the additional error variance that the multiple

models exhibit in predicting the hand position at rest. This

may motivate replacing the MLP in the topology with an

RMLP in future work.
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