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Abstract

Mean squared error (MSE) has been the most widely used tool to solve the linear filter estimation or system identification problem.

However, MSE gives biased results when the input signals are noisy. This paper presents a novel stochastic gradient algorithm based on the

recently proposed error whitening criterion (EWC) to tackle the problem of linear filter estimation in the presence of additive white

disturbances. We will briefly motivate the theory behind the new criterion and derive an online stochastic gradient algorithm. Convergence

proof of the stochastic gradient algorithm is derived making mild assumptions. Further, we will propose some extensions to the stochastic

gradient algorithm to ensure faster, step-size independent convergence. We will perform extensive simulations and compare the results with

MSE as well as total-least squares in a parameter estimation problem. The stochastic EWC algorithm has many potential applications. We

will use this in designing robust inverse controllers with noisy data.
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1. Introduction

It was been a widely acknowledged fact that the mean

squared error (MSE) criterion is optimal for linear filter

estimation when there are no noisy perturbations on the data

(Haykin, 1996). In adaptive filter theory, the Wiener solution

for the MSE criterion is used to derive recursive algorithms

like RLS and the more popular stochastic gradient based

LMS algorithm (Haykin, 1996). An important property of the

Wiener solution is that if the adaptive filter is sufficiently long

enough, then the prediction error signal for stationary data is

white (Haykin, 1996). This very nice property is true only

when the input data is noise-free. It has been long recognized

that the MSE-based filter optimization approaches are unable

to produce the optimal weights associated with the noise free

data due to the biasing of the input covariance matrix by the

additive noise (Douglas, 1996). For many real-world

applications, the ‘noise-free’ assumption is easily violated

and using MSE-based methods for parameter estimation will

result in severe degradation in performance. Researchers

have proposed several techniques to combat and suppress the

bias in MSE-based methods. For instance, the subspace

methods coupled with the Wiener solution can result in

superior filter estimates. However, finding the right subspace

dimension and the optimal subspace projections is a non-

trivial problem. Moreover, subspace based Wiener filtering

methods can only reduce the bias; they can never remove the

bias completely. An important statistical tool called total

least squares (TLS) (Golub & Van Loan, 1989) can be

utilized to eliminate this bias completely. The major

stumbling block for the TLS that severely limits its

practicability is the requirement that the variances of the

noisy perturbations on the input and desired signals be

identical (Douglas, 1996; Rao & Principe, 2002). Recently,

we proposed a novel criterion called the error whitening

criterion (EWC) (Principe, Rao, & Erdogmus, 2003; Rao,

Erdogmus, & Principe, 2003) that presents a different

approach to whiten the error sequence at the output of an

adaptive filter even in the presence of noisy inputs. This

criterion enforces zero autocorrelation of the error signal

beyond a certain lag; hence the name EWC.

In Section 2, we will motivate the theory of EWC;

briefly state some of its interesting properties and then

present an online stochastic gradient algorithm called

EWC-LMS. In Section 3, we will discuss the convergence

of this algorithm to the optimal EWC solution. Section 4
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talks about extensions to the EWC-LMS algorithm for

increased robustness and faster convergence. In Section 5,

we will present case studies and compare the performance

of the stochastic EWC algorithm with TLS and the regular

LMS algorithms. In the same section, will also demon-

strate the usefulness of this algorithm in an inverse

controller design application. Discussions and conclusions

are in Section 6.

2. Error whitening criterion

The classical Wiener solution tries to minimize the zero-

lag autocorrelation of the error, i.e. Eðe2
kÞ: In the presence of

additive white noise, the zero-lag input autocorrelation

is always biased by the noise power. Therefore, when

we minimize the MSE, we always end up with a biased

parameter estimate. This bias increases with increasing

noise power. So, instead of working with zero-

lag correlations, we propose to analyze the error auto-

correlation at a non-zero lag. Consider the problem of

identifying a linear system characterized by the parameter

vector wT [ RN as shown in Fig. 1. Suppose noisy training

data pair ðx̂k; d̂kÞ is provided, where x̂k [ RN ¼ xk þ vk and

d̂k [ R1 ¼ dk þ uk with xk as the noise-free input vector at

discrete time index k; vk; the additive white noise vector

entering the input; dk being the noise-free desired signal and

uk as the additive white noise entering the desired signal.

We further assume that the noises entering the system vk and

uk are uncorrelated with the data pair and also uncorrelated

with each other. Let the weight vector (filter) that generated

the noise-free data pair ðxk; dkÞ be wT; of dimension N:

Without loss of generality, we will assume that the length of

w; the estimated weight vector is greater than N: Since dk ¼

xT
k wT; the error is simply given by êk ¼ xT

k ðwT 2 wÞ þ uk 2

vT
k w: The corresponding error autocorrelation at some

arbitrary lag L can be determined as

rêðLÞ ¼ ½wT 2 w�TE½xkxT
k2L�½wT 2 w� þ wTE½vkvT

k2L�w

ð1Þ

From Eq. (1), it is obvious that if L $ M; where M is

the length of the true filter w; E½vkvT
k2L� ¼ 0: Assuming

that the matrix E½xkxT
k2L� exists and is full rank, rêðLÞ ¼ 0

only when w ¼ wT: Therefore, if we make the error

autocorrelation at any lag L $ M zero, then the estimated

weight vector will be exactly equal to the true weight

vector. This is the motivation behind the EWC, which

partially whitens the error signal by making rêðLÞ ¼ 0 for

L $ M: Since the goal is to make rêðLÞ ¼ 0; a suitable

cost function to derive a stochastic gradient algorithm is

lrêðLÞl: Using Bluestein’s identity (Taylor & Mellott,

1998), we can write êkêk2L as

êkêk2L ¼ 0:5½ê2
k þ ê2

k2L 2 ðêk 2 êk2LÞ
2� ð2Þ

Taking the expectations on both sides and recognizing

the fact that Eðê2
kÞ ¼ Eðê2

k2LÞ; we get

Eðêkêk2LÞ ¼ Eðê2
kÞ2 0:5Eðêk 2 êk2LÞ

2 ð3Þ

For convenience, we define _̂ek ¼ ðêk 2 êk2LÞ and use a

constant b instead of 20.5. We can rewrite Eq. (3) as

Eðêkêk2LÞ ¼ Eðê2
kÞ þ bEð _̂e2

kÞ ð4Þ

The cost function for the EWC can now be formally

stated as

JðwÞ ¼ lEðê2
kÞ þ bEð _̂e2

kÞl ð5Þ

The form in Eq. (5) is appealing because, it includes

the MSE as a special case when b ¼ 0: With b ¼ 20:5;

the above cost function becomes lrêðLÞl which when

minimized would result in the unbiased estimate of the

true weight vector. Another interesting result is that the

sensitivity of rêðLÞ; given by, ›rêðLÞ=›w ¼ 22½wT 2

w�E½xkxT
k2L� is zero if ðwT 2 wÞ ¼ 0: Thus, if ðwT 2 wÞ

is not in the null space of E½xkxT
k2L� or if E½xkxT

k2L� is

full rank, then only ðwT 2 wÞ ¼ 0 makes rêðLÞ ¼ 0

and ›rêðLÞ=›w ¼ 0 simultaneously. This property has a

useful implication. Consider any cost function of the

form JðwÞp; p . 0: Then the performance surface is not

necessarily quadratic and the stationary points of this

new cost are given by JðwÞ ¼ 0 or ›JðwÞ=›w ¼ 0:

Using the above property, we immediately see that

both JðwÞ ¼ 0 and ›JðwÞ=›w ¼ 0 yield the same solution.

Optimization on Eq. (5) without the absolute value

operator is impossible using a constant sign gradient

algorithm, as the stationary point can then be a global

maximum, minimum or a saddle point (Principe et al.,

2003). The stochastic instantaneous gradient of the EWC

cost function in Eq. (5) is

›JðwÞ=›w ¼ 22signðê2
k þ b _̂e2

kÞðêkx̂k þ b _̂ek _̂xkÞ ð6Þ

where _̂ek ¼ ðêk 2 êk2LÞ and _̂xk ¼ ðx̂k 2 x̂k2LÞ as defined

before. The stationary point is a global minimum and

using gradient descent, we can write the EWC-LMSFig. 1. System identification block diagram.
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algorithm as

wkþ1 ¼ wk þ hsignðê2
k þ b _̂e2

kÞðêkx̂k þ b _̂ek _̂xkÞ ð7Þ

where h . 0 is a small step-size parameter. Note that

when b ¼ 0; Eq. (7) reduces to the renowned LMS

algorithm (Widrow & Stearns, 1985). We are specifically

interested in using Eq. (7) with b ¼ 20:5: In Section 3,

we will present the convergence analysis of Eq. (7) and

derive some useful results.

3. Convergence analysis

Theorem 1. In the noise-free case (deterministic signals),

EWC-LMS given in (7) converges to the stationary point

wp ¼ wT provided that the step size satisfies the following

inequality at every update

0 , h ,
2le2

k þ b_e2
k l

kekxk þ b_ek _xkk
2
;k ð8Þ

Proof. From the arguments presented in Section 2 and

owing to the quadratic nature of the EWC performance

surface, it is clear that the EWC-LMS algorithm in Eq. (7)

has a single stationary point (global minimum) wp ¼ wT:

The formal proof is trivial and is omitted here. Consider the

weight error vector defined as 1k ¼ wp 2 wk: Subtracting

both sides of Eq. (7) from wp; we get 1kþ1 ¼ 1k 2 h

signðe2
k þ b_e2

kÞðekxk þ b_ek _xkÞ: Taking the norm of this error

vector we get

k1kþ1k
2
¼k1kk

2
2 2hsignðe2

k þ b_e2
kÞ1

T
k ðekxk þ b_ek _xkÞ

þ h2kekxk þ b_ek _xkk
2

In case of noise-free data, 1T
k xk ¼ ek and 1T

k _xk ¼ _ek: Using

these two equations we get

k1kþ1k
2
¼ k1kk

2
2 2hle2

k þ b_e2
k lþ h2kekxk þ b_ek _xkk

2
ð9Þ

By allowing the error vector norm to decay asymptotically by

making k1kþ1k
2
, k1kk

2
; we obtain the bound in Eq. (8). The

error vector will eventually converge to zero, i.e. limk!1 �

k1kk
2
! 0; which implies that limk!1 wk ! wp ¼ wT: A

Observe that when b ¼ 0; the upper bound on the step-

size in Eq. (8) reduces to 0 , h , 2=kxkk
2
; which is nothing

but the step-size bound for LMS in the case of deterministic

signals.

Theorem 2. In the noisy data case, EWC-LMS given in (7)

with b ¼ 20:5 converges to the stationary point wp ¼ wT

in the mean provided that the step size is bound by

the inequality

0 , h ,
2lEðê2

k 2 0:5 _̂e2
kÞl

E kêkx̂k 2 0:5 _̂ek _̂xkk
� �2 ð10Þ

Proof. Again, it is clear that the only stationary point of

Eq. (7) with b ¼ 20:5 is wp ¼ wT even in the presence of

noise where wT is the true weight vector that generated

the noise-free data pair ðxk; dkÞ: Following the same steps

as in the proof of the previous theorem, the dynamics of

the error vector norm can be determined by the difference

equation

k1kþ1k
2
¼ k1kk

2
2 2hsignðê2

k þ b _̂e2
kÞ1

T
k ðêkx̂k þ b _̂ekx̂kÞ

þ h2kêkx̂k þ b _̂ek _̂xkk
2

ð11Þ

Using Eq. (11), a recursive expression for the error vector

norm at an iteration index k in terms of the initial error

vector norm k10k
2

can be written as

k1kk
2
¼ k10k

2
2 2h

Xk21

j¼0

signðê2
j þ b _̂e2

j Þ1
T
j ðêjx̂j þ b _̂ej _̂xjÞ

þ h2
Xk21

j¼0

kêjx̂j þ _̂ej _̂xjk
2

ð12Þ

With the absolute value operator replacing the sign, we

get

k10k
2
2 k1kk

2
þ h2

Xk21

j¼0

kêjx̂j þ b _̂ej _̂xjk
2

, 2h
Xk21

j¼0

l1T
j ðêjx̂j þ b _̂ej _̂xjÞl ð13Þ

Dividing Eq. (13) on both sides by k and letting k !1;

we have

hEkêjx̂j þ b _̂ej _̂xjk
2
, lim

k!1

1

k

k1kk
2

h
þ 2El1T

j ðêjx̂j þ b _̂ej _̂xjÞl

and hence

h
2

Ekêjx̂j þ b _̂ej _̂xjk
2
, El1T

j ðêjx̂j þ b _̂ej _̂xjÞl ð14Þ

Note that we have used the facts that

lim
k!1

1

k

Xk21

j¼0

f ð·Þ ¼ E½f ð·Þ�

(ergodicity) and h . 0: If Eq. (14) holds, then it is trivial

to show that Ek1kþ1k
2
, Ek1kk

2
: Note that the expectation

operator depicts averaging over the entire input data with

the weight fixed at the iteration index specified in the

error vector norm. Thus, we can only state that the mean

error norm decreases over time. Note that, the right-hand

side of Eq. (14) is still hard to compute due to the absolute
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value operator. However, using Jensen’s inequality for

convex functions, ElXl $ lEðXÞl; we can deduce a loose

upper bound for the step-size as

0 , h , 2
lE½1T

j ðêjx̂j þ b _̂ej _̂xjÞ�l
Ekêjx̂j þ b _̂ej _̂xjk

2
ð15Þ

Now, we can simplify Eq. (15) further. The evaluation of

the terms Eð1T
k êkx̂kÞ and Eð1T

k _̂ek _̂xkÞ are tedious and is

omitted here. It can be shown that

Eð1T
k êkx̂kÞ ¼ 1T

k R1k 2 1T
k Vwk ð16Þ

Eð1T
k _̂ek _̂xkÞ ¼ 1T

k ð2R 2 RLÞ1k 2 21T
k Vwk

where R ¼ E½xkxT
k �; RL ¼ E½xkxT

k2L þ xk2LxT
k �; V ¼ E½vk

vT
k �: Since we assumed that the noise is white, V ¼ s2

vI;

where s2
v represents the variance of the input noise. Now,

with b ¼ 20:5;

Eð1T
k êkx̂kÞ2 0:5ð1T

k _̂ek _̂xkÞ ¼ 0:51T
k RL1k ð17Þ

Using 1k ¼ wp 2 wk ¼ wT 2 wk and dk ¼ xT
k wT; Eq. (17)

can be further reduced to

Eð1T
k êkx̂kÞ2 0:5Eð1T

k _̂ek _̂xkÞ ¼ Eðekek2LÞ

¼ Eðê2
k 2 0:5 _̂e2

kÞ ð18Þ

Substituting the numerator of Eq. (15) with the above

result, we immediately get the upper bound in Eq. (10). If

the step-size chosen satisfies this condition, then Ek
1kþ1k

2
, Ek1kk

2
and the error vector norm asymptotically

converges to zero in the mean. Thus, limk!1 Ek1kk
2
! 0

and limk!1 EðwkÞ! wp ¼ wT: A

We would like to mention that the upper bound on step-

size given by Eq. (10) is computable using only the data

samples. For the LMS algorithm ðb ¼ 0Þ; if the input and

desired signals are noisy, the upper bound on the step-size is

dependent on the true weight vector as well as on the

variance of the noise, which makes it impractical. Since

the EWC-LMS algorithm with b ¼ 20:5 minimizes lrêðLÞl;
the effect of finite step-sizes on the steady state lrêðLÞl
would be a good performance index. This is analogous to

the excess-MSE in LMS (Haykin, 1996).

Theorem 3. With b ¼ 20:5; the steady state excess error

autocorrelation at lag L $ M; i.e. lrêðLÞl is always bound

by

lrêðLÞl # h
2

Eðê2
1Þ½TrðR þ VÞ� þ 2h½s2

u þ kw1kkwpkTrðVÞ�

ð19Þ

where R ¼ E½xkxT
k �; and V ¼ E½vkvT

k � and Trð·Þ denotes the

matrix trace. The noise variances in the input and desired

signals are represented by s2
v and s2

u; respectively.

Proof. Following the footsteps of the previous proofs, we

start with the error dynamics equation given by Eq. (11).

Since we are interested in the dynamics near convergence

(steady state) we let k !1: Applying the expectation

operator to both sides of Eq. (11) will give

Ek1kþ1k
2
¼ Ek1kk

2
2 2hE½signðê2

k 2 0:5 _̂e2
kÞ1

T
k ðêkx̂k

2 0:5 _̂ek _̂xkÞ� þ h2Ekêkx̂k 2 0:5 _̂ek _̂xkk
2

ð20Þ

Expanding the terms 1T
k êkx̂k; 1

T
k
~̂_ek _̂xk and simplifying we get

Ek1kþ1k
2
¼Ek1kk

2
þh2Ekêkx̂k 20:5 _̂ek _̂xkk

2

þ2hE½signðê2
k 20:5 _̂e2

kÞ½w
T
p ðvkvT

k 20:5_vk _v
T
k Þwk��

þ2hE½signðê2
k 20:5 _̂e2

kÞðu
2
k 20:5_u2

kÞ�

22hElê2
k 20:5 _̂e2

k l ð21Þ

Letting Ek1kþ1k
2
¼Ek1kk

2
as k!1; we see that

Elðê2
k 20:5 _̂e2

kÞl

¼ h
2

Ekêkx̂k 20:5 _̂ek _̂xkk
2
þhE½signðê2

k 20:5 _̂e2
kÞ

£ ½wT
p ðvkvT

k 20:5_vk _v
T
k Þwk þu2

k 20:5_u2
k�� ð22Þ

By Jensen’s inequality, Elðê2
k 20:5 _̂e2

kÞl$ lEðê2
k 20:5 _̂e2

kÞl;
and therefore we have

lrêðLÞl# h
2

Ekêkx̂k 20:5 _̂ek _̂xkk
2
þhE½signðê2

k 20:5 _̂e2
kÞ

�½wT
p ðvkvT

k 20:5_vk _v
T
k Þwk þu2

k 20:5_u2
k�� ð23Þ

Note that, we used the relation rêðLÞ¼Eðê2
k 20:5 _̂e2

kÞ in the

above equation. The first term on the RHS of Eq. (23) can be

easily evaluated by invoking the assumption that kx̂kk
2

and

ê2
k are uncorrelated in steady state

Ekêkx̂k 20:5 _̂ek _̂xkk
2
¼Eðê2

kÞ½TrðRÞþTrðVÞ� ð24Þ

The above assumption is commonly used in computing the

steady-state excess-MSE for stochastic LMS algorithm

(Al-Naffouri & Sayed, 2001). Importantly, this assumption

is less restrictive and more natural when compared to the

independence theory that was frequently used in the past

(Haykin, 1996). The second term in RHS of Eq. (23) is

involved and has no closed form expression even with

Gaussianity assumptions that are typically made in the

analysis of sign-LMS algorithm (Al-Naffouri & Sayed,

2001). Even the validity of Gaussianity assumption is

questionable as discussed by Eweda (Eweda, 2000) who

proposed additional, reasonable constraints on the noise

probability density function to overcome the Gaussianity

and independence assumptions (Eweda, 2000) that lead to a

more generic misadjustment upper bound for the sign-LMS

algorithm. Nevertheless, the analyses of stochastic algor-

ithms (with or without sign) in the existing literature

explicitly assume that the input signal is ‘noise-free’ that

simplifies the problem to a great extent. In this paper we

particularly deal with input noise and refrain from making

any assumptions in deriving an upper bound for excess error

autocorrelation. We proceed by rewriting Eq. (23) using

Y.N. Rao et al. / Neural Networks 16 (2003) 873–880876



the identity E½signðaÞb�#Elbl as

lrêðLÞl# h
2

Eðê2
kÞ½TrðRÞþTrðVÞ�þhEl½wT

p ðvkvT
k

20:5_vk _v
T
k Þwk þu2

k 20:5_u2
k�l ð25Þ

We know that laþbl# lalþ lbl and Eðukuk2LÞ¼0: There-

fore,

El½u2
k 20:5_u2

k�l#Eðu2
kÞþ0:5Eð_u2

kÞ¼2s2
u ð26Þ

Similarly,

ElwT
p ðvkvT

k 20:5_vk _v
T
k Þwkl

#ElwT
pvkvT

k wklþ0:5ElwT
p _vk _v

T
k wkl ð27Þ

Since the individual terms wT
pvkvT

k wk and wT
p _vk _v

T
k wk are not

necessarily positive we use the Cauchy–Schwartz inequal-

ity to continue further

wT
pvkvT

k wk # kwkkkwpkkvkk
2
;

wT
p _vk _v

T
k wk # kwkkkwpkk_vkk

2
ð28Þ

we know that E½vkvT
k2L� is 0 for L$M: Therefore,

ElwT
pvkvT

k wklþ0:5ElwT
p _vk _v

T
k wkl#2kwpkkwkkTrðVÞ ð29Þ

Using Eqs. (26) and (29) in Eq. (25), and letting k!1; we

get the result in Eq. (19). The term Eðê2
1Þ represents the

residual MSE and is given by

Eðê2
1Þ¼1T

1R11þs2
uþwT

1Vw1# k11k
2
lmaxþs2

uþ kw1ks2
v

where lmax is the maximum eigenvalue of R: A

Observe that by reducing the step-size, one can

arbitrarily reduce the steady-state excess error autocorrela-

tion at lag L $ M: Extensive simulations have confirmed

this fact and the results have been reported by Principe et al.

(2003).

4. Algorithm extensions

EWC-LMS is a stochastic gradient algorithm and like all

stochastic algorithms, it has tradeoffs between speed of

convergence and accuracy of the asymptotic solution.

Choosing the right step-size to ensure a desired tradeoff is

a non-trivial problem. Recursive algorithms can be derived

for EWC, but incur additional computational costs. In

this section, we will explore some simple extensions that

can improve the robustness and speed of convergence

of EWC-LMS.

Normalization with eigenvalue of Hessian. It is a well-

known fact that, a gradient algorithm operating around the

vicinity of the stable stationary point converges if the

step-size is upper bound by 2=llmaxl; where llmaxl denotes

the absolute maximum eigenvalue of the Hessian matrix

of the performance surface. Since, the cost function of

EWC is quadratic in nature, the Hessian matrix is simply

given by, H ¼ R þ bS; where R ¼ E½xkxT
k � and S ¼ E½_xk

_xT
k �: For notational convenience, we will assume that

the signals are noise-free, and this will not affect the

discussions to follow. Since we use b ¼ 20:5; the

Hessian matrix H can have mixed eigenvalues and this

complicates the algorithms for online estimation of the

absolute maximum eigenvalue. From the triangle inequal-

ity (Golub & Van Loan, 1989)

kHk2 # kRk2 þ lbklSk2
ffiffiffiffiffiffiffiffiffiffi
lmaxðRÞ

p
þ lbl

ffiffiffiffiffiffiffiffiffiffi
lmaxðSÞ

p
ð30Þ

where k·k2 denotes the matrix norm. Since, both R and S

are positive-definite matrices, we can write

kHk2 #
ffiffiffiffiffiffiffi
TrðRÞ

p
þ lbl

ffiffiffiffiffiffiffi
TrðSÞ

p
#

ffiffiffiffiffiffiffiffi
Ekxkk

2
q

þ lbl
ffiffiffiffiffiffiffiffi
Ek_xkk

2
q

ð31Þ

In the stochastic framework, we can include this in the

update equation in Eq. (7) to give us a step-size

normalized EWC-LMS update rule given by

wkþ1 ¼wk þ
hsignðe2

k þb_e2
kÞðekxk þb_ek _xkÞ

ðkxkkþ lbkl_xkkÞ2
ð32Þ

Note that when b¼ 0; Eq. (32) reduces to the well-

known normalized LMS (NLMS) algorithm (Haykin,

1996).

Normalized gradient EWC-LMS. Another way of

improving the convergence speed of EWC-LMS is to use

the upper bound in Eq. (10) for the step-size in a stochastic

framework. This is a weak upper bound for guaranteed

convergence, and including this in the update equation, we

get

wkþ1 ¼ wk þ 2
ðe2

k þ b_e2
kÞðekxk þ b_ek _xkÞ

ðkekxk þ b_ek _xkk
2
þ dÞ

ð33Þ

Note that in Eq. (33), the sign of the gradient is now

given explicitly by the instantaneous EWC cost term

itself. The term d; a small positive constant compensates

for the numerical instabilities when the signal has zero

power or when the error goes to zero, which can happen

in the noiseless case even with finite number of samples.

Once again, we would like to state that with b ¼ 0; Eq.

(33) defaults to NLMS algorithm. The caveat is that,

both Eqs. (32) and (33) do not satisfy the principle of

minimum disturbance or they do not correspond to

minimum norm update unlike the NLMS algorithm

(Haykin, 1996). We have verified the faster convergence

of the normalized EWC algorithms in Eqs. (32) and (33)

with extensive simulations. The results are omitted here

owing to space constraints. The drawback with the

update equation in Eq. (33) is the increased misadjust-

ment with noises injected in the training data. This is in

agreement with the fact that misadjustment in the NLMS

algorithm is high when compared with the standard LMS

for noisy signals. This can be further controlled by

inserting a small decaying step-size instead of the

constant step-size of 2 in Eq. (33). It is easy to show

Y.N. Rao et al. / Neural Networks 16 (2003) 873–880 877



that m ¼ 2 is the largest possible step-size for guaranteed

convergence of Eq. (33).

EWC with multiple lags. The EWC-LMS algorithm we

have proposed ensures that the error autocorrelation at any

single lag L $ M is minimized. With decreasing SNR

values (,210 dB), the Hessian matrix H ¼ R þ bS (with

b ¼ 20:5) is mostly determined by the noise covariance

matrix. This can degrade the performance of the EWC-LMS

and we might be forced to use very small step-sizes (slow

convergence) to achieve good results. This problem can be

alleviated by incorporating multiple lags in the EWC cost

function. Instead of minimizing the error autocorrelation at

a single lag, we can add similar constraints at additional

lags. The corresponding stochastic EWC-LMS algorithm is

then given by

wkþ1 ¼ wk þ
Xl¼MþD

l¼M

hlsignðê2
k þ b _̂e2

klÞðêkx̂k þ b _̂ekl _̂xklÞ ð34Þ

Note that D is the total number of lags (constraints) for

the error autocorrelation. We have verified that Eq. (34) is

more robust than the single lag EWC-LMS algorithm.

However, the additional robustness comes at an increase in

the computational cost. In the case when D ¼ M; the

complexity of Eq. (34) becomes OðM2Þ: Further analysis on

Eq. (34) is beyond the scope of this paper and will be given

in a later paper.

Fig. 2. Histogram plots of the error vector norm for EWC-LMS, LMS algorithms and the numerical TLS solution.
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5. System identification and inverse control

System identification using EWC-LMS. We will now

verify the noise rejecting capability of EWC-LMS algor-

ithm when b ¼ 20:5 in a system identification problem. A

noise-free, sufficiently colored input signal of 50,000

samples is passed through an unknown system to form the

noise-free desired signal. Uncorrelated white Gaussian

noise is added to the input signal. Clean desired signal is

used, as the noise in the desired averages out automatically

in stochastic LMS type algorithms. The input SNR was set

at 210, 0 and 10 dB. We chose the order of the unknown

system to be 4, 8 and 12 and performed 100 Monte Carlo

runs calculating the error vector norm in each case using

error norm ¼ 20 log 10½kwT 2 wpk� ð35Þ

where wp is the solution given by EWC-LMS after one

complete presentation of the training data and wT represents

the unknown system. We ran the regular LMS algorithm as

well as the numerical TLS method (batch type). The step-

sizes for both LMS and EWC-LMS algorithms were varied

to get the best possible results in terms of the error vector

norm given by Eq. (35). Fig. 2 shows the histograms of the

error vector norms for all three methods. The inset plots in

Fig. 2 show the summary of the histograms for each method.

EWC-LMS performs significantly better than LMS at low

SNR values (210 and 0 dB), while performances are on par

for SNR greater than 10 dB. Batch type numerical TLS

method gives best results when the SNR is high. As we have

stated before, TLS suffers if the noise variances in input and

desired are not the same.

Inverse modeling and control. System identification is

the first step in the design of an inverse controller.

Specifically, we wish to design a system that controls the

plant to produce a predefined output. Fig. 3 shows a block

diagram of model reference inverse control (Widrow &

Walach, 1995). In this case, the adaptive controller is

designed so that the controller-plant pair would track the

response generated by the reference model for any given

input (command). Clearly, we require the plant parameters

(which are typically unknown) to devise the controller.

Once we have a model for the plant, the controller can be

easily designed using conventional MSE minimization

techniques. In this example, we will assume that the plant

is an all-pole system with transfer function PðzÞ ¼

1=ð1 þ 0:8z21 2 0:5z22 2 0:3z23Þ: The reference model is

chosen to be an FIR filter with five taps. The block diagram

for the plant identification is shown in Fig. 4. Notice that the

output of the plant is corrupted with additive white noise

due to measurement errors. The SNR at the plant output was

set to 0 dB. We then ran the EWC-LMS and LMS

algorithms to estimate the model parameters given noisy

input and desired signals. The model parameters thus

obtained are used to derive the controller (Fig. 3) using

standard backpropagation of error. We then tested the

adaptive controller-plant pair for trajectory tracking by

feeding the controller-plant pair with a non-linear time

series and observing the responses. Ideally, the controller-

plant pair must follow the trajectory generated by the

reference model. Fig. 5(top) shows the tracking results for

both controller-plant pairs along with the reference output.

Fig. 5(bottom) shows a histogram of the tracking errors.

Note that the errors with EWC-LMS controller are all

concentrated around zero, which is desirable. In contrast,

the errors produced with the MSE based controller are

significant and this can be worse if the SNR levels drop

further. Fig. 6 shows the magnitude and phase responses of

the reference models along with the generated controller-

model pairs. Note that, the EWC controller-model pair

matches very closely with the desired transfer function,

whereas MSE controller-model pair produces a significantly

Fig. 3. Block diagram for model reference inverse control.

Fig. 4. Block diagram for inverse modeling.

Fig. 5. Tracking results and error histograms.
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different transfer function. This clearly demonstrates the

advantages offered by EWC.

6. Conclusions

In this paper, we presented a stochastic gradient

algorithm for the recently proposed EWC, which includes

MSE as a special case. MSE and TLS methods give highly

biased parameter estimates if additive white noise with

arbitrary variance is present in the input. However, EWC

can be used to accurately estimate the underlying par-

ameters of a linear system in the presence of additive white

noise. We discussed some interesting properties of this new

criterion, and then proposed an on-line, stochastic gradient

algorithm with linear complexity in the number of

parameters. Convergence of the stochastic gradient algor-

ithm was derived making minimal assumptions and upper

bounds on the step-size and the steady-state excess error

autocorrelation were determined. We then proposed some

extensions for improving the convergence speed and

robustness of the EWC-LMS algorithm. Extensive Monte-

Carlo simulations were carried out to show the superiority

of the new criterion in a FIR system identification problem.

We then successfully applied this method for designing a

linear inverse controller and obtained superior results when

compared with MSE based methods. Currently, further

research is in progress to extend the criterion to handle

colored noise and non-linear system identification.
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