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Brain computer interfaces (BCIs) provide a non-muscular avenue for the user to com-

municate with others and to control external devices. Over the last two decades BCIs

have been developed to assist the severely motor-disabled people, such as traumatic brain

injury, stroke, or amyotrophic lateral sclerosis.

Electroencephalography (EEG) is one of the most popular noninvasive BCI approaches.

The inputs to EEG-based BCIs are event-related potentials (ERPs), which are neural

signatures representing the responses to an external stimulus. Traditional BCI systems,
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which have had some success, make inferences based on trial-averaged ERPs, where each

trial consists of one stimulus.

In this thesis, (1) we develop a single-trial, EEG-based BCI to increase the throughput

of visual image search and (2) we unveil a neural correlate of human visual perception

that occurs in rapid visual-recognition tasks.

Our first task is to develop a BCI. Our BCI makes inferences from single-trial ERPs;

hence, it is more efficient than traditional methods. It uses cross-session training and a

novel, hybrid generative/discriminative classifier (which combines a mixed effect model

and a support vector machine via a Fisher kernel) to improve ERP detection performance,

and it uses dimension reduction and incremental learning to reduce computational com-

plexity. Based on the analysis of our BCI, we conclude that: single-trial ERP detection

is possible; cross-session training outperforms the often-used single-session method; our

hybrid classifier has a detection performance that is as good or better than some of the

well-known classifiers; and dimension reduction and incremental learning substantially

reduces computational complexity and they do so without an associated drop in detection

performance.

Our second task is to characterize a neural correlate of human visual perception. Our

approach involves measuring physiological signals and behavioral performance as a func-

tion of both the difficulty of the task (measured by the length of time images are available

for viewing) and the difficulty of the target (estimated by the minimum viewing time re-

quired for a fixed detection rate). We find that the neural responses are highly correlated

with both target difficulty and task difficulty. Based on these findings we further surmise

that, during visual information processing, the brain dynamically allocates additional cog-

nitive resources under increasingly difficult conditions.
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Chapter 1

Introduction

Brain computer interfaces (BCIs) provide a non-muscular avenue for the user to com-

municate with others and to control external devices. Over the last two decades, BCIs

have been developed to assist the severely motor-disabled people, such as traumatic brain

injury, stroke, or amyotrophic lateral sclerosis. BCIs infer a user’s intentions using only

recorded neural activity, hence speech ability and motor control are not required. The

development of sophisticated BCI is made possible by modern computer technology and

our newly-obtained knowledge of brain activity. Most current BCIs focus on assisting

physically-disabled subjects. In contrast, we attempt to enhance the abilities of healthy

subjects for cognitive tasks. Our particular application is to use a BCI to increase the

throughput of visual image search. We examine human visual perception and develop

advanced techniques to achieve this goal.

Human visual perception is a complex process engaging sensory, cognitive and motor

events. Unveiling the neural correlates of visual detection and its underlying component

processes is challenging due to the complexity of the human brain and the massively par-

allel interactions that exist in the brain. In the recent half century, advances in technology

and knowledge of the human brain make it possible to examine visual information pro-

cessing at a physiological level. Evoked neural responses, elicited by sensory, cognitive

and motor events, can be detected by means of noninvasive electrical recordings from the

scalp using, e.g., electroencephalography (EEG). These event-related potentials (ERPs),

associated with human perceptual judgments, reflect patterned neural activities.

1
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This thesis consists of two main parts: one related to engineering and one related

to science. In this thesis, (1) we develop a single-trial, EEG-based BCI to increase the

throughput of visual image search and (2) we unveil a neural correlate of human visual

perception that occurs in rapid visual-recognition tasks.

First, we develop an ERP-based BCI that increases the synergy between the image

search platform and the human operator by tapping into the split-second perceptual judg-

ments of humans. The goal is to assist intelligence analysts to improve their efficiency

in scanning images. ERPs that are elicited by rare target images and non-target images

(distractors) have different patterns. The BCI is able to identify the presence of a target

image seen briefly by an expert simply by detecting the ERP patterns associated with the

presentation of target stimuli on a single-trial basis. A successful ERP-based BCI depends

on robust ERP detection. We develop advanced machine learning methods for single-trial

ERP detection. ERP detection is hampered by many factors, such as noise, outliers, high

dimensionality, non-stationarity, and small training sets. For this reason, our BCI uses

cross-session training and incremental learning. To further improve the single-trial detec-

tion performance, we apply a hierarchical Baysian model to analyze the ERP patterns on

both the population and the individual levels and we develop an advanced discriminant

classifier based on modern statistical learning theory and on population-informed models

of individual ERP trials.

Second, we use the ERP as a physiological marker to examine the human visual per-

ception and cognition in a recognition task, in contrast to the previous studies. The main

difference is that they control only the target difficulty, whereas we control both the target

difficulty and the task difficulty. We simulate a natural (visual) environment, which of-

ten involves rapidly changing stimuli, using the dynamic paradigm known as rapid serial

visual presentation (RSVP). The goal is to assess the dynamics of resource management,

such as attention allocation, using brain signatures (ERPs) involved in human visual in-

formation system. We examine the dynamics of attention allocation as a function of the

task requirement and the complexity of visual stimuli.
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1.1 Objectives

The primary objectives of this work are to unveil the neural signatures of human visual

information processing and improve single-trial ERP detection performance. The direct

motivation of this research is to speed up image analysis by enhancing human information

processing capacity based on ERP pattern classification. Central to this work are two

assertions: (1) allocation of attention and cognitive processing resources is a fundamental

determinant of performance in perceptual tasks and (2) the process of classification plays

a crucial role in the detection performance of BCIs.

In an effort to improve performance, this work seeks to generalize the single-trial ERP

detection problem. Correspondingly, our secondary objectives are:

• Design a framework for rapid visual image search based on single-trial ERP de-

tection. Specifically, demonstrate the relative efficacy of different statistical pattern

recognition techniques, explain the factors that affect their performance, and spec-

ify their optimum configuration for single-trial ERP detection.

• Demonstrate the feasibility of adaptive cross-session training and the efficiency of

incremental learning for single-trial ERP detection.

• Develop a hybrid generative/discriminative method combining the complementary

strengths from the generative model and the discriminative method to improve

single-trial ERP detection performance.

• Demonstrate that the channel projection method successfully extracts representative

features, reduces dimensions and improves the ERP detection performance.

• Establish a better understanding of the neural correlates of human visual cognitive

processes. Specifically, assess the dynamics of attention allocation using a rapidly

changing environment to identify neural activity directly responsible for human

visual perceptual judgements.

This work accomplishes these objects using a complement of empirical and theoret-

ical investigation. The major contributions include the discovery of neural signatures of
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human visual information processing in a dynamic task, the development of a framework

of ERP-based BCI using cross-session incremental training and the development of an

improved hybrid classifier combining a generative model and a discriminative model for

single-trial ERP detection.

1.2 Background

1.2.1 Event-related Potentials

The primary focus of this thesis is ERP, a time-locked EEG brain response associated

with perceptual and cognitive events. ERPs consist of a series of positive and negative

components. In general, the earlier components are most commonly associated with sen-

sory events and the later components with more cognitive events [119]. A specified ERP

has a characteristic amplitude, latency and scalp distribution.

ERPs have drawn a lot of attention in the field of cognitive neuroscience. Long before

computers were available for the recording EEGs, the first ERP recording from awake

humans was performed by Pauline and Davis in 1935. The first published computer-

averaged ERP waveform was from Galambos et al. in 1962 [33]. The modern era of the

ERP study began in 1964 with Walter et al.’s finding of the first cognitive ERP component,

contingent negative variation, which reflected the subject’s preparation of the upcoming

target [130]. The next major advance was the discovery of the P300 component by Sutton

et al. in 1965 [120]. They found that the unpredictable stimuli elicited large, positive

P300s and predictable stimuli elicited the P300s with much smaller amplitudes. The

P300 can be affected by attention level, task difficulty, stimulus occurrence probability,

stimulus randomization, and subject age. Over the last few decades, many researchers

have employed the ERPs, due to its high temporal resolution, to assess highly specific

neural processes [84, 2, 96, 70, 27, 119, 54, 73]. Picton [96] and Oken [84] provide

overviews of the P300, which include technical aspects of P300 recording , psychological

aspects of P300, P300 characteristics, subject parameters, and clinical studies of P300.
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1.2.2 Brain Computer Interfaces

The primary source of information for BCI is EEG, a signal with a number of frequency

components. The first rhythmic electrical activity was recorded from the cortical surface

in animals by Richard Caton in 1875 [13]. Hans Berger first reported the measurements

of electrical activity from the human scalp in 1929 [4], which later became known as

EEG. EEG signals are generated inside the brain and are recorded by a set of electrodes

using standard locations on the scalp. EEG analysis is very challenging because EEG data

represents a conglomeration of numerous neural sources of activity, making it difficult to

isolate individual neural cognitive processes. In the more than half a century, since Hans

Berger’s finding, EEG and other brain electrophysiological measures have been applied

mainly to diagnose neurological disorders in the clinic and assess brain function in the

laboratory.

Researchers have long speculated that the measurements of brain activity might con-

vey messages or commands to the external world so that it may be possible to replace or

augment the brain’s normal neuromuscular interaction with the environment. This new

non-motor channel for communicating a user’s intent to control an external computer-

based device can be achieved through a BCI. The goal of BCI is to control an external

device by decoding a user’s intents from brain signals, instead of using motor controls.

The term BCI was first used by Jacques Vidal in the 1970s [128, 129]. Vidal’s system

used visual evoked scalp-potentials recorded from the visual cortex to determine the gaze

direction, which was used to move a cursor based on the user’s intent. The first convinc-

ing demonstration of a direct functional interface between a brain and a robotic arm was

documented in 1999 by Chapin [15].

In the past decade, there has been a large amount of research performed in the highly

multidisciplinary field of BCI. A wide range of practical applications of BCI have already

been demonstrated in the laboratory and in limited clinical use [132, 134, 55, 6, 67, 38].

BCI is primarily designed for providing a means of communication and control for those
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with severe motor disorders, particularly those suffering from spinal cord injury, amy-

otrophic lateral sclerosis, brain stem stroke, cerebral palsy and muscular dystrophy. Sim-

ple BCI applications include basic binary control systems (lights, temperature, TV, and

hand orthosis), basic word-processing and Internet access. More complex BCI applica-

tions can be used to control devices such as motorized wheelchairs, robotic arms, and

limb prostheses. BCI technology makes a huge difference in the productivity and quality

of life of severely disabled people.

There are a variety of other methods for recording brain signals that might be used in a

BCI. For example, we can record electrical or magnetic fields, or use functional magnetic

resonance imaging, positron emission tomography and infrared imaging. However, most

of these methods are technically intricate, prohibitively expensive, have slow temporal

response or limited real-time capabilities, or are at an early stage of development. In

reality, therefore, recording electrical potentials is more practical for clinical applications

at the present and for the near future [131]. There are alternative electrophysiological

recording methods. The electrical fields produced by brain activity can be recorded from

the scalp (EEG), from the cortical surface (electrocorticogram (ECoG)), or from areas

inside the cortex (local field potentials (LFP) or action potentials from a single neuron).

Presently, intracortical BCI data (LFP and action potentials) come mainly from animals,

primarily monkeys. Human BCI data are confined almost entirely to EEG and short-term

ECoG. Notice that EEG, unlike the invasive options, avoids the risks of brain surgery

(tissue damage and scarring), and is one of the most popular BCI approaches.

Different EEG features can be used to convey user’s intent. Based on the categories

of EEG components, there are three major types of EEG-based BCIs: P300 BCI, slow

cortical potential (SCP) BCI, and sensorimotor rhythm BCI. The P300, which is one

of the most important ERP components, represents brain activity that is elicited in re-

sponse to a salient or attended event (stimulus). It appears in the centroparietal EEG

about 300ms after presentation of the stimulus. Donchin’s group [30, 25] demonstrated a

P300-based BCI that uses the oddball paradigm [104]. The BCI presented the user with
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a matrix of 6 by 6 cells, each containing one letter or symbol. EEG was recorded while

the letters/symbols were flashed in succession. Only the letters/symbols desired by the

user evoked a large P300. By detecting the P300s associated with the presentation of

the desired letters/symbols, the P300-based BCI system achieved a communication rate

of 7.8 characters per minute for healthy subjects and with an accuracy of 80% accuracy.

Their report confirms that a P300-based BCI enables a virtual keyboard operation with-

out requiring any activation of skeletal muscles. Another completely different type of

EEG component is the SCP, which has a latency ranging from 500ms up to 10s after the

stimulus onset. The SCPs indicate the overall preparatory/excitation level of a cortical

network. Behavioral and cognitive performance improves after subjects learn to increase

the negativity of the SCP, while cognitive and behavioral performance reduces during

positive cortical potentials. Birbaumer and his coworker demonstrated a SCP-based BCI

on locked-in patients. These users were able to move a cursor to a targets located at the

bottom (more positive SCP) or top (more negative SCP) of a computer screen, which

allowed them to select letters, words, or pictograms [7, 61]. The sensorimotor rhythm

approach, which differs from the P300 and the SCP approaches, uses 8−12 Hz (mu) and

18 − 26 Hz (beta) oscillations in the EEG recorded over sensorimotor cortices. Several

laboratories have demonstrated BCIs based on sensorimotor rhythms [135, 93, 105, 60],

which are used for typing on a virtual keyboard. All three types of EEG-based BCI can

be used to support basic word-processing or other simple control tasks.

There are two major advantages of P300-based BCI over other BCI approaches.

Present-day BCIs mostly depend on visual stimuli. In real applications, people who are

locked-in or otherwise severely disabled, may not be able to follow such stimuli, espe-

cially if they change rapidly. In this case, P300-based BCIs that use auditory cues may

prove effective. Another important property of the P300-based BCI is that it does not

require subject training. Both trained and naive subjects generate a P300 response to rare

events in an oddball sequence, as shown in Sutton’s original report [120]. In addition,

the P300 has low inter-subject and intra-subject variation and is reliable [29].
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Modern computer technology and our newly-obtained knowledge of brain activity

make the development of effective BCI possible. The BCI system consists of several

components: brain signal acquisition and processing, signal feature extraction, algorithm

translation and device operation. Electrophysiological signals reflecting brain activity can

be acquired from the scalp, from the cortical surface or from within the brain, and are pro-

cessed to measure specific signal features, such as amplitudes of ERP. The signal features

reflect the user’s intent and are translated into commands that operate a device, such as

a wheelchair. One of the fundamental aspects of BCI operation is that the system adapts

to the user at the same time the user adapts to the system. The user must generate brain

signals that encode intent and the BCI system must translate these signals into commands

that accomplish the user’s intent. The translation algorithm, also known as classification

algorithm, is crucial for an effective BCI. Recently, a lot of effort has been spent on the

development of classification algorithms for BCIs [68, 78, 9, 133, 127]. When design-

ing classification algorithms for an ERP-based BCI, several aspects should be carefully

considered, such as: noise, outliers, high dimensionality, non-stationarity, and insufficient

data. A successful ERP-based BCI system depends on robust ERP detection.

1.2.3 ERP Detection: Single Trial vs. Trial Averaging

Extracting ERPs from EEG signals is very challenging. The amplitude of the ERP sig-

nals is quite small (1-30µV). The background EEG signals have magnitudes that are com-

monly 10 times than that of the ERP. The conventional strategy is to average across trials

since this increases the signal-to-noise ratio and makes the ERP more detectable. Many

studies have been undertaken on trial-averaged ERPs [52, 53, 73, 125, 18]. Makeig and

colleagues attempted to resolve the question of what the ERP actually represented by

a detailed analysis of EEG and ERP [73, 71, 72]. They compared the averaged ERP

and assessed the inter-trial coherence, and used independent component analysis (ICA)

to separate out the different electrical activities. However, there are several limitations

associated with trial-averaging. First, the process of averaging filters out much of the
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information about cortical dynamics. Second, it requires that each stimulus be presented

multiple times, which directly compromises the efficiency. Hence, the trial-averaged ap-

proach is not an ideal strategy for time-demanding applications.

A different ERP detection strategy, the single-trial approach, has been developed in

recent years and appears to be promising [87, 9, 123, 79, 117]. In the single-trial ap-

proach, sensor data are averaged over sensors for improving the signal-to-noise ratio, as

opposed to the standard approach, which averages over trials. Parra and his colleagues

developed a promising BCI, for visual object recognition, that uses linear spatial integra-

tion for single-trial ERP detection [87, 88, 108, 109, 102, 34]. Single-trial analysis of

ERPs, which requires to uncover the origin of neural response variability and the precise

timing and amplitude of individual ERPs, enables one to study parameters that cannot be

controlled across trials, such as reaction time or perception. The single-trial approach,

therefore, opens up new opportunities for studying the neurological origin of the ERP and

behavioral relevance.

1.2.4 Rapid Serial Visual Presentation

Rapid serial visual presentation (RSVP) is an image presentation paradigm that is a useful

tool for exploring the temporal characteristics of visual information processing. The idea

of using rapidly-presented visual items was proposed in 1969 to assess visual perception

rate [28] and recognition memory [100]. In the RSVP paradigm, visual items, such as

images, are displayed sequentially at the same spatial location at a very high rate. In the

RSVP paradigm, we can control the time for viewing a given item and the preceding and

subsequence demands on the subjects. It has been widely used in behavioral and psycho-

logical studies, such as visual perception [28], short time conceptual memory [100, 99],

attention [16], and target detection [66, 10].
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1.2.5 ERP vs. Behavioral Response

An obvious alternative to using ERP detection in RSVP is to record a behavioral response

in RSVP. For example, the user could press a button whenever a target is detected. Pre-

vious research indicates that there is no significant difference in detection performance

of methods based on the EEG or a button press [35]. However, there are several ad-

vantages of ERPs over behavioral measures. First, an ERP does not require a behavioral

response. This is one of the greatest advantages of the ERP technique, specifically in BCI

applications for people with motor disorders. Second, an ERP provides a continuous (as

opposed to a binary) measure of detection, which may provide insight into the time course

and spatial distribution, of cognitive processes associated with target detection. An overt

response, in contrast, reflects the output of a large number of individual cognitive pro-

cesses, making it difficult to attribute a variation to a specific cognitive process. Third, an

ERP has high temporal resolution and lower timing variance, whereas an overt response

has larger variations in reaction time (RT) and accuracy [43]. Fourth, an ERP has a lower

latency and can reveal a sign of neural processing well before an overt response [18].

Fifth, ERPs can reduce fatigue relative to physical response mechanisms, such as button

presses, the latter of which may cause increased strain over long periods of usage.

Yet another option is to integrate the ERP detection and the behavioral response to

bring performance benefits. This approach reduces the false alarms relative to the ERP

approach and the temporal variances relative to the behavioral approach [35, 74, 43].

1.2.6 Neural Signatures of Visual Information Processing

Much of the current research on ERPs has been directed toward identifying particular ERP

components as markers of specific aspects or stages of human perceptual processing, such

as encoding, selecting, memorizing and decision making [40, 94, 95, 53, 52, 96, 2]. Hill-

yard [40] gave a complete review on ERP components as physiological signs of cognitive

and linguistic processes. He pointed out that most of the earlier ERP components varied
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as a function of physical stimulus parameters and were relatively insensitive to changes

in perceptual processing demands. In contrast, the longer latency components appeared

to be asociated with specific perceptual or cognitive processes. A broad negative ERP

(latency 150 − 300ms) was elicited by the attended stimulus. While the early negative

ERPs gave some information on the attentional channel, the P300 seemed to be a par-

ticularly sensitive index of the degree of attention received by deviant stimuli in and out

of the designated focus of attention. The amplitude of the P300 was generally largest

for task-relevant stimuli. Campbell and his colleagues [96] investigated the P300 com-

ponent correlates of human information processing using auditory stimuli. They found

that as the probability of the stimuli decreased, the amplitude of the P300 became larger,

later and more frontal. Johnson et al. [52] studied the human visual system by measur-

ing the time course of neural correlates of object recognition. They found an early ERP

component, arising around 135ms post-stimulus, that occurred when there were low-level

feature differences between images. Unlike the early component, a late ERP component,

arising around 150 − 300ms, covaried with the subsequent reaction time and was corre-

lated to recognition. Campbell [2] and Johnson [53] had the same finding on the effect

of stimulus difficulty on ERPs. They found that the amplitude of the P300 component

decreased and the latency increased when the difficulty level of stimulus increased. Re-

cently Philiastide and his group [94, 95] characterized the neural correlates of perceptual

decision making in the human brain. They used ERPs to assess the human visual per-

ceptual system in a setting where the images are separated in time. They found an ERP

component that occurred around 200ms after the stimulus onset, the peak value of which

was inversely correlated with behavioral performance and stimulus difficulty. None of the

above studies used the RSVP paradigms.

Researchers have gained valuable insights into the mechanisms of visual processing

by using the RSVP to push the visual system to its temporal limits [122, 125, 58]. Thorpe

and his colleagues [122] designed a nature-scene target detection task to assess the speed
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of visual processing using the RSVP and the ERP. They demonstrated that the visual pro-

cessing needed to perform the highly demanding visual task could be achieved in under

150ms. Their finding suggests that it might be possible to use neural activity associated

with perceptual decision making to identify targets within images.

1.2.7 An BCI Application – Visual Object Detection

One BCI application that is the focus of this thesis is detection of targets in satellite images

of earth surface. In recent years, the volume of commercial geospatial imagery and other

imagery has increased to unprecedented levels. Finding instances of an object (referred

to as targets) in a large volume of images is an important task in many domains, such

as medical archives, web mining, national security, criminal justice and aerial geospa-

tial imagery used for civilian planning. In such complex domains, where there exists a

large variability within and across images, human analysts are very skilled at exploiting

contextual cues and incorporating prior knowledge, whereas fully-computerized machine

learning solutions oftentimes perform poorly. On the one hand, manual search is labori-

ous and there is a shortage of skilled workers. On the other hand, the visual acuity and

perceptual capabilities of humans far exceed those of current automated techniques for

broad context image search and retrieval tasks [32]. For these reasons, there is a great

need to develop an alternative method. Ideally, we would like to build a target detection

system that combines the accurate perceptual judgments from humans and the computa-

tional power from machines.

BCI technology, aside from assisting people with motor disability, can be used to en-

hance the cognitive performance for healthy users. When a human detects a target, the

brain produces an ERP in the EEG. An automated method is then used to detect the ERP.

Part of the motivation behind the application of ERP detection on visual object search

is that automated methods are better at detecting a relatively simple and approximately
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fixed-shape ERP in EEG data than they are at detecting arbitrarily-shaped, complex tar-

gets in images. Recently, a number of researchers have demonstrated the use of ERP-

based BCI for visual object detection. Sajda et al. [103, 89, 35] developed a visual object

detection system, named cortically-coupled computer vision. The system detected a sub-

ject’s ERPs, while the subject views a stream of images presented at a high rate (RSVP).

They then use a weighted linear logistic classifier (LLC) [91] for single-trial ERP detec-

tion. The system enhances the performance of satellite imagery analysts by performing a

rapid sorting of image ‘chips’ drawn from a broad-area satellite image. Shamlo’s group

developed a target search system that uses the ICA to spatially filter high-density EEG

signals [5]. Sheoney’s group demonstrated an image classification system using single-

trial ERP detection [117, 56].

1.3 Thesis Outline

Chapter 2 describes several experimental factors: subjects, stimuli, image display paradigm,

tasks, EEG electrodes and experimental procedures. We design several experiments in-

volving intelligent analysts and naive subjects. We discuss EEG data acquisition and data

preparation, which may affect the quality of EEG data and ERP analysis.

Chapter 3 presents several insights on neural correlates of human visual perception.

We analyze neural correlates on realistic images in the RSVP image display paradigm.

We investigate the relationship between the ERP characteristics and the detection dif-

ficulty in terms of visual stimulus complexity and task difficulty. We demonstrate that

more difficult trials have smaller ERP magnitudes. The early component appears around

110 millisecond (ms) and the late component appears around 250ms. The ERP pair wave-

forms for the easier trials are more similar than those for the harder trials. Both target

difficulty and task difficulty are correlated with neural activity. ERPs predict behavioral

performance. More difficult trials have longer RT and higher RT variance. Smaller ERP

magnitude associated with longer RT and higher RT variance. The finding indicates that,
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for dynamic tasks in visual information processing, the brain’s resource management may

trigger allocation of additional cognitive resources resources, such as attention, to a given

visual stimulus, under increasingly task or target difficulty conditions.

Chapter 4 reports the design and performance of our BCI system for target image

search using single-trial ERP. The feasibility of cross-session training and the efficacy

of incremental learning on cross-session data are demonstrated. The results show that

high inter-session data variance can be reliably mitigated. The cross-session training

method, which uses more data, outperforms the single-session method. The incremental

learning is as effective as the batch learning in spite of the fact that it has only 1/3 of the

computational cost. The ERP-based approach is 5.3 times faster than the traditional image

viewing approach, and provides equal or higher detection rate. Linear and nonlinear

support vector machines (SVMs) significantly outperform the LLC for single-trial ERP

detection on our data. Channel dimension reduction using the linear discriminant analysis

(LDA) successfully extracts representative features and thus improves the performance,

and simultaneously reduces the computational cost.

Chapter 5 reports the design of a generative learning model, mixed-effects models

(MEM), which takes advantage of domain knowledge, on modeling and classification for

single-trial ERP. The MEM constructs a probability density model from which we can

compute decision functions for ERP detection and that provides underlying information

about ERP patterns. We propose a hybrid ERP detector, which combines a generative

model and a discriminative model. More specifically, the new method combines the MEM

and the SVM using the Fisher kernel. The results show that the new method achieves

substantial improvement over the generative model (MEM) and marginal improvement

over the discriminative model (SVM).

Chapter 6 summaries our findings and contributions, and provides recommendations

for future investigation.



Chapter 2

Empirical EEG Data
Collection and Preparation

Acquisition and processing of EEG data as well as the experimental design are a funda-

mental part of this work. Experimental design, data collection, and data preparation are

critical procedures in the cognitive study. Picton et al. provided a complete guideline

for EEG experimental design and EEG recording standards [97]. The goal at the exper-

imental stage is to record EEG data reliably, measure them accurately, and prepare the

data properly. Tasks are designed specifically to elicit the cognitive processes. In this

thesis we design several experiments on different study purposes for ERP characteristics

in human visual perception and single-trial ERP detection. In our study, subjects perform

target detection by clicking on a button as soon as they see target. At the same time, we

record their EEG signals.

2.1 Subjects

Five groups of human subjects are recruited in the study, including professional intelli-

gence analysts (IAs) and naive subjects. None of these participants have previous experi-

ence with the RSVP modality. Written informed consents approved by the internal review

board are obtained from all participants. All subjects have normal or corrected visions.

• Group #1 (IA Dataset #1) – three professional IAs are recruited at Honeywell.

15



16

(a) Broad-area image

(b) Target and distractor examples

Figure 2.1: (a) A broad-area aerial image is segmented into hundreds of image chips.
These chips are rapidly displayed to the subjects one-at-a-time. (b) Examples of tar-
get (surface-to-air missile site) and non-target (distractor) chips. Target are encountered
rarely.

• Group #2 (IA Dataset #2) – three professional IAs are recruited at Honeywell.

• Group #3 (naive dataset #1) – four graduate students (ages range from 25− 35; all

males) are recruited at OHSU.

• Group #4 (naive dataset #2) – ten naive subjects are recruited at Honeywell.

• Group #5 (naive dataset #3) – ten graduate students (ages range from 25− 45; four

females) are recruited at OHSU.

2.2 Stimuli

Large-scale satellite images are decomposed into hundreds of smaller chips, which are

labeled according to whether they contained a target. A example of a satellite broad-area

image (27000 × 6500 pixels, representing an area of over 200km2) is shown in Figure
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Figure 2.2: An illustration of the rapid serial visual presentation (RSVP) image display
modality. Each RSVP block starts with a fixation screen and each image (a target or a
distractor) is followed by a single pattered mask (in data collection for naive dataset #2
and #3 only). One half of the blocks contain a single target. During each RSVP block
a sequence of images are displayed at the high presentation rates, such as 100ms/image.
On the right, the upper trace is the trial-averaged ERP associated with the target stimuli
(in one representative channel) and the lower trace is the trial-averaged ERP associated
with the distracter stimuli. The stimulus onset corresponds to 0ms.

2.1 (a). Each chip (500 × 500 pixels) represents an area of 0.09km2. The targets are

surface-to-air missile (SAM) sites, characterized as star pattern with six circles and in the

gray scale satellite imagery. There are 105 different SAM sites. The size of the targets is

small and the scale, shape, orientation, and location of the targets naturally varies. Some

image chips only contain a portion of the pattern. The three target image examples and

the three non-target (distractor) image examples are illuminated in Figure 2.1(b).

2.3 RSVP Image Display Paradigm

The image chips are presented using the RSVP image display paradigm as shown in

Figure 2.2. The infrequent targets (SAM sites) are embedded in sequences of distractor

images. The chips are presented on a 21 inch CRT monitor using Presentation software

(Neurobehavioral Systems, Albany, CA). Each image subtended 22×22 degrees of visual
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angle. During each RSVP block, a sequence of images is displayed at a high presentation

rate, such as 100ms/image, i.e. 10 Hz (the image duration is defined as the inter-stimulus

duration). Images are presented in short bursts of a few second duration. In data collection

for naive dataset #2 and #3, patterned masks are shown after every image to disrupt the

accumulation of information from the retinal image representation. In other studies, there

is no masks. To break monotony and minimize possible eye strain, consecutive blocks are

separated by a fixation screen of user-controlled duration.

2.4 Task

The subjects perform rare target detection. The stimuli are presented to the subjects using

the RSVP paradigm as Figure 2.2 in all experiments. The subjects are instructed to

keep their eyes on the center of the screen and avoid eye blinks during image viewing,

use the black screen to blink or rest, and keep their hands close the space bar so that

they can respond as quickly as possible to the presence of targets. Both behavioral and

physiological data are collected except that for Group #4 we only collect behavioral data.

2.5 Experimental Procedures

In all experiments, subjects perform SAM-site target detection in the RSVP paradigm.

The RSVP sessions are structured in two phases – training phase and test phase. Each

subject is trained prior to testing. In the training phase, images are drawn with replace-

ment from the image chip set and shown in a random order. Subjects receive feedbacks

on their responses at the end of each block. In the test phase, the chips are presented in

the spatial order in which they occur in the broad area image. There is no feedback in the

test phase. There are slightly different procedures for each experiment.

Experiment #1 (Group #1, IA Dataset #1) – three professional IAs are recruited.

The RSVP rate of 100ms/image is for subject 1 and subject 3, and the RSVP rate of
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150ms/image for subject 2. Each subject is trained on one session and tested on seven

sessions. Each session contains dozens of blocks (sequences), and each block is five sec-

onds in length. Half of the sequences contain single target instance. There are around 50

targets in the train session, and only one real target and several synthetic targets in the test

sessions for each subject.

Experiment #2 (Group #2, IA Dataset #2) – three professional IAs are recruited

to compare the neurophysiologically-driven target image search with the conventional

broad-area manual image search. All subjects have experience with a broad range of

imagery and target types. They are all trained in the use of geo-spatial analysis tools.

None of them are familiar with the RSVP paradigm. The RSVP rate is 100ms/image for

subjects 1 and 2. Subject 1, 2 and 3 are tested on one session, four sessions and seven

sessions. The RSVP rates for subject 3 are 60ms/image for training and four of the test

sessions and 100ms/image for the remaining three test sessions.

Experiment #3 (Group #3, naive dataset #1) – four male graduate students are re-

cruited. To assess cross-session performance, we collect data at different times and under

different experimental conditions. Namely, data are collected from each subject during

one morning session and one afternoon session each day on five different days. Each

session contain 200 blocks. The image duration is 100ms/image. Each block contain 37

images and is five seconds in length. 75% of the blocks contain a single target instance.

Images are drawn with replacement and shown in a random order. Each subject participats

in 10 sessions in total.

Experiment #4 (Group #4, naive dataset #2) – Ten naive subjects are recruited. For

each subject, our block design consists of five sessions, where the images (target, distrac-

tor, and mask) in each session are displayed for one of five different durations, i.e., 25,

50, 100, 150, and 200 ms. Each session consists 210 blocks, each of which lasts for one

second. One half of the blocks contain a single target.

Experiment #5 (Group #5, naive dataset #3) – Ten graduate students are recruited. In

the training phase, there is no pattern mask. Images are shown in a random order at a
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(a) 32 channel (b) 64 channel

Figure 2.3: Layout of the 32 and 64 channel EEG electrode placements. The letter at
each electrode identifies the particular subcranial lobe (FP, prefrontal lobe; F, frontal lob;
T, temporal lobe; C, central lobe; P, parietal lobe; O, occipital lobe). The number or the
second letter identifies its hemispherical location (Z, denoting line zero refers to an elec-
trode placed along the cerebrum’s midline; even numbers represent the right hemisphere;
odd numbers represent the left hemisphere. The numbers are in ascending order with
increasing distance from the midline.)

rate of 100 ms/image. Train session contains 75 blocks. Each block contains around 37

images and is about five seconds. There are 75% of the trials containing a single target

instance. In the test phase, patterned masks are used after every image. There are four

test sessions per subject, one for each image duration (50, 100, 150, and 200 ms). Each

session consists of 210 blocks, each of which lasts for one second. One half of the blocks

contain a single target.

2.6 EEG Data Acquisition

In the RSVP condition, EEG data are collected using BioSemi ActiveTwo system (BioSemi,

Amsterdam, Netherlands). The 32-channel EEG system is used in experiment #1− 3 and

the 64-channel EEG system is used in experiment #5. Figure 2.3 shows the 32 and 64

channel labels and channel locations. The standardized arrangement of electrodes over
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Data Acquisition 

Computer

Parallel port

Cable

Presentation 

Machine

USB Cable Optical Cable

BioSemi Stimulus Box

BioSemi Amplifier

Electrode 1

Electrode 2

Electrode 32

Figure 2.4: Data Collection Scheme. One computer is for image presentation and one
computer is for EEG data acquisition.

the scalp ensures ample coverage of all parts of the head. Subjects are seated 22 inches

from screen. EEG signals are recorded using two computers, one for image display and

one for data collection as shown in Figure 2.4. The triggers generated by the Presentation

script to mark the onset of target and distractor stimuli are received by the BioSemi system

over a parallel port and recorded concurrently with the EEG signals. The user’s button

presses, indicating the presence of perceived targets, are also recorded by the Biosemi

system. The data are sampled at 256 Hz. All channel input impedance is less than 15kΩ.

2.7 EEG Data Preparation

2.7.1 Filtering, Calibration and Artifact Removal

EEG signals are bandpass-filtered between 1 − 45 Hz by a 6th-order Butterworth fil-

ter to correct DC drift and limit the effects of 60 Hz electrical line noise. Due to the

gain in Biosemi recording system, consisting of the amplifiers and A/D converters, factor

calibration is performed on all channels by multiplying a constant 0.0312 (suggested by

Biosemi).

Before the experiment, subjects are requested an eye movement calibration experi-

ment during which they are instructed to blink repeatedly by looking at the fixation cross



22

(a) 50ms (b) 100ms

(c) 150ms (d) 200ms

Figure 2.5: Comparison of the four referential methods – grand mean reference, linked
mastoid reference, left mastoid reference and right mastoid reference. The evaluation is
conducted on naive dataset #3. The correlation between the 64 scalp channels and the
reference channel is computed. The correlation coefficients are plotted as a function of
subject ID. The plots shows the correlation results for four RSVP sessions – (a) 50ms,
(b) 100ms, (c) 150ms and (d) 200ms. The correlation using the left mastoid reference
(green dashdot line) is consistently much lower than the correlation using the other three
reference methods across 10 subjects and four RSVP sessions.

in the center of the screen. Channels with bad connections are removed by inspection.

Trials with strong eye movements or other movement artifacts are manually removed by

inspection. No artifact removal for eye blink is applied because our experimental designs

have very short burst in each block (sequence).
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2.7.2 Referential Recordings

We apply referential recordings for each active electrode. Referential recordings are rec-

ommended for ERP studies [97]. Biosemi ActiveTwo stores a monopolar signal (chan-

nel). By subtracting an EEG reference (re-referencing), the common mode interference

is reduced and the signal to noise ratio is increased. There are a variety of referential

options. Four common referential methods – grand mean reference, linked mastoid ref-

erence, left mastoid reference and right mastoid reference – are compared using naive

dataset #3. The grand mean reference use the mean of all 64 channels as a reference. The

linked mastoid reference use the average of left and right mastoid channels as a reference.

The left/right mastoid reference use the left (Tp7) / right (Tp8) channel as a reference.

The reference subtraction off-line is performed for each channel to compute a referenced

EEG signal.

To select the most uncorrelated reference of the four reference methods, we compute

the correlation coefficients between each channel signal and each reference signal for

each subject. The final correlation are reported as the mean correlation coefficients across

all 64 channels and all trials. Figure 2.5 shows the comparison of the four reference

methods. We measure the correlation between all scalp channels and the four different

references. The left mastoid reference has the lowest correlation coefficient values across

all subjects and all sessions. Therefore we select the left mastoid reference to re-reference

each channel EEG signals.

2.7.3 Data Segmentation

In ERP detection study, raw EEG data are segmented into task-relevant epochs. Each

epoch is corresponding to a single image and consists of a short segment of EEG (from

the stimulus onset to 500ms after the stimulus onset). Each epoch is associated with a

image chip. Based on the literature, the peak latency of the recognition-related ERPs

varies from 250ms to 600ms post-stimuli depending on stimulus and subject parameters
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Figure 2.6: Averaged ERP scalp distributions for a subject at 100ms intervals following
target (top row) and distracter (bottom row) stimulus onsets. Notice that the spatiotempo-
ral activity changes for the target trials and does not change for the distractor trials.

[84]. Figure 2.6 shows the electrical activity over the scalp as a function of time. One

clearly discernible feature is a peak in the trial-averaged activity around 300ms when tar-

get stimuli are present, whereas no amplitude change occurs for distractor stimuli. There

are some amplitude changes around 700ms, which are believed to be mainly caused by

motor responses (button click activities). Based on our study on the same set of stimuli,

the averaged button response time (RT) across subjects is in the range of 500 to 600ms

with RT variance 20 to 50ms depending on the stimuli difficulty for the RSVP rate of

100ms/ image. To extract the neurally-relevant portion of the ERPs (and to avoid EEG

signals associated with motor responses, which are presumed to be unavailable in many

practical applications), we use only the EEG signals from the stimulus onset to 500ms

post stimulus. The segment from 100ms before the stimulus onset to the stimulus onset

is used to normalize the EEG data to have zero mean and unit variance in each channel.

2.7.4 Data Pre-processing

There are three steps of preprocessing for the training data. First, we remove targets

that do not have an associated button click within 1.5s of the stimulus onset (many stud-

ies in the literature have reported that the reaction time of a button press ranges from

300− 500ms depending on the complexity of the visual discrimination task [114]). The
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Figure 2.7: Disjoint windowing scheme of continuous EEG data, which is used to extract
non-overlapping training samples. Each disjoint window is 600ms, 100ms before the
image trigger and 500ms after the trigger onset.

assumption is that there is no ERP if there is no button press. Second, we omit all dis-

tractor samples within one second before or after the target stimuli so that the distractor

windows are not contaminated by ERP leakage (hence, the windows are not contiguous

when they are near target stimuli). Third, we create non-overlapping (disjoint) windows

of EEG activity corresponding to distracters as shown in Figure 2.7. The disjoint window-

ing scheme reduces the temporal correlation between data from two different windows.

Each window is 600ms in length and extend from 100ms before the trigger (normal-

ized window) to 500ms after the trigger (epoch window). In non-overlapping windowing

scheme, we discard distractor samples occurring within the 600ms window.

For test data, on the other hand, we use overlapping windows because we do not

know the class label in advance. The 32-channel data in each 500ms epoch are eventu-

ally concatenated to form a feature vector (32 × 129 dimension). The processed EEG

measurements are then subjected to the classifiers.



Chapter 3

Neural Correlates of Human
Visual Perceptual Processes

in RSVP Paradigms

3.1 Introduction

Unveiling the neural correlates of visual detection and its underlying component pro-

cesses is challenging due to the complexity and massively parallel interactions in the

human brain. Humans can recognize an object within a fraction of a second. The neu-

ral mechanisms underlying this remarkable ability are not fully understood. The human

visual information processing includes sensory image analysis, feature extraction, infor-

mation fusion, decision making and motor response. Feature extraction and information

about the object of interest (target) are fused around 100ms to 200ms. There are limits

on how much a human brain can process. These limits are generally considered in terms

of attentional and cognitive processing resources that can be allocated to different tasks.

After the brain recruits the relevant attention and other neuronal resources to accumulate

the information, the brain will ultimately determine a decision around 300ms and then

control a explicit motor response.

26
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Allocation of attention and cognitive processing resources is a fundamental determi-

nant of performance in most perceptual tasks. With a few exceptions, attentional allo-

cation has been measured by behavioral performance on single trials well separated in

time. However behavioral studies do not have high temporal resolution of the spatial dis-

tribution of attention, making it hard to determine the timing of rapidly shift attention.

In contrast, the ERP methodology provides high resolution measures of the time course

of cognitive processing and thus can achieve greater precision than behavioral techniques

alone. It provides a second window into attention and cognitive resources allocation in

complex informational transactions of the human visual perceptual system. It can re-

flect the timing, ordering and interactions of the intermediate processes that are engaged

in specific cognitive activities and lead to inferences about the mechanisms of parallel,

serial and hierarchical processing of the system.

Much of the current research on ERPs has been dedicated to assess specific aspects

and stages of human perceptual processing, such as encoding, selecting, memorizing and

decision making. Huk [45] investigated neural activity in Macaque parietal cortex and

found out that it reflected temporal integration of visual motion signals during perceptual

decision making. They showed how the brain accrued and held the sensory signals to

guide later actions. Shall [112] examined neural basis of saccade target selection during

visual search and demonstrated a mechanism that conspicuous stimuli in complex scenes

might attract gaze. Recently Philiastide and his group [95] examined temporal character-

ization of the neural correlates of perceptual decision making in the human brain. They

used single-trial ERP analysis to demonstrate a temporal evolution of component activity

indicative of an evidence accumulation process, which began after early visual percep-

tion and had a processing time that depended on the strength of the evidence. By pushing

the visual system to its temporal limits using RSVP paradigm, recently researchers gained

valuable insights into the mechanisms of visual processing using neural signals [122, 58].

Thorpe and his colleagues [122] designed a nature-scene target detection task to assess

the speed of visual processing using the RSVP and the ERP. By comparing the difference
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between the ERPs associated with targets and the ERPs associated with non-targets in an

animal detection task, they showed that there was very sharp diverge at around 150ms at

frontal sites, which implied a great deal of visual precessing completed before this time.

They then concluded that the visual processing needed to perform the highly demanding

visual task could be achieved in under 150ms. Keysers [58] used single-unit recordings

and RSVP paradigm in macaques and showed that face-selective activity could be elicited

by masked images presented for as little as 14ms. They used functional magnetic reso-

nance imaging on humans and showed that activations in object recognition areas were

as brief as 40 ms. Chun [16] proposed a two-stage model for perceptual detection and

examined temporal limitations of search (the attentional blink) for multiple targets in an

RSVP display paradigm.

Recently the assessment of the covert attentional processes have been intensively stud-

ied directed toward the associated particular ERP components. There are a variety of

different components showing attention effects in visual selection. Information about dif-

ferent stimulus features can be available to attentional mechanisms at different times de-

pending upon stimulus and task requirements. For example, in a recent study, Philiastides

et al. investigated how the decision difficulty affected the allocation of neural resources

and the timing of cortical processing using the face/car and the red/green stimuli in a cued

paradigm [94]. They found an ERP component, occurring approximately 220 ms after

the onset of the stimulus, the peak value of which was correlated with behavioral per-

formance and stimulus difficulty. Their results showed that the early component N170

was not directly linked to the actual decision and was initial evaluation of the evidence.

The late component, appearing around 300 − 450ms, was closely linked to decision and

highly predictive of behavioral accuracy. The difficulty component, between the early

and late components, predicted the onset of the late component and implied the recruit-

ment of relevant attention for a difficulty decision. Hillyard [40] pointed out that most

of the earlier ERP components varied as a function of physical stimulus parameters and

were relatively insensitive to changes in perceptual processing demands. In contrast, the
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longer latency components appeared in conjunction with specific perceptual or cognitive

processes. A broad negative ERP (latency 150−300ms) was elicited by the attended stim-

ulus. While the early negative ERPs gave some information on the attentional channel,

the P300 seemed to be a particularly sensitive index of the degree of attention received

by deviant stimuli in and out of the designated focus of attention. VanRullen [125] con-

tinued Thorpe’s work [122] and studied the timing of perceptual processing on animal

and transportation detection tasks. Their results demonstrated that the perceptual activity

occurring at 75ms was not accessible to awareness and the one occurring at 150ms was

decision-related activity. Johnson et al. [52] studied the human visual system by mea-

suring the time course of neural correlates of object recognition using animal and natural

stimuli in cued-target paradigm. By subtracting the ERPs associated with targets from

the ERPs associated with disctractors, there was a diverge at around 135ms. They found

this early ERP component arising when there were low level feature differences between

images. Unlike the early component, a late ERP component, arising around 150−300ms,

covaried with the subsequent reaction time and was correlated to recognition. They ar-

gued the timing of object recognition was after 150ms, which was conflict with Thorpe

and VanRullen’s findings. Picton reported that when the auditory target stimuli became

difficult, the amplitude of the P300 wave became small and its latency became longer

[96]. For the study of the time course of visual processing from early perception to deci-

sion making, Johnson’s group [53] showed that image stimulus difficulty had the same

effects on the amplitude and onset of P300 in the visual cued-target paradigms as Pic-

ton’s finding. Hillyard [39] used ERP and PET to measure the timing and location of

visual selective attention. They found that C1 occurring at 50 − 90ms, P1 occurring at

80 − 130ms and N1 occurring at 140 − 200ms in study of spatial attention mechanism.

For timing of feature selection, they showed that P1 and N1 components were associated

with selection of attended spatial location. The selection negativity component SN , oc-

curring at 150 − 300ms, was associated with selection of relevant features. The N2 and

late positive component LPC, occurring at 250− 300ms were related to disclamation of
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targets. They concluded that attention to non-spatial features such as color, motion and

shape was manifested by different ERP patterns beginning with latencies of 100−150ms.

The discrimination of infrequent change in speed of movement requiring a manual re-

sponse was associated with an negative N2 component and late positive component. The

ERP preceded the motor response times by several hundreds milliseconds. Woodman

and Luck [137] investigated ERP measurements of rapid shifts of attention during visual

search and found that negative N2pc component around 200 − 300ms is related to the

covert orienting of visual attention before the object recognition.

In contrast to the previous studies, this thesis uses the ERP as a physiological marker

to examine the human visual perception and cognition in a dynamic recognition task.

Our target stimuli are rare as opposed to categorizing two equally-prevalent targets. The

targets are realistic target (SAM sites) as opposed to faces and cars. We follow each stim-

ulus with a patterned mask to disrupt the accumulation of information from the retinal

image representation. To simulate saccadic eye movements, we display visual stimuli at a

dynamic RSVP paradigm. In contrast to sequences of well separated trials in experimen-

tal settings, the perceptual system in natural situations is confronted by rapidly changing

stimuli arising from the dynamics of the environment, e.g. scenery, combined with the or-

ganism’s own actions, e.g., eye movements. The main difference is that they control only

the target difficulty, whereas we control both the target difficulty and the task difficulty.

Our experimental design allows us to estimate how physiological and psychophysical

performance depends on both the target and task difficulty.

The goal is to assess the dynamics of resource management, such as attention allo-

cation, using brain signatures (ERPs) involved in human visual information system. The

question is how attention is allocated if the new stimulus arrives before the observer fin-

ishes the analysis of the preceding stimulus? In this study we examine the dynamics of

visual detection processes allocation as a function of both task requirements (image dura-

tion) and stimulus (target) difficulty on realistic target detection tasks. The hypothesis of

our research is that there is high correlation between the underlying psychological aspects
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of the ERPs and the dynamics of visual detection processes allocation. In this chapter we

focus on the ERP characterization correlated with the human information processing. We

conduct two experiments. The first experiment is the detectability study to assess the dif-

ficulty of realistic stimuli and subject performance using psychological functions. The

second experiment is the neural correlate study of human information processing using

the ERP temporal characterization on a real target detection task.

3.2 Experiment 1: Psychometric Function for Stimulus

Difficulty and Subject Performance

This experiment is to quantify stimulus difficulty for complex real natural images and

subject performance. The stimuli vary in detectability, which is estimated as the minimum

exposure duration necessary for subjects to detect a specified target correctly 75% of the

time. The detection rate is the probability of correct behavior responses (hits). The image

duration threshold is defined as the 75% detection rate of behavior performance. The

stimulus difficulty and subject performance are assessed by image duration thresholds

using psychometric functions. This study is based on behavioral responses only.

3.2.1 Materials and Methods

Subjects

A total of ten naive subjects participated in the study as described in Chapter 2 Group #4,

naive dataset #2. The task is to detect the presence of rare targets in the RSVP paradigm.

The subjects perform target detection by clicking on a button as soon as they see a target.

The behavior responses are collected.
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(a) Easy (b) Median easy (c) Median hard (d) Hard

Figure 3.1: Target image examples – surface-to-air missile (SAM) sites at four difficulty
levels – easy, medium easy, medium hard, hard. Target chips are encountered rarely.

Stimuli

The stimuli are real targets in the gray-scale satellite imagery. Specifically they are

500 × 500 pixel images of 105 different SAM sites. The size of the targets are small,

and the scale, orientation, and position of the targets naturally are varied. Four target im-

age examples at different target difficulty levels (easy, medium easy, medium hard, hard)

are illustrated in Figure 3.1.

Image Display Paradigm

The image chips are presented using the RSVP paradigm. The chips are presented on a 21

inch CRT monitor using Presentation software (Neurobehavioral Systems, Albany, CA).

Figure 3.2 shows the RSVP paradigm in this study. Images are presented in short bursts

of approximately one second duration. Patterned masks are shown after every image to

disrupt the accumulation of information from the retinal image representation. To break

monotony and minimize possible eye strain, consecutive blocks are separated by a fixation

screen of user-controlled duration. For each subject, there are five test sessions. The inter-

stimulus-interval (ISI) are 25, 50, 100, 150, and 200 for five session respectively. Each

session consists 210 blocks, each of which lasts for one second. One half of the blocks

contain a single target.
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Figure 3.2: An illustration of the RSVP paradigm in this study. Each RSVP block starts
with a fixation screen and each image (a target or a distractor) is followed by a single
pattered mask. One half of the blocks contain a single target. During each RSVP block a
sequence of images are displayed at the rates of 25, 50, 100, 150, and 200 ms / image.

Psychometric Function

To quantify the stimulus difficulty and subject performance, we construct psychological

functions to characterize subject behavior performance. We apply a generalized linear

models (GLM) [77] to fit behavior responses. The GLM was developed by Nelder and

Wedderburn [81] for unifying various statistical models. There are three components in

the GLM – random component, systematic component and link function. The random

component is the probability distribution of the response variable. The systematic com-

ponent is a linear function of the independent variables, called the linear predictors. The

complete GLM is constructed through a relationship that is assumed between the distri-

bution mean and the linear predictor. In general, the relationship is determined by a link

function. For a random response variable Y, the mean of the distribution is µ = E(Y).

The link function is to transform the expectation value of the random component to the

systematic component,
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g(µ) = X′β, (3.1)

where X is the systematic component, g(·) is the monotonic link function and β are

unknown coefficients, which typically estimated with maximum likelihood (ML). The

general GLM is,

µ = g−1(X′β). (3.2)

Traditionally, the random component is a member of an exponential family, such as

Gaussian, binomial, or Poisson distribution. Here we use the binomial distribution be-

cause the behavior responses are dichotomous. For the ith systematic condition, the bi-

nomial distribution is an exponential family,

f(yi;ni, µi) =

(
ni
yi

)
µi
yi(1− µi)ni−yi

= exp{yi ln[
µi

1− µi
] + ni ln[1− µi] + ln

(
ni
yi

)
}, (3.3)

where ni is the total number of trials and random variable yi ∈ {0, 1, 2, ...ni} is the

number of correct behavior responses (hits), and µi = E(yi)/ni is the probability of hits

(detection rate). One of the important characteristics of the exponential family is the mean

of the distribution is related to the natural location parameter, η,

η = ln[
µi

1− µi
]. (3.4)

The canonical link for binomial family is the logit link, which arises naturally from the

general exponential formula (3.3) of binomial distribution. Pairing the binomial family

with the logit link produces the logistic regression model. The loglog or comploglog link

may be appropriate when the probability of the responses (detection rate) as a function of

the linear predictor (image duration) approaches 0 and 1 asymmetrically. Three typical

link functions – logit, loglog comploglog are as follows,
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g(µ) = log(
µ

(1− µ)
), (3.5)

g(µ) = log(− log(µ)), (3.6)

g(µ) = log(− log(1− µ)). (3.7)

We use the loglog link function for the GLM in this study. The Matlab function glmfit

is used to fit the GLM for behavior responses using binomial distribution and estimate the

coefficients β using the ML. The function of glmval is used to compute predicted values

for the GLM with the link function and predictor values.

3.2.2 Results

Target Difficulty Metric

We quantify the target difficulty for 105 targets using psychological functions. The target

difficulty metric is defined as the image duration thresholds at the 75% detection rate of

behavior performance averaged across 10 subjects. We measure the target difficulty as the

image duration threshold for each target image using the computational model – the GLM

in Section 3.2.1. For each target, The correct behavior responses are averaged across 10

subjects. The mean correct behavior responses at five different image duration are fitted

using the GLMs. Figure 3.3 shows the four targets (easy, medium easy, medium hard and

hard) and their corresponding psychological functions. These four targets are specifically

selected at the median difficulty thresholds from four difficulty groups respectively. For

each target, the difficulty thresholds are measured at the 75% detection rate. The im-

age duration threshold values for these four images are 41ms, 97ms, 136ms and 300ms

respectively.

Figure 3.4 shows target difficulty distribution in terms of the image duration threshold

for 105 targets. The target difficulty thresholds are then sorted. The small thresholds are

associated with easy targets and the large thresholds are associated with hard targets. The

easier targets can be detected at 75% detection rate for shorter image durations whereas
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(a) Easy (b) Median Easy (c) Median hard (d) Hard

(e) θ0.75 = 41ms (f) θ0.75 = 97ms (g) θ0.75 = 136ms (h) θ0.75 ≥ 300ms

Figure 3.3: Psychometric functions of four target examples. The four targets (top row)
are selected from four difficulty groups (easy, medium easy, medium hard and hard). For
each image, the averaged correct behavior responses at different image duration are fitted
with the GLM (bottom row). The blue circles are the correct response for each image
duration. The green curve is the GLM fit with the binomial distribution and the loglog
link function. The red dash line shows the image duration threshold at the 75% detection
rate. The target difficulty metric is measured as the image duration threshold at the 75%
detection rate of behavior performance. The target difficulty in terms of image duration
thresholds for the four targets are 41ms, 97ms, 136ms, 300ms respectively.

the harder targets can be detected at the 75% detection rate for longer image durations.

It is clear that the harder images require more time to process to achieve the same cor-

rect detection level than the easier ones. Based on the target distribution, We divide the

105 targets into four groups – easy (26 targets), medium easy (26 targets), medium hard

(26 targets) and hard (27 targets) based on the image duration threshold values on the

psychological functions.
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Figure 3.4: Target difficulty distribution in terms of the image duration thresholds for 105
targets. The image duration threshold is defined as the 75% detection rate of behavior per-
formance. The target difficulty thresholds are sorted. The small thresholds are associated
with easy targets and the large thresholds are associated with hard targets. The total 105
targets are divided into four groups – easy, medium easy, medium hard and hard based on
the threshold. The number of targets in the four groups are 26, 26, 26, 27 respectively

Subject Performance Metric

We use the psychological function to quantify subject performance by the image duration

threshold for each subject. The subject performance metric is defined as the image du-

ration thresholds at the 75% detection rate of behavior performance averaged across 105

targets. We measure subject performance as the image duration threshold for each subject

using the GLM. There are five image durations – 25, 50, 100, 150, and 200 ms per image

in the experiment. We average the correct behavior responses across 105 targets for each

subject. The GLMs are used to fit the mean correct behavior responses at different image

duration. Figure 3.5 shows Subject performance in terms of image duration thresholds.

Figure 3.5(a) is the psychological function for subject 1. The image duration threshold at

75% detection rate for subject 1 is 131ms, which is corresponding to the first histgram in

Figure 3.5(b). Figure 3.5(b) is subject performance in terms of image duration threshold

as a function of subject ID. The averaged image duration threshold is 152ms with stan-

dard deviation of 31ms. The range of image duration threshold for ten subjects is from

122ms to 220ms. The results show that most subjects achieve 75% detection rate at the



38

(a) θ0.75 = 131ms (b) Subject performance

Figure 3.5: Subject performance in terms of image duration thresholds. The image du-
ration threshold is defined as the 75% detection rate of behavior performance averaged
across 105 targets. (a) Psychological function for subject 1. The blue circles are the cor-
rect response for each image duration. The green curve is the GLM fit with binomial
distribution and loglog link function. The red dash line is the image duration threshold at
the 75% detection rate. The image duration threshold for subject 1 is 131ms. (b) Subject
performance in terms of image duration thresholds as a function of subject ID.

range of image duration threshold from 100ms to 250ms, which suggests that the image

duration from 100ms to 250ms is a good range for the task.

3.3 Experiment 2: Neural Correlates of Visual

Perception

This experiment is to assess neural correlates of human visual information system on real

target detection tasks in the RSVP paradigms . We examine the dynamics of attention

allocation as a function of both stimulus (target) difficulty and task requirements (image

duration). Target difficulty is defined by image duration thresholds and task difficulty

is defined by image durations. Our experimental design allows us to estimate how be-

havioral and physiological performance depends on both target and task difficulty. We

investigate the psychological aspects of the ERPs. Specifically we assess the effects of

target difficulty and task difficulty on ERP characteristics and the timing of these effects

on the ERP components. We use both behavioral and physiological data in this study.
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3.3.1 Materials and Methods

EEG Data Acquisition and Pre-processing

Ten naive subjects (ages range from 25− 45; 4 females) participate in the study as group

#6 in Chapter 2. The stimuli and procedures are the same as Section 3.2.1. The subjects

perform the same target detection tasks as the experiment 1 by pushing the space bar as

soon as they see a target. Both behavioral and physiological data are collected.

The same target chips (105 SAM sites) as shown in Figure 3.1 are used in this study.

The stimuli are presented to the subjects using the RSVP paradigm as Figure 3.2. The

stimuli are infrequent targets embedded in sequences of distractor images. Each target

and distractor image is followed by a single patterned mask. There are four test sessions

per subject, one for each image duration (50, 100, 150, and 200 ms). Each session consists

of 210 blocks, each of which lasts for one second. One half of the blocks contain a single

target. There is no feedback.

The 64-channel EEG data are sampled at 256 Hz. The data are bandpass filtered

between 1− 45 Hz. and performed factor calibration on all channels. We perform factor

calibration artifact removal and offline re-referencing using left mastoid reference. The

detailed EEG acquisition and pre-processing procedures are described in Section 2.6

and Section 2.7. The bad connection channels are manually removed for each subject

(channel#28, channel #1, #33 and #34, channel #58 and #63, channel#15, channel#57,

channel #16, #62, #27 and #63 for subject3, 5, 6, 7, 8 and 9).

Target Difficulty Metric

Target difficulty metric is assessed by the image duration thresholds based on the de-

tectability study as discussed in Section 3.2.1. The image duration thresholds estimated

from the group #6 are used to divide the total of 105 targets into four difficulty groups –

easy, medium easy, medium hard and hard targets – as shown in Figure 3.4. We use the

target image duration thresholds based on Group #6 throughout this study.
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To examine the dynamics of neural signatures as a function of target difficulty, we

compute the grand averaged ERPs for the hit trials over ten subjects at each target diffi-

culty level for each image duration. To visualize the spacial extent of the ERP activity

across time, we compute the averaged ERP scalp maps by interpolating the ERP activity

across all electrode locations. All scalp maps are plotted using EEGLAB [22].

Task Difficulty Metric

Task difficulty metric is the image durations in the RSVP condition. We have four image

durations (RSVP sessions) – 50ms, 100ms, 150ms, and 200ms, which are associated with

hard, medium hard, medium easy and easy tasks.

To examine the dynamics of neural signatures as a function of task difficulty, we

compute the grand averaged ERPs for the hit trials over ten subjects at each task difficulty

condition for each target difficulty level. We also use ERP scalp maps to visualize the

spacial ERP activity.

Early and Late Difficulty Component Correlates

To determine whether the neural signatures – an early component and a late component –

are indeed associated with target difficulty or task difficulty and determine the timing of

these components, we perform a correlation study on ERP amplitudes with target and task

difficulty metrics. For target difficulty, the correlation is measured by the ERP amplitudes

and the target difficulty in terms of image duration thresholds for each image duration. For

task difficulty, the correlation is measured by the ERP amplitudes and the task difficulty

in terms of image durations for each target difficulty level.

We use the traditional ERP analysis technique – trial averaging – across hit trials,

across selected electrodes and across 10 subjects in this ERP correlation study. Based on

the scalp image maps, we select frontal and centrofrontal sites in this study. The analy-

sis temporal range is 40ms to 500ms after the stimulus onset. We average ERP activity

across short-length non-overlapping temporal windows (typically 20ms in width). For
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each short-length temporal window, the stimulus locked time is the median of the win-

dow. To make our estimates more robust, we apply overlapping windows ( typically 40ms

in width) and shift 10ms each time on image duration thresholds to obtain small ranges

of target difficulty. The mean image duration thresholds are measured. For each image

duration, the averaged ERP is computed across fontal and centrofrontal sites, across trials

associated with specific stimulus difficulty range and across 10 subjects. The ERP am-

plitude is measured by the mean amplitude of the averaged ERPs in each 20ms-length

window. For target difficulty correlation analysis, we correlate the mean amplitudes at

several time intervals with the target difficulty in terms of mean image duration thresh-

olds. For task difficulty correlation analysis, we correlate the mean amplitudes at several

time intervals with the task difficulty in terms of image durations.

Late Component Correlates using Single-trial ERP Detection

We use a single-trial analysis of the EEG to discriminate among the four target difficulty

levels at each image duration. We apply linear support vector machine (SVM) [126] as

the ERP detector and use the 10-fold cross-validation approach [26] on single-trial ERP

detction. We quantify the single-trial ERP detection performance by the area under the

receiver operator characteristic (ROC) curve, referred as AUC. To make our estimates

more robust, we use short-length temporal window (40ms in width) and the analysis

temporal range is 170ms to 500ms after the stimulus onset. For each short-length temporal

window, the stimulus locked time is the median of the window. Given a fixed window

width, we apply the SVM classifier while sweeping the window from 170ms to 500ms

after the stimulus onset for each subject and each RSVP image duration. The AUC metric

is computed to characterize the single-trial ERP detection performance at several time

intervals. For target difficulty correlation analysis, we correlate these AUC values from 10

subjects with the corresponding target difficulty levels for each image duration condition.
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µ

α

σ

Figure 3.6: Illustration of Gaussian fitting procedure. Fit ŷ(t) (solid curve) for component
activity y(t) (dash curve). Parameters of a fit include the following: ERP component
peak magnitude (α + β

σ
√

2π
), peak latency relative to the onset of visual stimuli (µ) and

component spread (σ).

Late Component Peak Detection

To quantify the ERP peak components – peak magnitude, peak duration and peak latency,

we perform peak detection by fitting a parametric function to the spatially integrated

discriminating component. For simplicity, we use a shifted Gaussian,

ŷ(t) = α +
β

σ
√

2π
exp−

(t−µ)2

2σ2 . (3.8)

The Gaussian profile is parameterized by its height β, width σ, delay µ, and baseline

offset α . We compute the optimal parameters by the least square error.

We analyze the EEG signals of two midline channels – Fz and Cz – at the time range

of 100 − 400ms after the stimuli. We apply the fitting procedures for two RSVP rates -

100ms and 200ms to investigate the extent to which the ERP components varies with the

target difficulty and task difficulty. We align all ERP waveforms associated with different

image durations to the same starting point and perform manual inspection for the fits.
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Pairwise Correlates to Target and Task Difficulty

To investigate the effects of the combinational information from the target and task diffi-

culty, which accounts for both the psychological and physiological responses, we conduct

pairwise-correlation analysis. We measure the ERP waveform similarity as a function of

behavioral performance level. The ERP waveform similarity is measured by the correla-

tion between the ERP waveform pairs at the same behavioral performance. The analysis

window is 0ms to 500ms after the stimulus onset.

We use four categories of behavioral performance, each of which contains a subset

of the ERPs from 16 joint categories of four target difficulty and four task difficulty in

Table 3.1. To obtain roughly equal size of numbers of members, the four behavioral

performance levels are selected as the hit rate at range of 0.20− 0.50, 0.50− 0.90, 0.90−

0.96, 0.96 − 1. To quantify the pairwise similarity, we measure the averaged pairwise

correlation coefficients for all the combinations of the ERP waveform pairs in the set

associated with a given behavioral performance.

To further confirm whether neural activity is strongly related with target difficulty,

task difficulty independently or both, we measure the ERP waveform similarity in terms

of pairwise correlation as a function of target difficulty, task difficulty and behavioral

performance respectively. Here we define three classes – target difficulty, task difficulty

and behavioral performance. Referring to Table 3.1, we have four levels for the target

difficulty (each column in the table), four levels for the task difficulty (each row in the

table), and four levels for the behavioral performance (the hit rate at range of 0.20− 0.60,

0.60− 0.90, 0.90− 0.95, 0.95− 1). We compute the within-class correlations, between-

class correlations and all-class correlations for each class and compare the within-class

correlations with between-class ones.
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Relations to Behavioral Responses

To assess the relations of target and difficulty and behavioral responses, we measure the

averaged behavioral response time (RT) and RT variance across 10 subjects at each target

difficulty level at each task difficulty condition. To visualize the profile of the components

(stimulus or response locked) across all trials, we construct discriminant maps. We align

all trials of an experimental condition of interest to the onset of visual stimulation and

sorted them by their corresponding RTs. Each row of the discriminant component map

represents a single trial across time.

3.3.2 Results

Effect of Target Difficulty

We access the relation between the ERP components and target difficulty and examine the

dynamics of the neural signatures as a function of target difficulty. The target difficulty

metric is described in 3.3.1. We compute the grand averaged ERP at each image duration

for each target difficulty condition. Figure 3.7 shows the averaged ERPs at four different

target difficulty levels for 200ms image duration. Figure 3.7(a) and 3.7(b) illustrates the

results for two sensors of interest (FCz and O2, respectively). One can see that there is

an early negative component around 100ms after stimulus and a late positive component

around 250ms after stimulus across target difficulty. In addition, we construct averaged

ERP scalp maps to visualize the spatial distribution of these components. The scalp maps

in Figure 3.7 (c) demonstrates these results. There are high negative activations appears

around 100ms and high positive activations appear around 250ms after the stimulus onset

for four target difficulty conditions. The activation decreases when stimuli become harder

for both the early negative component and late positive component. The results indicates

that the magnitudes of which are inversely proportional to the stimuli difficulty. The

harder the target, the smaller the magnitude for both the early negative component and

the late positive component.
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(a) (b)

(c)

Figure 3.7: Averaged ERPs for target difficulty analysis. The ERPs are averaged across
10 subjects and all hit trials at 200ms image duration session. (a) Averaged ERPs for each
target difficulty condition (easy, medium easy, medium hard and hard) for a centrofrontal
site (FCz). (b) Averaged ERPs for an occipitoparietal electrode site (O2). (c) Averaged
ERP scalp maps at 200ms image duration for four target difficulty levels (easy, medium
easy, medium hard and hard). The scalp distribution of ERPs for hit trials are averaged
across 10 subjects at eight specific time instants from 50ms to 400ms after the stimulus
onset. Red corresponds to high positive activation and blue corresponds to high negative
activation.
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(a) Early Component

(b) Late Component

Figure 3.8: Averaged ERP scalp maps of early component and late component at 200ms
image duration for four target difficulty levels (easy, medium easy, medium hard and
hard). The ERPs are averaged across hit trials for 10 subjects. (a) Averaged ERP scalp
maps of the negative peak at around 110ms for four target difficulty levels. The scalp
distribution of averaged ERPs are measured at eight specific time instants from 80ms
to 150ms after the stimulus onset. (b) Averaged ERP scalp maps of the positive peak at
around 250ms for four target difficulty levels. The scalp distribution of averaged ERPs are
measured at eight specific time instants from 210ms to 280ms after the stimulus onset.
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To further determine the timing of the early and late components for target difficulty,

we compute the ERP scalp maps centered around 120ms and 250ms for the early and

the late components respectively. Figure 3.8 shows the results. In Figure 3.8 (a) the

scalp maps for the early components show that the component is distributed over a range

of electrode locations as indicated by the decreased activations at several centrofrontal

(high negative activations) and occipitoparietal (high positive activations) sites for the

harder target conditions. It is clear that the early component appears around 110 ms.

One interesting finding is that the peak latency shifts forward in time (latency becomes

larger) as targets become harder. From Figure 3.8 (a) it is noticed that the timing shift

effect slightly deteriorates in the hard target difficulty condition. The reason could be the

random guessing in the hard target difficulty condition and the averaged ERP at the hard

target condition is noisy due to less hit trials in the hard condition. In Figure 3.8 (b)

The scalp maps for the late components show that the amount of high positive activation

is decreased as the target difficulty becomes progressively harder. It is clear that the

late component appears around 250 ms. The peak latency for the late component also

shifts forward in time (latency becomes larger) for as targets become progressively harder.

There is also a similar slightly-deteriorated effect in the hard target difficulty condition.

Effect of Task Difficulty

We examine the dynamics of neural signatures and behavioral performance as a function

of task difficulty in this study. Task difficulty is based on the image duration. We have

four different task difficulty levels – 50ms(hard), 100ms(medium hard), 150ms(medium

easy), and 200ms(hard). The ERPs for the hit trials are averaged over 10 subjects at

each target difficulty condition for each image duration. Figure 3.9 shows the averaged

ERPs at each of four different task difficulty levels for the easy target difficulty condition.

Figure 3.9(a) and 3.9(b) illustrates the results for two sensors of interest (FCz and O2,

respectively). One can see that there is an early negative component around 100ms after

stimulus and a late positive component around 250ms after stimulus, the magnitudes of
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(a) (b)

(c)

Figure 3.9: Averaged ERPs for task difficulty analysis. The ERPs are averaged across 10
subjects and all hit trials at easy target difficulty condition. (a) Averaged ERPs for each
task difficulty condition in term of image duration (200ms, 150ms, 100ms and 50ms) for
a centrofrontal site (FCz). (b) Averaged ERPs for an occipitoparietal electrode site (O2).
(c) Averaged ERP scalp maps at easy target difficulty condition for four task difficulty
levels (200ms, 150ms, 100ms and 50ms). The scalp distribution of ERPs for hit trials
are averaged across 10 subjects at eight specific time instants from 50ms to 400ms after
the stimulus onset.
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Figure 3.10: Averaged ERP scalp maps of early component and late component at easy
target difficulty condition for four task difficulty levels (200ms, 150ms, 100ms and
50ms). The ERPs are averaged across hit trials for 10 subjects. (a) Averaged ERP scalp
maps of the negative peak at around 110ms for four task difficulty levels. The scalp dis-
tribution of averaged ERPs are measured at eight specific time instants from 80ms to
150ms after the stimulus onset. (b) Averaged ERP scalp maps of the positive peak at
around 250ms for four task difficulty levels. The scalp distribution of averaged ERPs are
measured at eight specific time instants from 210ms to 280ms after the stimulus onset.
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which are inversely proportional to the strength of the stimuli. The harder the task, the

smaller the magnitudes of the early negative component and the late positive component.

It is noticed that the ERPs at hard condition (50ms) is noisy. In addition, we construct

averaged ERP scalp maps to visualize the spatial distribution of these components. The

scalp maps in Figure 3.9 demonstrates these results. There are high negative activations

appears around 100ms and high positive activations appear around 250ms after the stim-

ulus onset for four task difficulty conditions. The trend of the activation decreases when

stimuli become harder. This effect slightly deteriorates in the 50ms condition due to less

hit trials to be averaged.

To further determine the timing of the early and late components for the task difficulty,

we compute the ERP scalp maps centered around 120ms and 250ms for the early and the

late components respectively. In Figure 3.10 (a) the scalp maps for the early components

show that the component is distributed over a range of electrode locations as indicated by

the decreased activations at several centrofrontal (high negative activations) and occipi-

toparietal (high positive activations) sites. The early component appears around 110 ms.

There is much higher negative activation for the easy (200ms) and medium easy (150ms)

task conditions comparing to the hard (50ms)and medium hard (150ms)task conditions.

There is no peak latency shift effect associated with task difficulty. In Figure 3.10 (b)

The scalp maps for the late components show that the amount of positive activation for

the easy and medium easy task is much higher than that for the hard and medium hard

task. The late component appears around 250 ms. There is no peak latency shift.

Early and Late Difficulty Component Correlates

To further investigate whether only the total amount of information from both task and

target difficulty matters or task and target difficulty contribute independently to neural

responses, we resort the physiology signals (EEG) to examine the timing of these effects.

Specifically we examine correlate the amplitude of the early component and the late com-

ponent with target difficulty in terms of image thresholds and task difficulty in terms of
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(a) 250ms latency at 200ms duration (b) Target difficulty correlation

Figure 3.11: The correlation between the target difficulty and the amplitude of the ERP
component as a function of time. (a) ERP amplitude correlation of the late component
at 250ms latency at 200ms image duration with correlation coefficient c = −0.705.
(b)Target difficulty correlation as a function of time.

image durations as described in Section 3.3.1. The mean image duration thresholds are

estimated in overlapping short target difficulty windows. The ERP amplitude is measured

by the mean amplitude of the averaged ERPs in each 20ms-length temporal window. For

the target difficulty correlation analysis, the mean amplitudes in each window are corre-

lated with target difficulty in terms of the mean image duration thresholds. For the task

difficulty correlation analysis, the mean amplitudes in each window are correlated with

four task difficulty in terms of image durations.

Figure 3.11 shows the ERP components correlates to target difficulty. The correlation

curve for the 50ms is noisy due to less trial to be averaged. The early component have

positive correlates around 110ms across 100ms and 150ms image durations. It indicates

that the amplitude of the early component increases as the target difficulty increases. The

late component has consistent negative correlation around 250ms across the other three

image durations. It indicates that the amplitude of the late component decreases as the

target difficulty increases across image durations.

Figure 3.12 shows the ERP components correlates to task difficulty. Both the early

and late components have consistent correlates around 150ms and around 250ms across

different target difficulty conditions. The early component has positive correlations across
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(a) 250ms latency for easy target (b) Task difficulty correlation

Figure 3.12: The correlation between the task difficulty and the amplitude of the ERP
component as a function of time. (a) ERP amplitude correlation of the late component at
250ms at at easy target condition. (b)Task difficulty correlation as a function of time.

different target difficulty levels. The late component has highly significant negative cor-

relations across different target difficulty levels. The task difficulty effect is consistent

across different target conditions.

Late Component Correlates to Single-trial ERP Detection

To determine whether the neural signature around 250ms after stimulus – is indeed asso-

ciated with target difficulty, we conduct a single-trial analysis of the ERP to distinguish

four target difficulty levels as described in Section 3.3.1. We compare the correlation of

target difficulty and single-trial ERP detection at each time intervals for four RSVP im-

age durations for each subject. During each comparison, we apply the classifier at several

time intervals and detect ERPs on single-trial basis. Each time we compute AUC values

as a metric for the single-trial ERP detection performance. The correlation is measured

between the target difficulty levels and AUCs for each subject. We find a significant cor-

relation at around 270 − 310ms after stimulus consistently across four image durations,

as can be seen in Figure 3.13. The harder the targets, the lower AUCs for four image

durations. It demonstrate that the late component is strongly related to the separation of

the ERPs associated with target from the ERPs associated with distractors. This indicated

that the late component is strongly correlated with target difficulty. In Figure 3.13 the
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Figure 3.13: Correlation analysis between the single-trial ERP detection performance in
terms of area under ROC curves (AUC) for easy-vs-hard discrimination. The correlation
coefficients are plotted as a function of latency(time). A significant correlation between
AUC and four target difficulty levels – easy, medium easy, medium hard and hard, can
be seen in the time interval between 270 − 310ms after stimulus (asterisks) across task
difficulty conditions – 50ms(hard), 100ms(medium hard), 150ms(medium easy), and
200ms(hard). The time shift forward as the tasks become harder.

highest correlation points are marked as the asterisks for each image duration. It is clear

that the latency shift forward (become larger) as the tasks become harder (image duration

become shorter).

Discriminant Component Peak Detection

To quantify the characteristics of ERP peak components – peak magnitude, peak latency

and peak duration, we perform peak detection by fitting a shifted Gaussian as describe

in Section 3.3.1 to the spatially integrated discriminating component for the two RSVP

rates - 100ms and 200ms. We analyze the relation between the ERP components and

target and task difficulty. Figure 3.14 (a)(b) show the Gaussian profile fits of the late

discriminating component at a fontal site for four target difficulty conditions at 100ms

and 200ms image durations. Figure 3.14 (c) shows that Estimation of the late component

peak magnitude, latency and duration as a function of target difficulty levels for two task

difficulty conditions (100ms and 200ms) using Gaussian fits. Results shows that there is

strong relation between the ERP peak components, and the target difficulty and task dif-

ficulty. The magnitude of the ERP decreases when target becomes harder for both image
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(a) 200ms, Fz (b) 100ms, Fz

(c) relations to target difficulty

Figure 3.14: Illustration of Gaussian peak fitting procedures at 200ms image duration (a)
and 100ms image duration (b). The plots shows the Gaussian fittings (dash curves) for
averaged component activity (solid curves) at electrode Fz for four target difficulty con-
ditions (easy, medium easy, medium hard and hard). Parameters of each fit – peak mag-
nitude, peak latency relative to the stimulus onset and component spread are described
in 3.3.1. (c) Estimation of the late component peak magnitude, latency and duration as
a function of target difficulty levels for two task difficulty conditions (100ms and 200ms)
using Gaussian fits. Results indicate decreased peak magnitude, increased duration and
increased latency of the late component as target or task becomes harder.

durations. The peak latency duration increases when target becomes harder for the 100ms

image duration and keeps consistent across target difficulty for the 100ms image duration.

These results are consistent with the findings in the previous results. There is an increas-

ing trend of peak duration when target becomes harder for both image duration. There

is slightly-deteriorated effects in the hard target difficulty condition for peak magnitude

at the 200ms image duration and for peak latency at 100ms image duration due to the

noisy ERP signals in the hard target condition. It is also noticed that the magnitudes have

significant decrease and the duration have significant increase comparing the 200ms to
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Table 3.1: Hits (Hit rate) of each target difficulty level for ten subjects at each image
duration

Image Duration Easy Medium Easy Medium Hard Hard
(Task Difficulty)

50ms(hard) 234 (90%) 161 (62%) 109 (42%) 62 (23%)
100ms(medium hard) 251 (97%) 240 (92%) 195 (75%) 95 (35%)
150ms(medium easy) 254 (98%) 250 (96%) 217 (83%) 132 (49%)

200ms(easy) 255 (98%) 259 (100%) 245 (94%) 157 (58%)

100ms conditions. The latency at the 100ms image duration is much larger in hard task.

Pairwise-ERP Correlates to Combinations of Target and Task Difficulty

To investigate the effects of the combinational information from the task requirement and

target difficulty, which accounts for both the psychological and physiological responses,

we measure the ERP waveform similarity as a function of behavioral performance level as

described in Section 3.3.1. The ERP waveform similarity is measured using correlation

between the waveform pairs at the same behavioral performance level. Table 3.1 shows

the correct detections (hits) and the hit rate of each target difficulty level at each image

duration session. One can see the hit rate progressively decreases as the targets become

harder or the tasks become harder. Figure 3.15 shows the ERP waveform pairs for the

same behavioral performance from four different ranges of behavioral performance –

0.20 − 0.50, 0.50 − 0.90, 0.90 − 0.96, 0.96 − 1 (the four behavioral performance levels

are selected to obtain roughly equal size of numbers of members in each level). One

can see that the ERP waveform pairs have very similar profiles at the same behavioral

performance level. To quantify the pairwise similarity, we measure the averaged pairwise

correlations for all combinations of waveform pairs in the set associated with a given

behavioral performance. Figure 3.16 shows the correlation analysis between the same

behavior performance pairs as a function of hit rate for the three midline electrodes. There

is a increasing trend of the correlation coefficients for all of the selected electrodes when

behavioral performance increase.
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(a) 40% vs 47% (b) 87% vs 60%

(c) 94% vs 92% (d) 98% vs 97%

Figure 3.15: (a)-(d) Grand Averaged ERP waveform pairs for the same behavioral per-
formance at electrode Cz. (a) ERP pairs at the hit rates of 0.20 − 0.50, (b) ERP pairs at
the hit rates of 0.50 − 0.90, (c) ERP pairs at the hit rates of 0.90 − 0.96, and (d) ERP
pairs at the hit rates of 0.96 − 1. The ERP waveform similarity is measured using corre-
lation between the waveform pairs. The correlation coefficients for these four pairs are
0.34, 0.48, 0.72, 0.88. There are four categories of behavioral performance – the hit rate
of 0.20− 0.50, 0.50− 0.90, 0.90− 0.96, 0.96− 1, each of which contains a subset of the
ERPs from 16 joint categories of target and task difficulty in Table 3.1.

To further confirm whether neural activity is strongly related with target difficulty,

task difficulty independently or both, we measure the ERP waveform similarity in terms

of ERP pairwise correlation as a function of target difficulty, task difficulty and behavioral

performance respectively. Figure 3.17 shows that the within-class correlations for target

difficulty, task difficulty and behavioral performance are much higher than the between-

class correlations. It indicates that both target and task difficulty are strongly correlated

with neural activity. The dynamic neural signatures reflect the behavioral performance.
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Figure 3.16: Correlation analysis between the ERP pair at the same behavioral perfor-
mance for the midline electrodes. The correlation coefficients are plotted as a function of
behavioral performance levels. There are four categories of behavioral performance – the
hit rate of 0.20− 0.50, 0.50− 0.90, 0.90− 0.96, 0.96− 1, each of which contains a subset
of the ERPs from 16 joint categories of target and task difficulty in Table 3.1.

3.3.3 Relations to Behavioral Response Time

We assess the relations between the target and task difficulty (associated with late com-

ponents) and behavioral response time (RT). In Figure 3.18(a), there is an increasing

trend of the mean RT as targets become progressively more difficult across different task

difficulty. Surprisingly the mean RTs are almost the same across task difficulty. We sus-

pect that the RT at hard task conditions may not be accurate because the subjects could

response by chance. In Figure 3.18(b), there is significant bigger variance for both hard

target condition and hard task condition compared to the easy ones. It is noticed that the

hard task condition (the 50ms image duration has much bigger RT variance than other

conditions. Figure 3.18(a) shows discriminant component maps for easy task at different

target difficulty levels and for easy target condition at different task difficulty levels. It

shows single-trial dynamic range of the ERP late components and RT. The results indicate

that the late component is strongly correlated with the RT and the RT variance. The less

strong the ERP (hard condition), the longer the RT and the bigger RT variance.
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Figure 3.17: ERP pairwise correlation as a function of target difficulty, task difficulty and
behavioral performance. As in Table 3.1, we have four classes for the target difficulty
(each column in the table), four classes for the task difficulty (each row in the table),
and four classes for the behavioral performance (the hit rate at range of 0.20 − 0.50,
0.50− 0.90, 0.90− 0.96, 0.96− 1).

3.3.4 Discussions

We develop a computational model to quantify the difficulty of realistic stimuli and sub-

ject performance in terms of image duration thresholds – the minimum exposure image

duration necessary for subject to detect a specific target correctly at a fixed rate. The

model can be generalized to asses the difficulty of other uncontrolled stimuli.

Although the RSVP paradigm presents different challenges to the human visual per-

ceptual system than the well-separated paradigm used in the conventional visual informa-

tion processing study, we also observe the effect of target difficulty. We find the magnitude

of the late component, occurring approximately 250 ms after the stimulus onset as shown

in Figure 3.8 (b), is inversely proportional to the strength of the stimulus. The harder the

target (the larger image threshold), the lower the magnitude of this component. This find-

ing show that in RSVP condition, the effect of target difficulty on the late component is

consistent with Picton’s finding [96] and Johnson’s finding [53] in well separated image

display condition. Another finding is that an early component occurring approximately

110 ms after the stimulus onset that depends on target difficulty as shown in Figure 3.8
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(a) (b)

Figure 3.18: Averaged behavioral response time (RT) (a) and the variance of averaged
behavioral RT (b) as a function of target difficulty for four different image durations.

(a). The magnitude of this early component is also inversely proportional to the strength

of the stimulus – the hard the target (the larger image threshold), the lower the magnitude

of this component. In RSVP condition the early negative component, elicited by the at-

tended stimulus, indicates that attention allocation at a given image may be triggered as

early as around 110ms. The component is more likely related to low level feature differ-

ence of images [52]. It could be related with N2 [39] and N2pc [137] but with less

latency in RSVP condition. This early component has different property from the early

component found by Philiastides et al. [94] in a well-separated paradigm. They found

an early component occurring approximately 220 ms that depends on target difficulty and

the magnitude of the difficulty component is proportional to the strength of the stimu-

lus. Another interesting finding is that the peak latency of the early and late component

shifts forward in time (latency becomes larger) as targets become harder. It indicates that

subjects may engage more attention or other perception resources when targets become

harder in the RSVP condition the same as in the well-separated condition [94].

Our experimental design allows us also estimate the effect of task difficulty in addition

to the effect of target difficulty. The task difficulty manipulates the limits of the time that

subjects can extract information from the images. Our finding is that the neural activity is

correlated with task difficulty. We also find the early negative component around 110ms

and late positive component around 250ms. The harder the task difficulty, the lower the
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Figure 3.19: Discriminant component maps averaged cross 10 subjects at electrode Fz.
In each subplot, the y-axis is sorted trials by response time (RT). All trials are aligned to
the onset of stimuli. The late ERP components are shown within two vertical lines. The
black sigmoidal curves represent the behavioral RTs for each condition. The left panel
shows the image maps for different target difficulty levels at easy task (200ms). The right
panel shows the image maps for different task difficulty levels at easy target condition.

magnitudes of the ERPs for both early and late components. Comparing the task difficulty

effect with the target difficulty effect, both of them have lower magnitude of the early

negative component around 110ms and lower magnitude of the late positive component

around 250ms in harder target or harder task conditions. Target difficulty effect is more

progressively across the difficulty level comparing to task difficulty effect because the

target difficulty is a continuous variable and the task difficulty is not. There may be a

threshold effect of the target difficulty, which cause much higher negative activation for

easy (200ms) and medium easy (150ms) task conditions comparing to hard (50ms)and

medium hard (150ms)task conditions in Figure 3.10 (a) and (b). There is latency shift

trend in the target difficulty effect, but there is no this trend in the task difficulty effect.

One possible reason for deteriorated effects in the hard target or task difficulty conditions

is that subject barely response by chance and there are less hit trials to be averaged.
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To further examine the timing of the target difficulty and task difficulty effects, we cor-

relate the amplitude of the early component and the late component with target difficulty

and task difficulty. Figure 3.11 and Figure 3.12 shows the timing of both difficulty effects

in the RSVP conditions. The results indicate that the late ERP component is correlates

with both target and task difficulty. The late neural responses reflects the overall infor-

mation. The early ERP component is also correlates with the target and task difficulty.

The early component reflects a process that may trigger allocation of more resources to a

given image. In RSVP condition, we also find that the early component is not particularly

sensitive as the late component to the degree of the designated focus of the attention [40].

We conduct a single-trial ERP detection to determine whether the neural correlate

around 250ms after stimulus is indeed associated with target difficulty in RSVP condi-

tion. The results across four image durations show that the late component is strongly

correlated to the separation of the ERPs associated with target from the ERPs associated

with distractors, which imply that the late component is strongly correlated with target

difficulty at the timing around 250ms to 300ms. Another interesting finding is that the

latency of neural correlates associated with target difficulty shift progressively forward

(latency becomes larger) as the task difficulty becomes harder. It confirms that subjects

need to recruit more attention in hard task condition.

Additional peak detection analysis in Figure 3.14 allows us to relate the late compo-

nent with other parameters. The peak magnitude gradually decreases as the target diffi-

culty increases for both medium hard (100 ms) and easy tasks (200 ms). This confirmed

our previous results. The peak magnitudes for 100 ms condition is significant larger than

that for 200 ms condition. The peak latency has more sensitivity of target difficulty in

100 ms condition than in 200 ms condition. The results confirm the threshold effect of

the task difficulty. The peak duration gradually increases as the target difficulty increase

for both medium hard (100 ms) and easy tasks (200 ms). The peak duration for 100 ms

condition is significant larger than that for 200 ms condition. We speculate that the longer

latency and larger duration for the hard target condition and hard task condition could
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be implicated in the recruitment of the relevant attentional and other cognitive resources

required for the hard targets or hard tasks. These findings in the RSVP conditions are

consistent with Philiastide’s findings in the well-separated condition [94]. Different with

their approach, our experimental designs allow our findings in two dimensions in terms

of target difficulty and task difficulty.

To investigate the effects of the combinational information from the task requirement

and target difficulty , which accounts for both the psychological and physiological re-

sponses, we equalize the behavioral performance on easy and difficult tasks. This is

accomplished by adjusting the stimulus duration by an amount that is proportional to the

stimulus difficulty. This allows us to decouple the stimulus difficulty and the task diffi-

culty and the behavioral performance by measuring the pairwise-ERP waveform similar-

ity. The exciting finding is that the different ERP waveform pairs become more similar

at higher behavioral performance level in Figure 3.16. It is interesting that target and

task difficulty manipulations affect more on the ERP characteristics at lower behavioral

performance than at higher behavioral performance. The within-class and between-class

correlation for target difficulty, task difficulty and behavioral performance in Figure 3.17

indicates that both target and task difficulty are strongly correlated with neural activity.

The dynamic neural signatures is highly predictive of behavioral performance.

In the analysis of the target and task difficulty (associated with late components) and

behavioral RT, we find that the mean RT and mean RT variance gradually increase as tar-

get difficulty increases. The mean RT variance increases as task difficulty increases. Our

results in RSVP conditions are consistent with Philiastides et al’s and Picton’s findings

in well-separate conditions. We speculate that in the difficult condition (either hard tar-

get condition or hard task condition), subjects need more time to recruit relevant attention

and other neuronal resources to make a difficulty decision, by explicitly pressing a button.

Surprisingly the mean RT is consistent across task difficulty. We suspect that the RT is

synchronize to the onset of the image more than the offset. Another intuitive thought is

that subjects may response more promptly in more demanding RSVP tasks.
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In summary, opposed to the previous study, this thesis uses the ERP as a physiological

marker to to assess the dynamics of resource management, such as attention allocation,

in a dynamic recognition task. In contrast to sequences of well separated trials in ex-

perimental settings, the perceptual system in natural situations is confronted by rapidly

changing stimuli arising from the dynamics of the environment, e.g. scenery, combined

with the organism’s own actions, e.g., eye movements. Our experimental design allows

us to estimate how physiological and psychophysical performance depends on both target

and task difficulty. This allows us to decouple the stimulus difficulty and the behavioral

performance. This is accomplished by equalizing the behavioral performance on easy

and difficult tasks and adjusting the stimulus duration by an amount that is proportional

to the stimulus difficulty. Our results demonstrated that there is high correlation between

the underlying psychological aspects of the ERPs and the dynamics of visual detection

processes allocation.

We first propose an approach to assess complex realistic stimuli and subject perfor-

mance. We then examine the dynamics of attention allocation as a function of the task

requirement and the complexity of visual stimuli on a real target detection task. We assess

the dynamics of attention allocation from a rapidly changing environment to establish a

better understanding of the properties of neural correlates of human cognitive processes

in the RSVP paradigm. We speculate that the attention allocation might be happened in

parallel in RSVP to deal with the new stimulus before finishing the analysis of the pre-

ceding stimulus. By challenging the visual system, the process may trigger allocation

of more cognitive resources, such as attention to a given image as early as 110 ms. The

late component around 250ms is more sensitive to the degree of the designated focus of

the attention. The early dynamic neural signature is more related to feature extraction

and the late dynamic neural signature is highly predictive of behavioral performance. By

controlling the limits of the time that subjects can extract information from the images in

addition to the target complexity. We demonstrate that the neural correlats are associated

with both target difficulty and task difficulty. The target and task difficulty effects are
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more sensitive at the high end (associated lower behavioral performance). Subjects need

to allocate additional neural resources and attention to evaluate harder targets or in harder

tasks. Based on these findings we further surmise that, during visual information pro-

cessing, the brain dynamically allocates additional cognitive resources under increasingly

difficult conditions.



Chapter 4

A Framework of Target Detection
using Single-trial ERPs

1

4.1 Introduction

We design a brain computer interface for single-trial detection of viewed images based on

human dynamic brain response signatures in 32-channel EEG acquired during a RSVP

condition. The system explores the feasibility of speeding up image analysis by tapping

into split-second perceptual judgments of humans. The brain’s novelty response – ERP

associated with human perceptual judgments is used to indicate a target (object of inter-

est) from an image set. Specifically, the task of searching for unusual or rare targets in a

sequence of visual stimuli results in a reasonably strong ERP that can be detected using

classifiers. Figure 4.1 shows the images of ERP signals corresponding to target and dis-

tracter stimuli for one subject at channel Cz rendered using EEGLAB [22]. The images

show electrical activity following target and non-target (distractor) images for hundreds

of trials. The bottom traces are the EEG signals averaged across trials. One can observe

a clear ERP pattern corresponding to target images, whereas no pattern is observed in

1This work has been submitted for publication.
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Figure 4.1: Images of ERPs associated with targets (left) and ERPs associated with dis-
tractors (right). The stimulus onset in each trial corresponds to 0ms. The bottom traces
are the EEG signals averaged over trials.

response to distractor images. The evidence indicates that the task of distinguishing the

target images from distractor images can be achieved via the ERP detection.

One critical focus is to develop a neurally driven image search system using pattern

recognition techniques for detecting ERPs on a single-trial basis. The goal is to develop an

effective framework to detect ERPs associated with target stimuli efficiently based on the

visual and cognitive systems of the human. The ERP-based image search system collects

continuous EEG signals when a subject performs visual target detection from a large

number of images, and then detects the ERPs associated with target stimuli. The system

uses EEG as the indicator to see if an image seen briefly by the expert contains a target or

a distractor. Using this technique, a human expert is able to rapidly screen a high volume

of images, and identify a subset of images deserving careful inspection. The system sorts

a huge stack of images by the estimated likelihood of each image being a target (referred

to as image triage) and selects a subset of the images with the highest likelihood values. In

Figure 4.2 the upper-half portion shows the framework of the ERP-based image search

system. We use the RSVP paradigm described in Section 2.3 for image presentation.

During an RSVP session, a target image, embedded in a sequence of distracter images,

elicits an ERP as shown in Figure 2.2. EEG data are collected and extracted as described

in Section 2.6 and Section 2.7. The raw EEG features or processed features are then

subjected to classifiers, such as support vector machines (SVMs). The classifiers perform
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Figure 4.2: The framework of the ERP-based image search system. The upper half portion
is the classification scheme. The major stages include data collection, data extraction,
dimension reduction (optional), ERP detection and image triage. The lower half portion
is the training schemes, which include the SVM naive training using single-session data,
the SVM batch learning using cross-session data and the SVM incremental learning using
only support vectors.

pattern detection to distinguish the ERPs associated with targets from the ERPs associated

with distractors. In training phase, the input of classifiers is the extracted features and the

output is the estimated classifier parameters, such as support vector (SV) coefficients of

SVMs. The lower half portion of Figure 4.2 shows the training schemes, including the

SVM naive training using single-session data, the SVM batch learning using cross-session

data and the SVM incremental learning using only SVs.

The main challenges of single-trial ERP detection are the high data dimensionality

and the scarcity of labeled EEG data. Although the existing methods on ERP detection

[103, 70, 52, 5] have been successful, they have several shortcomings. In particular, the

algorithm for each observer must be trained anew for each session, and the system does

not benefit from adding other observers. Most of the existing methods for single-trial
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ERP detection are trained using within-session data. The problem with using within-

session data is that we may not record enough ERPs from a single subject in one sitting to

sufficiently train the classifiers, at least in part because the amplitude of the ERP reduces

for closely-spaced targets. The natural trade-off is that cross-session ERPs are expected to

have considerably higher variation than within-session ERPs. Here we develop an ERP-

based rapid visual image search system based on a novel use of incremental learning and

cross-session training. We introduce an adaptive training method that uses cross-session

data and propose to use incremental learning as an alternative to batch learning [44].

The impetus for using incremental learning is to reduce the computational load, which is

critical for real-time implementations.

4.2 ERP Detector – Support Vector Machine

Our goal in classification is to build a reliable ERP detector to accurately detect the brain

responses associated with target stimuli. The inputs of the classifiers are raw EEG mea-

surements or processed data. The outputs of the classifier are the estimated likelihood

values, which are used to label the EEG epochs according to whether or not they contain

an ERP pattern associated with a target.

Traditional classification approaches are not generally capable to provide good gen-

eralization when the number of features is higher than the training set size. The SVM

technique can avoid the pitfalls of very high dimensional representations because the

learning algorithm is able to take advantage of the benign relation between the decision

function and the distribution. The SVM learning system uses a hypothesis space of linear

function in a high dimensional feature space and trains the learning algorithm from opti-

mization theory that implements a learning bias derived from statistical learning theory.

This learning strategy, introduced by Vapnick and co-workers [126, 19], has been studied

intensively [20, 85, 12, 113] and widely applied to many real-world problems. Many

researchers have reported that SVMs deliver state-of-art performance in a wide variety
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of applications, especially for large data sets with high dimensionality, such as text cate-

gorization [51, 116], hand-written character recognition [126, 19], image classification

[86] and biosequence analysis [48].

To explore more flexible classification strategy for high dimensional EEG data, we

apply SVMs on single-trial ERP detection. The SVM algorithm is to map input observa-

tions to a high dimensional feature space via kernel tricks and then optimize the decision

boundary by constructing a maximum-margin hyperplane. A hyperplane is an affine sub-

space which divides the high-dimensional feature space into two half spaces, each of

which is associated with one of the two classes. The optimization is a convex quadratic

programming problem. After training, the optimal Lagrange multipliers and weights for

each sample are obtained. The SVs, which are the data points lying at the border of the

margin, have non-zero optimal solutions for their coefficients in the final discriminant,

whereas the coefficients for the other data points converge to zero. Thus the training leads

to a sparse nonparametric forward discriminant function. Once we train the SVM, we

simply determine on which side of the decision boundary a given test ERP pattern lies

and assign the corresponding class label to it.

For a detection problem, given n data samples xi and class labels ci ∈ {−1, 1}, where

i = 1, ..., n, the hyperplane is defined as

wTx + b = 0, (4.1)

where w is the weight vector, which defines a direction perpendicular to the hyperplane,

and b is the bias, which defines the distance of the hyperplane from the origin. The

geometric margin of the hyperplanes equals to 1
‖w‖2 by normalizing the weight vector w.

To maximize the margin, the optimization problem can be formulated by minimizing

f(w) =
1

2
‖w‖2, (4.2)

subject to the constraints,

ci(w
Txi + b)− 1 ≥ 0 ∀i. (4.3)
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In this constrained optimization problem [83, 113], we define the Lagrangian function

as the objective function (4.2) plus a linear combination of the equality constraints in

(4.3). The coefficients of the combination are the Lagrange multipliers, αi. We extend the

method by allowing inequality constraints in (4.3), and then we apply the Karush-Kuhn-

Tucker theory to the above convex optimization problem in (4.2). This dual formulation

requires that the following criterion be maximized

LD =
n∑
i

αi −
1

2

n∑
i,j

αiαjcicjxixj, (4.4)

subject to the constraints,

n∑
i

αici = 0 αi ≥ 0 ∀i. (4.5)

By solving the quadratic programming optimization problem, the linear SVM solutions

are computed.

To solve a non-linear discrimination problem, we introduce a non-linear kernel func-

tion K(x,xi). Instead of the explicit dot products of samples in (4.4), we use a kernel

function to transform the data to a high-dimensional feature space in hopes that the data

are linearly separable in the feature space. One of the popular kernels is Gaussian kernel,

K(x,xi) = exp(−‖ x− xi ‖2

2σ2
), (4.6)

where σ2 is the kernel width. The decision function is as follows,

f(x) = sgn[
m∑
i=1

ciαiK(x,xi) + b]. (4.7)

where m is the number of SVs and sgn() is the signum function. Usually the number of

SVs is only a small fraction of the original training samples. The kernel parameters, such

as kernel width σ2, in the Gaussian kernel can be chosen by the users.
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For the non-separable case, we introduce positive slack variables ξi to obtain a soft

margin by minimizing

f(w, ξ) =
1

2
‖w‖2 + C

l∑
i=1

ξi, (4.8)

subject to the constraints,

ci(w
Txi + b) ≥ 1− ξi

ξi ≥ 0 ∀i, (4.9)

where ξi are positive slack variables and the cost parameter C can be chosen by the

users. The soft margin optimization can tolerate noise and outliers. The cost parameter

C is a tradeoff parameter determining the relative weight of the penalty compared to the

fit of the data. It controls the number of SVs and the trade-off between learning error

(margin) and model complexity (the size of the slack variables). A larger C corresponds

to assigning a higher penalty to errors (when the classes are not separable by a hyperplane

in the feature space). Non-zero values of C are needed whenever the data are not linearly

separable in the the high-dimensional feature space.

Applying the SVM approach to ERP detction involves resolving a number of design

questions. The first design problem is to choose an appropriate kernel. Typically the

choice of kernel will be a family of kernels parameterized by some hyperparameters. We

select the linear SVM (LinearSVM) and the Gaussian kernel SVM (GKSVM) on single-

trial ERP detection. The second decision is to determine the kernel parameters. We use

cross-validation to set the parameters. Finally the choices of optimization criterion has to

be made on whether to use the maximal margin or the soft margin approach. We use soft

margin approach to solve the non-separable condition based on our high dimensionality

of data and high level of noise present in our data. We use 10-fold cross validation on the

training session to adjust two regularization parameters of the GKSVM: the kernel width

of Gaussian kernels, σ2, and the cost parameter, C of soft margin optimization criterion.

We let the kernel size, σ2, range from 0.01 to 500 and we let the cost parameter C range
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from 1 to 106. We vary σ2 and C over the logarithmic grid formed by the selected values

above. The GKSVM classifier is trained using the σ2 and C giving the best validation

performance. We implement the SVM algorithm using a SVM toolbox, developed by

Schwaighofer and freely available over the Internet [115].

4.3 ERP Detector – Linear Logistic Classifier

To determine whether the linear projections of the EEG sensor measurements can max-

imize discriminability, we adopt a linear discrimination approach based on a logistic

regression model for ERP detection. Linear classifiers have been proposed on analyz-

ing multivariate EEG signals by linearly combining channels to generate an aggregate

representation of the data [91, 88, 71, 22]. The linear logistic classifier (LLC) algo-

rithm is based on the assumption that the EEG signals are a linear combination of dis-

tributed source activity and zero-mean white Gaussian measurement noise. For sample

i = 1, ..., n, where n is the sample number, the linear discriminant function is defined as

yi = wTxi + b. (4.10)

where xi is a (32 ∗ 129× 1) data vector, and b is the threshold. To optimize the projection

we assume that the probability of belonging to a class is represented by a logistic function.

In particular the likelihood of sample xi belonging to class ci, where ci ∈ [0, 1], follows a

logistic model. The likelihood can be parameterized as follows,

f(xi) =
1

1 + exp−(wTxi+b)
. (4.11)

To obtain the optimal weights, we use the batch gradient-descent algorithm and the least-

square criterion. The objective function is

J(w) =
n∑
i=1

(ci − f(xi))
2. (4.12)
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We calculate the gradient and update the weight vector as follows,

∇J = −2
n∑
i=1

(ci − f(xi))f
′
(xi), (4.13)

wk+1 = wk − µ∇J, (4.14)

where µ is a constant learning rate and k is the iteration number. Given the linear projec-

tion and the corresponding class, we use the minimum overall Bayes risk as a criterion

to determine the optimal threshold. Once we obtain the weights and the threshold from

the training data, we can apply the linear detector to the test data for ERP detection. Note

that the classifier in (4.11) can also be trained using the maximum likelihood.

4.4 Dimension Reduction - Linear Discriminant Analysis

Given limited training examples and high dimensionality in single-trial ERP detction, it

is hard to expect good generalization for classifiers. For the spatio-temporal EEG mea-

surements, we combine multiple channels to generate an aggregate representation of the

data as described in Section 2.7. For instance, if a 32-channel EEG system sampling at

256Hz rate, a 500ms epoch will produce a feature with 32× 129 dimension. We perform

channel dimension reduction to improve the ERP detection performance.

We apply linear discriminant analysis (LDA) [26] to project multichannel EEG data to

lower dimensions and congregate the selected channel projections to form a feature vec-

tor as the basis for classification. We employ a linear channel dimensionality reduction

method inspired by the LDA approach in classifier design. Specifically, we seek to iden-

tify a set of channel linear combination coefficients that keep the average EEG responses

between the two classes as separated as possible, and simultaneously attempt to minimize

the total variance in the projected data. For each ERP sample y1
i associated with a target

and each ERP sample y0
i associated with a disctractor (which are C × T matrices where

C is the number of channels and T is the number of temporal samples following stimulus
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onset), we obtain the trial-average and trial-covariation matrices as follows:

M1 =
1

N1

N1∑
i=1

y1
i ,

M0 =
1

N0

N0∑
i=1

y0
i , (4.15)

C1 =
1

N1

N1∑
i=1

(y1
i −M1)(y1

i −M1)T ,

C0 =
1

N0

N0∑
i=1

(y0
i −M0)(y0

i −M0)T . (4.16)

For a single dimensional linear channel projection of the form wTy1
i and wTy0

i , the linear

projection direction w is identified by maximizing the Fisher discriminant

J(w) = wTSbw/w
TSww, (4.17)

where the between cluster scatter matrix is Sb = (M1−M0)(M1−M0)T and the within

cluster scatter matrix is Sw = (C1 + C0). The solution to this is given by the generalized

eigen decomposition of this symmetric matrix pair, which can also be obtained as the

largest eigenvector of a nonsymmetric matrix as follows:

w = eig(S−1
w Sb). (4.18)

For projections to higher-than-one dimension, we select the subset of largest eigenvectors

with cardinality matching the desired reduced channel dimensionality. The number of

eigenvectors to be retained are determined using cross-validation.

4.5 Cross-session Training

The main challenges of single-trial ERP detection are the high data dimensionality and the

scarcity of labeled EEG data. Ideally, we would collect large amounts of data from each
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subject during a single protracted session. However, this is both monotonous and time

consuming. Besides, given the low prior probability of a target in this task, we obtain

very few ERP samples associated with targets within a long sequence of ERP samples

associated with distractors because the amplitude of the P300 reduces for closely-spaced

targets. Since it is impractical to train a subject extensively in one session to obtain

the sufficient ERP training samples, we propose the cross-session training, which train

the classifiers using data aggregated across multiple sessions. However, when multiple

EEG measurements are obtained from each individual at different times and possibly

under changing experimental conditions, we cannot perfectly duplicate the conditions

under which previous measurements were taken. Hence, considerable variations of the

measurements from session to session could be a problem.

Instead of conventional single-session training, we explore the feasibility of cross-

session training on ERP detection to improve the generalization performance of classi-

fiers. To assess cross-session performance, data were collected at different times and un-

der different experimental conditions from four naive subjects performing image search

tasks. The naive dataset #4 was described in Section 2.1 and Section 2.5. Each sub-

ject had 10 sessions performed at different time and different days. The EEG data were

segmented and pre-processed using the procedures described in Section 2.7.

4.5.1 Naive Learning

We use the term ‘naive learning” to refer to single-session training. To simulate a realistic

scenario, we use only the current session as the test set and the previous one as the training

set. In naive learning (single-session training), we train on session 1(S1) and test on S2.

4.5.2 Batch Learning

We use the term ”batch learning” to refer to cross-session training using all data from

multiple sessions. In batch learning (cross-session training), we aggregate the data across
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all previous sessions for training. For instance, We train on S1 ∪ S2 and test on S3; and

so on until we train on S1 ∪ ... ∪ S9 and test on S10. The aggregated data are subjected

to a classifier to evaluate the cross-session performance. We use the GKSVM with kernel

size k = 1 and cost parameter C = 10 as the ERP detector in cross-session training.

We use Monte Carlo method to repeat pseudorandom sampling to compute the aver-

aged cross-session performance. We use only the current session as the test set and the

previous sessions as the training set to create Monte Carlo pseudorandom sessions. In

naive learning, we train on train on S1 and test on S2; train on S2 and test on S3; and so

on until we train on S9 and test on S10. We compute the mean and the standard deviation

across all trials for the single-session performance. In batch learning, we train on S1 ∪ S2

and test on S3; train S2∪S3 and test on S4; and so on until we train on S8∪S9 and test on

S10. We compute the mean and the standard deviation across trials for the double-session

performance. Similarly we use the Monte Carlo method to create pseudorandom sessions

for multiple-session training and computer the averaged performance.

4.6 Incremental Learning

The cross-session training in batch mode may produce higher performance than the single-

session training due to more training samples. However, such batch training is com-

putationally intensive and thus infeasible for real-time systems. Incremental learning

paradigm, as opposed to the batch learning paradigm, in which all training examples are

provided at once for optimization, is a training mode where only a few training examples

are added at a time to update model parameters. The motivation of incremental learning is

to deal with very large training sets or non-stationary data. An important advantage of in-

cremental learning is that it allows the algorithm to combine additional available training

examples without having to retrain classifiers from scratch. This has numerous benefits,

including saving a substantial amount of storage space and speeding the computation up.

Therefore, incremental learning algorithms have been investigated in many applications,



77

such as intrusion detection [65] and blind separation task of acoustic signals [80]. One of

the main difficulties with using incremental learning methods is the sensitivity of choos-

ing training parameters.

Since the emergence of SVM in the 1990s, incremental learning of SVMs has been

investigated intensively [121, 14]. Early work provided only approximate solutions

[121, 59, 106]. In [121], Syed proposed an approximate solution to the problem of

incremental SVM learning. An SVM was trained on new data by discarding all previ-

ous data except the support vectors, which were combined with the new subset of data.

Cauwenberghs and Poggio first proposed an exact SVM incremental algorithm [14]. It

used an online recursive algorithm for SVM training and updated an optimal solution of

the training one vector at a time. To our knowledge there are not very many follow-up

publications, possibly because it is not easy to implement. In Ho’s work [41], they ap-

plied incremental SVM to stream-based active learning. Laskov et al. focused on the

design and analysis of efficient incremental SVM learning and proposed a new design of

storage and numerical operation to speed up the training of incremental SVM [64]. Com-

pared with Cauwengerghs’s work, Syed’s method is more straightforward and easier to

implement.

The essential property of the SVM algorithm is that only the SVs contribute to the

decision boundary so that the remaining training examples may be regarded as redundant.

Based on this property, Syed et al. proposed an incremental learning for the SVM to

deal with large datasets [121]. They segmented a huge dataset into small partitions to

avoid problems associated with limited available memory, and incrementally trained the

SVM with the small partitions. Their results demonstrated that the SVs selected by the

SVM algorithm was a minimal set. Any further removal of data samples significantly

deteriorated the performance because the loss of SVs led to loss of vital information

about the class distribution.

Motivated by Syed’s method, we develop an incremental learning scheme for cross-

session ERP detection to solve the problem of data growing over time. The incremental
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learning ERP detection is to train an SVM on the previous session of EEG data. The

SVs found during training are preserved and combined with the training samples from

the current session. For the cross-session EEG data (naive dataset #2) in Section 2.5,

there are 10 datasets, S1 to S10. Instead of training on all previous data as S1, S1 ∪ S2, ...,

S1 ∪ ... ∪ S9 as in the batch learning, we preserve the SVs from the previous training sets

and discard the redundant data. Let Vi represent the SVs in session Si. For the proposed

incremental learning scheme, we train using S1, V1 ∪S2, V1,∪V2 ∪S3 ,..., V1 ∪ ...V8 ∪S9.

Since it compacts the previous training data to the SVs and then combines only the SVs

with the new dataset, it is more computationally efficient. Based on the fact that only

the support vectors contribute to the essential class boundary in the SVM algorithm, we

would argue that the model obtained from the incremental SVM should provide the same

or similar performance as the original method using all the data together to train.

4.7 Performance Evaluation

4.7.1 Receiver Operating Characteristic Curve

We adopt the well-developed statistical tool – the receiver operating characteristic (ROC)

curve to depict the ERP performance and assess the quantitative efficacy. The ROC

curve [92, 31] describes the relationship between the false positive fraction (FPF) and

the true positive fraction (TPF) as the threshold for discrimination between two classes is

varied. The most widely used summary measure is the area under the ROC curve (AUC).

A perfect test has an AUC of 1.0, whereas random chance gives an AUC of 0.5. We use

AUC to evaluate the single-trial ERP performance.

4.7.2 Compare Correlated AUCs

There are many ways to analyze correlated ROCs [92, 63, 37, 3]. We use Delong’s non-

parametric approach [21] to evaluate correlated AUCs by generating an estimated covari-

ance matrix. Suppose the total test sample number is N and the numbers of targets and
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distractors are m and n where n = N −m. Let Xi, i = 1, 2, ...,m and Yj, j = 1, 2, ..., n

be the output values of the variables from two classifiers respectively. These outcome

values are used to construct an empirical ROC curves. The AUC is the probability that

a randomly selected observation from the distractor population will be less than or equal

to a randomly selected observation from the target population. It can be computed as the

average for all possible pairs over a comparison function, ψ, as

ˆAUC =
1

mn

n∑
j=1

m∑
i=1

ψ(Xi,Yj), (4.19)

where

ψ(Xi,Yj) =


1 Y < X

1
2

Y = X

0 Y > X

In terms of probabilities, the expected value of the AUC E( ˆAUC) = Pr(Y < X) +

1
2
Pr(Y = X). For the estimated AUC from classifier 1, the X-component and Y -

component are defined for the target class and the distractor class, respectively, as

V1
1(Xi) =

1

n

n∑
j=1

ψ(X1
i ,Y

1
j ) (i = 1, 2, ...,m), (4.20)

and

V1
0(Yi) =

1

m

m∑
i=1

ψ(X1
i ,Y

1
j ) (i = 1, 2, ..., n). (4.21)

where V1
1(Xi) and V1

0(Yi) are the m × 1 and n × 1 vectors. Similarly, we can obtain

V2
1(Xi) and V2

0(Yi) for the two classes of classifier 2. Let V1 = [V1
1(Xi),V

2
1(Xi)] and

V0 = [V1
0(Xi),V

2
0(Xi)]. The vector of estimated AUCs for two classifiers is ˆAUC =

[ ˆAUC1, ˆAUC2]′. The estimated covariance matrix for the two classifiers is

S =
1

m
S1 +

1

n
S0, (4.22)

where

S1 =
1

m− 1
V1
′V1 −m ˆAUC

′ ˆAUC, (4.23)
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(a) Subject 1 (b) Subject 2

(c) Subject 3

Figure 4.3: The ROC curves of the GKSVM (solid), linearSVM (dashed), and LLC (dash-
dotted) for the three IA subjects. ROC curve depicts the relationship between the false
positive fraction (FPF) and the true positive fraction (TPF). The performance in term of
the area under the ROC curves (AUC) for each classifier is shown. The performance of
the linear and nonlinear SVMs is significantly higher than the performance of the LLC.

S0 =
1

n− 1
V0
′V0 − n ˆAUC

′ ˆAUC. (4.24)

The S1 and S0 are 2 × 2 covariance matrices for the V1 of target class and the V0 of

distractor class. The standard deviation of the estimated AUC is
√

LSL′, where L =

[1,−1] is the contrast. The covariance matrix and the standard deviation of the estimates

may be used to construct the confidence regions.

4.8 ERP Detection Performance: SVM vs. LLC

The purpose of this experiment is to select a classifier on single-trial ERP detection for

incremental adaption process. We evaluate the detection performance of single-trial ERP
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Figure 4.4: The ROC curves of the GKSVM (blue solid), linearSVM (green dashed),
and LLC (red dash-dotted) for four naive subjects. ROC curve depicts the relationship
between the false positive fraction (FPF) and the true positive fraction (TPF). The per-
formance in term of the area under the ROC curves (AUC) for each classifier is shown.
The performance of the linear and nonlinear SVMs is significantly higher than the perfor-
mance of the LLC.

over three classifiers – the GKSVM, the linearSVM and the LLC on both professional

image analysts (IAs) and naive subjects (IA Dataset #1 and the naive dataset #1 described

Section 2.1 and Section 2.5). For the IA dataset, we have three subjects. Each one has

one training session and seven test sessions. For each subject, the processed data have

around 50 target samples and 500 distractor samples in the training set. The total test

samples contain around 100 targets and 20000 distractor samples. For the naive dataset,

we have four subjects and each one has ten sessions. We select the first session as the

training set and the other nine sessions as the test sets. For each subject, the processed

data have around 140 target samples and 1000 distractor samples in the training set. The
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total test samples contain around 1400 targets and 65000 distractor samples.

We use the non-parametric method to evaluated the difference of two correlated AUCs.

Our null Hypothesis, H0, is that there is no statistically-significant difference between the

two correlated AUCs (the AUC of the SVM and the AUC of the LLC). We use 10-fold

cross validation to select the parameters for GKSVMs. The optimal parameters for the

three IA subjects are σ2 = 0.05 and C = 100; σ2 = 0.1 and C = 100; σ2 = 10 and

C = 10000, respectively. The optimal parameters for the four naive subjects are σ2 = 1

and C = 10; σ2 = 1 and C = 10; σ2 = 1 and C = 100; σ2 = 1 and C = 1000,

respectively. We use C = 1 for the linearSVMs ( in our experience the performance of

the linearSVMs is not sensitive to the C value).

In the comparison of the GKSVM and the LLC, the GKSVM achieves significant

higher ERP detection performance than the LLC in terms of the AUC for both the IA

dataset and the naive dataset. For the three IA subjects the AUCs of the GKSVM is

higher than the LLC by 0.108, 0.103 and 0.095, respectively, as shown in Figure 4.3.

The two-tailed p values for the three IA subjects are << 0.0004 (z = 5.179, 5.734 and

4.556, respectively). For the four naive subjects the AUCs of the GKSVM is higher than

the LLC by 0.050, 0.106, 0.043 and 0.336, respectively, as shown in Figure 4.4. The

two-tailed p values for four naive subjects are << 0.0004 (z = 14.529, 21.063, 12.008

and 47.420, respectively). From the results of both the IA dataset and the naive dataset,

one can conclude that the difference between the AUCs from the GKSVM and the LLC

are highly statistically significant and thus we can reject H0.

Similarly, in the comparison of the linearSVM and the LLC, the linearSVM achieves

significant higher ERP detection performance than the LLC in terms of the AUC for both

IA subjects and naive subjects. For the three IA subjects the AUCs of the linearSVM is

higher than the LLC by 0.093, 0.086 and 0.093, respectively, as shown in Figure 4.3. For

the four naive subjects the AUCs of the linearSVM is higher than the LLC by 0.030, 0.084,

0.026 and 0.319 respectively, as shown in Figure 4.4. The two-tailed p values for the three

IA subjects and the four naive subjects are << 0.0004 (z = 5.260, 4.773, 4.383, 8.708,
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17.560, 7.413, and 14.271, respectively). One can conclude that the difference between

the AUCs from the linear SVM and the LLC are also highly statistically significant and

thus reject H0.

Comparing the GKSVM with the linearSVM, the GKSVM achieves significant higher

ERP detection performance than the linearSVM in terms of the AUC for six out of seven

subjects. For the three IA subjects the AUCs of the GKSVM is higher than the linearSVM

by 0.015, 0.017 and 0.002, respectively, as shown in Figure 4.3. For the four naive

subjects the AUCs of the GKSVM is higher than the linearSVM by 0.020, 0.022, 0.017

and 0.017 respectively, as shown in Figure 4.4. The two-tailed p values for the IA dataset

are 0.215, 0.021, 0.029 (z = 1.245, 2.307, 2.186, respectively) and the two-tailed p values

for the naive dataset are << 0.0004 (z = 9.420,10.237, 9.848,and 44.137, respectively).

The difference between the AUCs from the GKSVM and the LinearSVM are statistically

significant for all subjects except one IA subject.

The non-parametric test for correlated AUC measurements indicates that the linear

and nonlinear SVM achieves significantly better performance, in a statistical sense, than

the LLC for single-trial ERP detection on both IA and naive datasets. Likewise, the

GKSVM, at the cost of additional computational complexity, performs better than the

linearSVM for ERP detection. The result indicates that the data may not be linearly sepa-

rable in the original feature space so that the nonlinear projection to the high-dimensional

feature space helps the discrimination of the two classes. However the tradeoff is the

computation efficiency.

For high dimensional data (32 × 129 dimension and sparse training samples (for IA

dataset, roughly 50 positive samples and 500 negative samples; for naive dataset, roughtly

140 positive samples and 950 negative samples), the SVMs are capable to capture nonlin-

ear class separation boundary. The SVMs map input data to a high dimensional feature

space via kernel tricks and optimize the linear separating hyper-plane in feature space.

However, the LLC is simply a linear hyper-plane boundary. This could be the main reason
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Figure 4.5: Broad area image with overlaid contour maps (upper). The crosses indicate
true target locations. Users can zoom into the contour hotspot to confirm the presence of
a target (lower).

Figure 4.6: The detection speed (left) and detection rate (right) averaged across test ses-
sions for the three IA subjects.

for performance discrepancy. Some regularization could be made to the LLC to approxi-

mate the SVMs, for instance, by modified iteratively re-weighted least squares estimation

procedure or a modified penalized log likelihood function. Consequently, based on the

results, we chose the GKSVM as the classifier for the incremental adaptation process.

4.9 Efficiency: ERP Approach vs. Tradition Approach

We conduct a experiment to explore the efficiency of neurophysiologically-driven image

search. More specifically, we compare the ERP approach with the tradition image viewing
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approach on the detection rate (the ratio of the number of detected targets and the number

of total targets) and detection speed (the ratio of the total search time and the total image

area, which is measured in units of seconds/km2). The study was carried on a group of

professional image analysts as described in Section 2.1.

The ERP-based target detection system collects EEG signals as a subject observes a

high-speed scan of the thousands of chips extracted from several broad-area images and

then analyzes the data to identify ERPs. We use IA Dataset #2 in this experiment. We

employ the GKSVM as the ERP detector in this study. Based on the estimated likelihood

values from the GKSVM, we can construct a contour plot of the target likelihood and

overlay it on the associated broad-area image. The human experts use this plot to do a

final confirmation.

In the tradition image viewing approach, participants use a geo-spatial analysis tool

called GlobalMapper (Global Mapper Software). It provides zoom and pan controls and

allows high resolution satellite imagery to be efficiently searched and annotated. Partici-

pants are allowed as much time as they wished to search the targets in a broad area image.

A set of prototype images depicting the targets are shown to each participant.

Figure 4.5 shows the target likelihood contour maps (for all contours above a fixed

threshold) for one of the broad-area images used in the test. One can see that, in this case,

the ERP-based approach accurately detects one target and has a few false alarms. This

visualization technique allows efficient post-processing of the triage outputs.

Figure 4.6 shows the detection rate and the detection speed averaged across test ses-

sions for each subject. We can see that the averaged detection rates of the ERP system

are equal to or higher than those of the manual method. The detection speeds of the ERP

system are much faster than those of the manual method for all subjects. The overall de-

tection rate across subjects for the ERP system is 93% compared to 67% for the manual

approach. The averaged AUC across seven test sessions for the three subjects is 0.82. The

overall false alarm rate for the ERP system is higher than the manual method, which had
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 4.7: Dimension reduction performance on ERP detection using LDA on lin-
earSVM and GKSVM for three IA subjects from IA Dataset #1. The red and blue curves
represent the linearSVM and the GKSVM detection performance respectively. The red
and blue thin lines represent the performance using the original features on the linearSVM
and the GKSVM respectively. One can see the dimension reduction performance using
projection features is higher than the performance using original features on both classi-
fiers for all subjects.

zero false alarms. The precision for the ERP system is 78% and the precision for the man-

ual method is 100%. The overall detection speed for the ERP system is 5.3 times faster

than the manual method. The results demonstrate that the ERP-based image search sys-

tem is more efficient than the tradition image viewing paradigm in terms of the detection

speed and detection rate.

4.10 Dimension Reduction Performance

The purpose of this study is to compare the ERP detection performance with and with-

out dimension reduction. We use the LDA approach for reduce channel dimensionality

on two IA datasets (IA Dataset #1 and IA Dataset #2 as described in Section 2.1 and

Section 2.5). The dimension reduction performance is tested on both linearSVM and

GKSVM. The original channel number is 32. The number of reduced dimension are set

as 20, 21, 22, 23, 24 to evaluation the channel dimension reduction performance. Figure

4.7 and Figure 4.8 shows the dimension reduction detection performance using LDA

on the linearSVM and the GKSVM for six IA subjects from two datasets. One can see

the dimension reduction performance using projection features is higher than the perfor-

mance using original features on both classifiers for all subjects. It indicates that the LDA
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 4.8: Dimension reduction performance on ERP detection using LDA on lin-
earSVM and GKSVM for three IA subjects from A Dataset #2. The red and blue curves
represent the linearSVM and the GKSVM detection performance respectively. The red
and blue thin lines represent the performance using the original features on the linearSVM
and the GKSVM respectively. One can see the dimension reduction performance using
projection features is higher than the performance using original features on both classi-
fiers for all subjects.

feature projections capture the distinguishable characteristics and thus produce high de-

tection performance with less computational complexity. For the linearSVM the optimal

numbers of projections are 4, 4, 8, 1, 8, 16 and for the GKSVM the optimal numbers of

projections are 4, 4, 8, 2, 8, 2. The numbers of dimension for the highest performance are

much less than the original dimension for both datasets.

4.11 Cross-session Performance

We conduct an experiment to extend the results from our ERP detection framework (Sec-

tion 4.8) and explore the robustness of the ERP-detection approach to changes of EEG

signals over time. Here we evaluate the viability of cross-session batch learning on ERP

detection by comparing it with naive learning on naive dataset #4. Figure 4.10 shows

the ERP detection performance in term of AUC using the batch learning on cross-session

data and the naive learning using single-session data. We use only the current session as

the test set and the previous sessions as the training set to create Monte Carlo pseudoran-

dom sessions. The averaged performance are computed across Monte Carlo trials. The

GKSVM achieves high cross-session generalization performance for all subjects. The
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Figure 4.9: The cross-session performance in term of the area under ROC (AUC) on
different number of training sessions for four subject using the GKSVM. We use only the
current session as the test set and the previous sessions as the training set to create Monte
Carlo pseudorandom sessions. In naive learning using single-session data (red dashed
line), we train on the single previous session and test on the current session. In batch
learning using cross-session data (blue solid curve), we train on all previous multi-session
data and test on the current session. The batch learning performance using cross-session
training is compared with the naive learning performance using single-session training.
One can see the increasing trend after aggregated more training data for all subjects.

averaged AUC exhibits a generally increasing trend with the inclusion of additional train-

ing data from subsequent sessions for four subjects. The averaged performance across

subjects increases around 5%.

Our results demonstrate the viability of cross-session single-trial ERP detection. Given

a reasonable amount of cross-session training data, the SVM achieves excellent general-

ization performance, as indicated by the high AUC values. The results suggest that the

classifier is able to capture much of the range of variation in our EEG data and approach

the problem of characterizing between session variation in signal statistics. The results

show that intra-session variances do not significantly deteriorate detection performance.
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Figure 4.10: The Incremental learning performance in term of the area under ROC (AUC)
using the GKSVM. The AUC as a function of the number of training sessions for four sub-
jects for batch learning (red dashed; using all previous data for training), and incremental
learning (blue solid; only the SVs are propagated). The incremental learning performance
is identical to the batch learning performance across different number of training sessions
for all subjects.

4.12 Incremental Learning vs. Batch Learning

We evaluate the efficiency of incremental learning on ERP detection by comparing it with

batch learning on both detection performance and computational load. We examine the

method on cross-day data from the same naive subject group as previous section. The

aggregated SVs from the previous sessions combined with the current session data were

input to the SVM to evaluate the cross-session performance for incremental learning.

We compare the single-trial ERP detection performance on the batch learning method

and the incremental learning method. Figure 4.10 shows the cross-session ERP detec-

tion performance in terms of the AUCs for four subjects. The incremental learning SVM
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Figure 4.11: The number of training samples for different number of training sessions
for subject 1 using batch learning (uses all previous data for training) and incremental
learning (only the SVs are propagated).

achieves identical AUCs as the batch approach for all subjects. The AUCs of both incre-

mental learning and batch learning exhibit a generally increasing trend with the inclusion

of additional training data from subsequent sessions for all four subjects.

We compare the computational load, in terms of the number of training samples, of

the incremental learning is compared with that of the batch mode. Figure 4.11 shows

the number of training samples for one subject on both incremental learning and batch

learning. The other three subjects have similar results. As one can be seen in this plot the

incremental learning using only SVs, which is a small fraction of all data, substantially

decreases the computational load after the aggregated data grow over time. The number

of training samples for the incremental learning is less than 1/3 that for the batch learning.

We implement the incremental learning SVM by keeping only the support vectors,

instead of all the data, from the previous sessions and incorporating them with the data of

the current session. Thus the incremental learning dramatically reduces the computational

load. Since only the SVs contribute to the decision boundary, the incremental learning

and the batch learning produce similar SV coefficients. The results demonstrate that the

incremental learning ERP detection system performs as well as the batch mode, which

uses all training data. Furthermore, it is more computationally efficient, which allows it

to better cope with a continuous stream of EEG data.
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4.13 Summary

We report the design and performance of a brain computer interface framework for visual

target image search using single-trial ERP associated with human perceptual judgements.

We demonstrate an ERP-based target detection system for speeding up visual target search

by tapping into the split-second perceptual judgments of humans. Our ERP-based ap-

proach provides a higher detection rate and speed, albeit with more false alarms, than the

tradition image viewing approach. It should be noted that many of the false positives can

be removed with limited effort by manual confirmation of the prospective targets. The

linear and nonlinear SVM classifiers significantly outperforms the LLC for single-trial

ERP detection due to good generalization capabilities of SVM for high dimensional data.

Therefore we select SVM as one of major ERP detectors. The channel dimension reduc-

tion using LDA successfully extracts representative features and thus improves the ERP

detection performance with less computational cost.

We propose cross-session training for single-trial ERP detection and demonstrate the

efficacy of incremental learning on cross-session data. Our cross-session results show that

the high inter-session variance can be reliably mitigated. With more training samples, the

cross session methods outperform the single-session method. Our motivation of using

incremental learning is based on the fact that the SVM algorithm is able to summarize

the data in the compact form of SVs. The incremental learning method using only SVs

performs better than the naive method and it achieves, with a substantially lower compu-

tational load, a performance similar to the batch method for cross-session ERP detection.

The incremental learning performs as well as the batch mode due to the fact that only

the SVs contribute to the decision boundary. Since the incremental learning compacts

the previous training data to the SVs and incorporates only the SVs with the new dataset,

it is more computationally efficient than the batch learning method. We show that even

though incremental learning is as effective as batch learning, the computational complex-

ity is only 1/3 that of batch learning (measured in terms of number of training samples).
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This work represents a first step towards our vision of neurophysiologically-driven

image triage system. The SVM as a discriminative learning approach optimizes a map-

ping from the inputs to the desired outputs by adjusting the classification boundary and

thus demonstrate superior performance in the ERP detection task. However the SVM

approach does not take advantage of the domain knowledge. Next we will investigate

the characteristics of ERP patterns and explore some statistical models. As opposed to

SVM, generative learning models , such as the mixed-effects models [62], are capable to

model the underlying distributions of the variables and manipulate the probability density

model to compute decision functions and thus provide a rich framework to learn useful

and detailed modeling of ERP phenomenon from the prior knowledge. Besides, The use

of more sophisticated kernels will be explored in the following chapter to deliver higher

performance.



Chapter 5

A Hybrid Generative/Distriminative
Model for Single-trial ERP Detection

5.1 Introduction

1Single-trial ERP detection is a fundamental signal processing problem for noninvasive

BCI operating synchronously with some stimulus sequence. The problem needs to be

solved effectively and efficiently so that the technique of single-trial ERP detection can

become a practical solution to assistive and augmentative communication needs of per-

sons with disabilities. In most assistive communication device applications the role of

the BCI is to act as a keyboard-substitute. Recently, applications of noninvasive BCIs has

been extended to utilize similar visual presentation paradigms where the displayed letters

are replaced by images of interest to achieve goals related to particular tasks involved.

For instance, image retrieval from large databases for medical and civilian research, and

planning purposes, as well as for image mining in the web for recreation, are potential

applications that will create a broader impact on the society.

The research that utilize the visual evoked potentials in various visual presentation

1This work was accepted as a book chapter, and will be originally published in the Recent Advances
in Biomedical Signal Processing (eds. J. Ramirez, J.M. Gorriz, E. Lang) in July 2010. Copyright 2010
Bentham Scientific Publishers. Permission was granted.
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paradigms have primarily relied on multi-trial ERP detection to achieve practically ac-

ceptable accuracy levels. For instance, the well known P300 Speller used 8 − 16 repeti-

tions typically [136], while G.tec claimed accurate-enough detection for brain-controlled

typing using only 2-repetitions in well-trained subjects [36]. It is clear that, under the as-

sumption of statistically independent EEG measurements in response to different presen-

tations of the same stimulus, an exponentially diminishing ERP-detection error probabil-

ity can be attained by simply multiplying the class likelihoods obtained from a single-trial

ERP detector as in independent Bernoulli trials.

In statistical inference theory, the problem of signal detection in noise, when framed

as a hypothesis test, one usually constructs a generative probabilistic model of the mea-

sured data, which then forms the basis for Bayesian inference [8] - optimal in terms of

expected risk minimization. Deciding the class label (a target ERP (or 1) or a non-target

ERP(or 0)) of a novel EEG waveform obtained in response to a particular visual stimulus

could be achieved using the likelihood ratio test procedure. For instance: specifically, the

ratio of likelihoods of the new data under the two competing generative models compared

with a threshold reveals the optimal decision in this minimum expected risk framework

(note that one might be interested in other statistics of the risk as well, in which case,

different optimal decision rules would have been obtained) [26]. One particular strength

of generative probabilistic models is that it provides an understanding of the underlying

mechanisms for the process. Therefore, they contain more information that one can ex-

tract in addition to the optimal decision for the signal detection problem. On the negative

side, this could also be interpreted as a weakness of the generative approach - the model

attempts to capture more information than needed for the purpose, thus generalization

might fail for complex classification boundaries with small amount of training data.

Discriminative learning in machine learning is an approach that focuses on learning

only the decision boundary in a classification problem, in an attempt to avoid the short-

comings of a restrictive parametric generative model that tries to fit to the data throughout
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the whole space. Linear discriminants, multi-layer perceptrons, SVM are among the ex-

amples of this approach [126]. They are trained to estimate a scalar discriminant index

(which essentially corresponds to identifying a linear or nonlinear data projection func-

tion, and after which simple thresholding can reveal optimal decisions under the assumed

model and criterion). Note that the Bayes minimum risk detector using true underly-

ing class distributions is also effectively a nonlinear dimensionality reduction that allows

for threshold comparison. While generative models attempt to approximate the individ-

ual class distributions, discriminative models attempt to model the surface in the feature

space which will be mapped to the threshold value. Due to the reduced complexity of the

function to be modeled, these latter models generally outperform the former approach in

real world problems [50] where true distributions of underlying generative mechanisms

are difficult to formulate (usually due to lack of understanding at the fundamental level or

due to prohibitive computational complexity of such forward models in dynamic systems

– both are influential in the case with brain signals).

The Fisher kernel was proposed for data with variable lengths where generative mod-

els can be formulated but discriminative learning is desired due to the inherent penaliza-

tion of longer data [48, 47]. This technique provides a link between generative models

and discriminative methods (although the technique refers to the use of a kernel, in fact, it

is mathematically an alternative model-based distance metric, thus can be used in various

discriminative methods if employed properly). Specifically, the intuition is that distances

between pairs of data points should be measured using geodesics on the manifold induced

by the generative probability density model. This approach is consistent with the informa-

tion geometry of statistical models and mathematically superior to techniques that utilize

Euclidean distances or other linear algebraic variations. The Fisher information matrix

is known to form a natural Riemannian metric for a given parametric probability density

model in its parameter space [1]. The Fisher kernel exploits this property of the Fisher in-

formation matrix and employs the Fisher score to construct an inner product that measures

distances between datum pairs informed by the underlying generative model.
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We propose a new hybrid generative/discriminative model using the Fisher kernel, in

the area of single-trial ERP detection for the purpose of stimulus-synchronous BCI design.

Specifically, we will utilize the mixed effects model (MEM) approach [62] (a graphical

hierarchical Bayesian special case) to develop generative models for multichannel EEG

signals, and use the Fisher kernel derived from the generative model in a discriminative

model – SVM. The motivation of applying the hybrid model for single-trial ERP detec-

tion is to exploit the detailed modeling information encoded in the MEM and apply it in

the design of a similarity measure between input samples via the Fisher kernel to improve

the performance. Recently, researchers have investigated the connection of the generative

and discriminative learning paradigms and combined their complementary strengths [50].

Jaakkola et al. first introduced the Fisher kernel to create a generic mechanism for incor-

porating generative probability models, such as hidden Markov models, into discrimina-

tive models, such as SVMs, to solve the variable length problem of feature vectors [48].

My colleagues, Lu and Leen [69] developed hierarchical Fisher kernels using the MEMs

for longitudinal time series analysis to deal with varying sequence lengths and varying

sampling intervals for predicting cognitive decline in aging.

In this chapter, we develop a hybrid model combining the generative mixed models

with the SVM using the Fisher kernel for single-trial ERP detection. The challenge of this

domain is high dimensionality and scarcity of training data. The first section starts with

the model description and parameter estimation for the MEM. To avoid numerical prob-

lems in high dimensional matrix computations, we design low-dimensional calculations

utilizing low-rank matrix properties. This significantly reduces computational complex-

ity. We also employ the channel dimension reduction for EEG data (the same strategy

as described in Chapter 4 Section 4.4, which is critical for applying the model on high-

dimensional EEG data. To take advantage of the underly information about the target ERP

and non-target ERP, We construct the mixed effects evoked response model using prin-

cipal component analysis (PCA) [26] for the population model and linear discriminant

analysis (LDA) [26] for the individual models. The second section introduces the Fisher
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kernel and Fisher scored, derived from the MEM, and the construction of the SVM using

Fisher kernel. In the result section we provide the performance evaluation of likelihood

ratio MEM test and Fisher kernel SVM (FKSVM) detectors in comparison to the linear

SVM (LinearSVM) and Gaussian-kernel SVM (GKSVM) detectors for single-trial ERP

detection on two datasets.

5.2 MEM for Stimulus-Synchronized EEG

A linear mixed effects model (MEM) [23] is a statistical hierarchical model with a com-

plex, multilevel and hierarchical structure. It was first proposed for the analysis of longi-

tudinal time-series data [62]. More detailed discussion of model fitting and checking was

provided on analysis of unbalanced repeated measures and longitudinal data in the guide-

line paper [17]. It has been widely used on the analysis of longitudinal sequence data

in biostatistics [23, 69], where each subject/sample yields a sequence of measurements.

These measurement sequences are assumed to follow a temporal structure that consists

of three components: (i) population contribution, which corresponds to the population

average; (ii) individual variability component, which determines the random variation of

an individual from the population mean; (iii) stationary measurement noise. The popula-

tion and individual components are assumed to be linear combinations of basis functions

of time and the measurement noise is usually assumed to be temporally white. There are

two sources of variation in the MEM: between-individual variations and within-individual

variation. It assumes that observations between levels or clusters are independent, but ob-

servations within each cluster are dependent. An advantage of the MEM is the ability to

genuinely combine the data by introducing multilevel random effects. Therefore it is well

suited for the analysis of complex clustered or longitudinal data, the data with multiple

sources of variation, and biological variety and heterogeneity.

In BCI applications, for each visual stimulus, the corresponding ERP waveforms do

not necessarily have exactly the same shape. Specifically, ERP components, such as
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P300, may have variations in amplitude, duration, or latency from trial to trial. These

variations might arise from a variety of factors, including fatigue and attention, task dif-

ficulty and stimulus complexity, as discussed in Chapter 3. In this study, we employ the

MEM framework to develop two generative models for EEG waveforms in response to

target and non-target visual stimuli. It is assumed in the BCI design that target stimuli

results in active ERP generation and non-target images are largely ignored by the brain.

The mixed-effects ERP detector models single-trial ERP waveforms as varying individ-

uals from a population; thus the classifier attempts to explain fluctuations in the baseline

ERP waveform via a hierarchical Bayesian topology. By introducing multilevel random

effects, the MEM easily handles data with multiple sources of variation, such as EEG

data. Specifically for designs of data across trials/sesseions/subjects, we can easily use

the population-averaged parameters to specify the common EEG signal type (consistent

pattern across trials/sesseions/subjects), and the specific parameters to specify individ-

uality (individual variety with the within- and between- trial/sesseion/subject variance).

Therefore the MEM provides principled basis for combining population and individual

characteristics of ERP signals.

5.2.1 Model Description

In the following, we will refer to the measured (vectorized) multichannel EEG response

for a particular visual stimulus as an individual and the group of individuals that come

from the same type of stimulus (i.e., target or non-target) as a population. For each

individual i of N from population c (where c ∈ {1, 0} denotes class membership: a target

ERP or a non-target ERP), the MEM is written as:

yci = Xcαc + Zbci + εc, (5.1)

where i = 1, . . . , N , N is the number of target or non-target samples. In the MEM

expression:
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• yci is an nc × 1 vector of observations for the ith individual and ni is the number

of observations for the ith individual.

• αc is an pc × 1 population effects coefficient vector.

• Xc is an nc × pc population design matrix (basis vectors for fixed effects).

• bci is an kc × 1 individual random effects vector. These random effects vectors are

assumed to have a hyper-distribution (e.g., zero-mean multivariate Gaussian with

covariance Dc : bci∼N(0,Dc)).

• Z is an nc × kc individual design matrix (basis vectors for random effects).

• εc is an nc × 1 vector of independent and identically distributed (iid) noise with zero

mean and positive definite within-individual covariance (typically, εc∼N(0, σc2I),

where I denotes an nc×nc identity matrix.).

Thus, assuming that all distributions involved are Gaussian, the density model corre-

sponding to (5.1) can be written as yci∼N(Xcαc, σc
2
I + ZDcZT ). In (5.1), yci is the

vectorized spatiotemporal stimulus-time-locked EEG measurement (for instance from 32

channels over the duration 0 − 500ms following stimulus onset). In test mode, when

class labels are not known, the superscript indicating class label is to be determined. In

the same equation, Xc and Z are known design matrices (consisting of preselected ba-

sis vectors for population and individual effects in their columns). The parameters to

be determined via model fitting using maximum likelihood estimation, for instance, are

population-averaged parameter αc, the covariance Dc of the random vectors bci , and the

covariance of the additive background noise component εc, specifically σc2, if the noise is

assumed to be spatiotemporally white for each class (a target ERP and a non-target ERP).

5.2.2 Model Parameter Estimation

The maximum likelihood (ML) estimates of the MEM parameters (αc, bci , σ
c2 and Dc) are

assessed using available data with the Expectation-Maximization (EM) algorithm [24].
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ML Estimation of αc and bci

For a given class, let Vc
i = σc2I + ZDcZT denote Cov(yci ), the covariance of the mea-

surement vectors from this class. If Vc
i was known (σ̂c2 and D̂c were known), we could

estimate αc and bci . Assuming that the measured vector, yci , is independent and iden-

tically distributed according to the Gaussian model prescribed by MEM, the joint data

likelihood would be given by

p(yc;θc) =
N∏
i=1

exp[−1
2
(yci −Xcαc)TVc

i
−1(yci −Xcαc)]

(2π)
nc

2 |Vc
i |

1
2

, (5.2)

where θc = (αc; vec(Dc);σc). For simplicity of model, Dc could be assumed to be

diagonal, in which case, the parameter vector would only include the individual variances

of the individual random effect coefficients. From this expression, the log-likelihood as a

function of the parameter vector is obtained as

l(θc) = −1

2
{Nncln(2π) +

N∑
i=1

[ln|Vc
i |

+(yci −Xcαc)TVc
i
−1(yci −Xcαc)]}. (5.3)

If the covariance parameter estimates σ̂c2 and D̂c were available, then the log-likelihood

function could be maximized by the generalized least squares estimator. Specifically, tak-

ing the derivative of l(θc) with respect to αc and equating to zero, we get

α̂c = (
N∑
i=1

XcTVc
i
−1Xc)−1

N∑
i=1

XcTVc
i
−1yci . (5.4)

Once an estimate for αc is available, we can treat bci as fixed effects and obtain the esti-

mate from (5.1)using least square estimation as follows:

b̂ci = DcZTVc
i
−1(yci −Xcα̂c). (5.5)
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EM Estimates for σc2 and Dc

M-step: If we were to observe bci and εc, we could easily obtain a simple closed-form

solution using ML estimates of variances,

σ̂c
2

=
1

Nnc

N∑
i=1

εcTεc, (5.6)

D̂c =
1

N

N∑
i=1

bcib
cT
i . (5.7)

E-step: If σc2 and Dc estimates were available, we could calculate the sufficient statis-

tics as follows:
N∑
i=1

εcTεc =
N∑
i=1

ε̂c(θ̂)T ε̂c(θ̂) +
N∑
i=1

tr{Cov[εc|yci , α̂c(θ̂c), θ̂c]}, (5.8)

N∑
i=1

bcTi bci =
N∑
i=1

{b̂ci(θ̂)T b̂ci(θ̂) + Cov[bci |yci , α̂c(θ̂c), θ̂c]}, (5.9)

where ε̂c(θ̂c) = yci−Xcα̂ci(θ̂
c)−Zb̂ci(θ̂

c) and b̂ci(θ̂
c) were obtained from ML estima-

tion. Based on εc|θc∼N(0, σc2I), yci |εc;θc∼N(Xcαc,ZDcZT ), and yci |θc∼N(Xcαc, σc2I+

ZDcZT ), we can derive

Cov[εc|yci , α̂c(θ̂c), θ̂c] = [(ZDcZT )−1 + (σc2I)−1]−1. (5.10)

Similarly, based on yci |bci ;θc∼N(Xcαc+Zbci , σ
c2I), yci |θc∼N(Xcαc, σc2I+ZDcZT ),

and bci |θc∼N(0,Dc) we can calculate

Cov[bci |yci , α̂c(θ̂c), θ̂c] = (ZTZ/σc2 + Dc−1)−1. (5.11)

Thus from (5.6)-(5.11), we obtain the variance parameter estimates as:

σ̂c
2

= Nnc
N∑
i=1

ε̂c(θ̂c)T ε̂c(θ̂c)

+
1

Nnc

N∑
i=1

tr{[(ZDcZT )−1 + (σc2I)−1]−1}, (5.12)
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D̂c =
1

N

N∑
i=1

{b̂ci(θ̂c)T b̂ci(θ̂c) + (
ZTZ

σc2
+ Dc−1)−1}. (5.13)

Upon convergence of the EM iterations, we obtain σ̂c2 and D̂c.

5.2.3 Dimension Reduction in MEM Calculations

The model parameter estimation procedure provided in the previous section involves

nc × nc matrix inversions and determinants. These computations can be reduced to

k × k where k � nc using the following exact rank-reduction formulas. Since these

reductions apply to models of both classes, we will omit the superscript indicating class

label in the following expressions throughout this section.

Simplified Formulas for Log-likelihood

Since Vi = σ2I + ZDZT involves an n × n matrix inversion, we can use the following

dimension-reduction formulas to exploit the relevant rank-k subspace:

V−1
i = σ−2In − σ−2InZ(D−1 + ZTσ−2InZ)−1ZTσ−2In

= σ−2Ik − σ−4ZTZ(D−1 + σ−2ZTZ)−1, (5.14)

|Vi| = σ2(n−k)|σ2Ik + DZTZ|. (5.15)

If matrix D is nonsingular, we can have the log of the determinant as a function of D−1.

ln |Vi| = ln |σ2D−1 + ZTZ| − ln |D−1|+ (n− k) lnσ2. (5.16)

Simplified formulas for σ2 and D

To avoid inverse matrices in Equation (5.10) and (5.11), by using matrix inversion lemma,

we have the following simplifications,

[(ZDZT )−1 + (σ2In)−1]−1 = σ2In − σ4InV
−1
i , (5.17)

(
1

σ2
ZTZ + D−1)−1 = D−DZTV−1

i ZD. (5.18)
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Therefore Equation (5.12) and (5.13) can be simplified as follows

σ̂2 =
1

Nn

N∑
i=1

ε̂(θ̂)T ε̂(θ̂) + σ2 − 1

Nn
σ4

N∑
i=1

tr(V−1
i ) (5.19)

D̂ =
1

N

N∑
i=1

[b̂i(θ̂)T b̂i(θ̂)] + D− 1

N
D(

N∑
i=1

ZTV−1
i Z)D. (5.20)

Using (5.14), we also obtain

ZTV−1
i Z = ZTZ(σ2Ik + DZTZ)−1. (5.21)

If (ZT
i Zi)

−1 exists, we can have

ZTV−1
i Z = [σ2(ZTZ)−1 + D]−1. (5.22)

Furthermore from (5.20),

N∑
i=1

ZTV−1
i Z = σ−2

N∑
i=1

ZTZ− σ−4

N∑
i=1

[(ZTZ)(D−1 + σ−2ZTZ)−1(ZTZ)T ]. (5.23)

Simplified formulas for α and bi

In (5.4) we can substitute and have

N∑
i=1

XTV−1
i X = σ−2

N∑
i=1

XTX− σ−4

N∑
i=1

[(XTZ)(D−1 + σ−2ZTZ)−1(XTZ)T ],(5.24)

N∑
i=1

XTV−1
i yi = σ−2

N∑
i=1

XTyi − σ−4

N∑
i=1

[(XTZ)(D−1 + σ−2ZTZ)−1(ZTyi)]. (5.25)

Similarly, in (5.5) we can substitute

ZTV−1
i yi = σ−2ZTyi − σ−4(ZTZ)(D−1 + σ−2ZTZ)−1(ZTyi), (5.26)

ZTV−1
i X = σ−2XTZ

T − σ−4(ZTZ)(D−1 + σ−2ZT
i Z)−1(XTZ)T . (5.27)
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(a) MEM Training
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(b) MEM Test

Figure 5.1: The framework of MEM likelihood-ratio ERP detection. (a) MEM training
procedures. Two MEMs are constructed, one for the ERPs associated with targets, and
one for the ERPs associated with non-targets. (b) MEM likelihood ratio test.

5.2.4 MEM Likelihood-Ratio Test ERP Detector

Given one trained MEM per class, whose likelihood values for a given y are denoted by

MEM c(y), one can design an ERP detector using the standard likelihood ratio test ap-

proach. Figure 5.1 shows the training and test processes of the MEMs for ERP detection.

We construct two linear MEMs, one for the ERP cluster and another one for the nonERP

cluster. The likelihood ratio test is simply the ratio of these two models, MEM1(y)
MEM0(y)

, for a

given test sample. Figure 5.2 shows the model fit for these two classes. The plots shows

the fixed effect regression and the standard deviations from the random effects and noise.

We employ a linear channel mixture paradigm inspired by the LDA for preliminary

dimensionality reduction (as described in Section 4.4) followed by the training of indi-

vidual class MEM parameters based on available training data for each class. The number

of channels (spatial locations on the scalp) from which EEG is acquired might be high

if denser arrays are utilized. This factor directly affects the dimensionality of the mea-

surement vector being modeled in the MEM framework and dimensionality reduction
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(a) MEM fit for ERPs (b) MEM fit for non ERPs

Figure 5.2: The MEM model fit for (a) the ERPs associated with targets and (b) the ERPs
associated with non-targets from the stimulus onset to 500ms latency. The red spaghetti
curves are the input EEG signals. The green dash lines are the mean of the signals. The
blue solid lines are the fixed effects Xα. The cyan dash lines are the population effects
± the standard deviation from the individual effects of the bi, i.e. Xα +

√
ZDZT . The

yellow solid lines are the population effects ± the standard deviation from the individual
effects of the bi and the noise term ε, i.e. Xα+

√
ZDZT + σ2 .

generally benefits the learning process from a parameter estimation variance perspective.

We develop the population design matrices Xc for the ERPs associated with targets and

non-targets respectively using the principle component analysis (PCA) [26] and the in-

dividual design matrix Z using the LDA. The intuition is that the population components

in the models will attempt to capture the average large power trends in the signals of each

class while the individual ERP variations will be modeled trying to exploit discriminative

patterns.

Population and Individual Design Matrices

After some experimentation and cross validation, we decide to develop the population

and individual design matrices for both target MEM and non-target MEM using the PCA

and the the LDA, respectively [26]. This also intuitively means that the population com-

ponents in the models will attempt to capture the average large power trends in the signals

of each class while the individual ERP variations will be modeled trying to exploit dis-

criminative patterns.
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The population design matrices for the target ERP and non-target ERP classes are

obtained as the largest few eigenvectors of the corresponding class sample covariation

matrices (without subtracting the class averages as one would do in covariance calcula-

tions). Specifically, the number of eigenvectors retained for use as columns in the popu-

lation design matrix is selected by a user-defined percentage of the total variation (sum of

eigenvalues, or equivalently trace of the covariation matrix). The same percentage is used

as the threshold for minimum retained energy for both classes/models.

The individual design matrices are developed using the LDA. Specifically the largest

generalized eigenvectors of the within and between class scatter matrices are retained.

Since the LDA approach uses data from both classes to select the projection directions,

both models use the same individual design basis vectors.

Once the population and individual design matrices are selected, the maximum like-

lihood MEM parameters for each class can be obtained using the EM procedure. Figure

5.1(a) illustrates the overall block diagram of the MEM model for each class. The model

order selection and parameter regularization can be obtain using cross validation [26].

MEM Operation in Testing Mode

In testing mode, for each incoming sample yTesti , the MEM still needs to identify the best

individual effect coefficient vector bc,Testi . Specifically, for each test pattern, it is assumed

that under MEM c, the following generative model is accurate:

yTesti = Xcαc + Zbc,Testi + εc (5.28)

where bc,Testi ∼N(0,Dc) and εc∼N(0, σc2I). Since we have

p(yTesti |αc,bc,Testi )∼N(Xcαc + Zbc,Testi , σc2I) (5.29)

we can maximize this posterior for each class and obtain the optimal individual random

effect parameter bc,Testi for the test pattern. This yields:

bc,Test
∗

i = DcZTVc
i
−1(yTesti −Xcαc). (5.30)
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After we obtain b1,T est∗

i for the target ERP model and b0,T est∗

i for the non-target ERP

model using appropriate design eigenvectors in (5.30), we can employ the likelihood ratio

test using the respective model log-likelihood estimates:

l(bTest
∗

i ) = ln[N(Xα+ ZbTest
∗

i , σ2I)] + ln[N(0,D)]

= − 1

2σc2
‖yTesti − (Xcαc + Zbc,Test

∗

i )‖22

−1

2
bc,Test

∗,T
i Dc−1bc,Test

∗

i + ln(Cσc2) + ln(CDc)

where Cσc2 and CDc are normalization constants for noise and prior Gaussian densities.

The discriminant value of the MEM (the estimates of target likelihood) is the difference

between the log-likelihood values of the target ERP and non-target ERP models.

5.3 Fisher Kernel for SVM

The operation of SVM [126] (and any other nonparametric approach) relies heavily on

the distance metric used in assessing how close or far two data points are. The distance

is then monotonically related to an assumed similarity kernel (which represents an inner

product in a corresponding high dimensional space determined by the eigenfunctions of

the kernel selected). The Fisher kernel [48] is a particular similarity measure that is con-

structed using an underlying generative probabilistic model for the data. It is informed by

the information geometry induced by this generative model and provides a local approxi-

mation based on the Riemannian geometry of the model. This distance metric is a natural

choice for pairs of samples that are close to each other – for farther pairs, the distance is

a coarse approximation, but in practice seems to provide sufficient performance.

Jaakkola et al. first introduced the Fisher kernel to create a generic mechanism for in-

corporating generative probability models such as hidden Markov models into discrimina-

tive models such as the SVMs to solve the variable length problem of feature vectors [48].

Jaakkola and his colleagues showed that using the Fisher kernel significantly improved

over the previous methods on detecting remote protein homologies [47, 46]. Mika et al.
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presented a fast training algorithm to enable the Fisher kernel algorithm viable for large

datasets [75]. Tsuda et al. analyzed the statistical properties of the Fisher kernel [124].

The Fisher kernel has been successfully employed in many other applications afterwards,

such as large scale web audio classification [76], document classification [111], tree

structure data analysis [82], alphabet logical sequences analysis [57], standard object

recognition [42], speech recognition [118], and cognitive decline detection [69].

To combine the generative model (MEM) with the discriminative model (SVM) for

the purpose of improving the single-trial ERP detection performance, we propose a new

ERP detector using the Fisher kernel derived from the MEM for the SVM. In Figure 5.2,

it is clear that the MEM provides good fit for the target ERP and non-target ERP clusters.

Instead of arbitrarily selecting the Gaussian kernel for the SVM, we use the Fisher kernel

derived from the MEM for the SVM. The strength of this approach is that it combines the

rich biological information encode in MEM with the discriminative power of the SVM

algorithm. We use the target ERP and non-target ERP generative models offered by the

MEM paradigm. Since in test mode the class label is not known, one option is to utilize

a mixture of MEM models to derive the Fisher kernel. Another approach is to put the

emphasis on similarities as measured by the target ERP model (or the non-target ERP

model) depending on under which model we would like the similarities to be accurate.

The Fisher kernel will then be utilized in the SVM formalism to achieve ERP detection.

The Fisher information matrix in (5.32) is approximated by sample averaging over the

training dataset.

The key idea here is to derive the Fisher kernel function from the MEM and use it

to replace the Gaussian kernel in the SVM for ERP detection. First we train a MEM

and use the MEM to map each new example into its Fisher score. Then we compute the

Fisher kernel function on the basis of the Euclidean distance between the scores of the

new sample and the training samples; Finally we can measure the discriminant value for

the new example from the SVM discriminant function.
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5.3.1 Fisher Kernel

The Fisher kernel operates in the parameter-gradient space of the generative model; specif-

ically the gradient of the log-likelihood with respect to the model parameters. It utilizes

information on how sensitive the parameters are to the generative model. For any data

vector yi and model parameters θ, the Fisher score is a row vector and which is defined

as

Uyi = ∇θ log p(yi|θ). (5.31)

The Fisher Information matrix is defined as

I = Ep(yi|θ){UT
yi
Uyi}, (5.32)

where Eyi
{ } is the expectation over p(yi|θ). The Fisher kernel is defined as

KF (yi,yj) = UyiI−1UT
yj
, (5.33)

where yi and yj are two data samples. Detailed information and properties of the Fisher

kernel can be found in Jaakkola’s paper [48] and Tsuda’s paper [124].

5.3.2 Fisher scores derived from the MEM

Given the parametric density model of the observation from MEM (we use the ERP model

MEM1) the Fisher score is calculated from the corresponding log-likelihood as follows:

Uyi = ∇θlog p(yi|θ)

= ∇αlog p(yi|α),∇vec(D)log p(yi|D),∇σlog p(yi|σ2), (5.34)

where the model parameters of the MEM θ = (α; vec(D), σ2) and data samples obey

yi∼N(X1α1, σ12
I + Z1D1Z1T ), for i = 1, 2, ..., N .

There are several options to derive the Fisher scores [46]. We use an MEM trained

from ERPs associated with target examples to model a given ERP and we derive the

Fisher score based on the MEM for ERPs. This intuition is that we would like to enhance
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the discriminative power of the classifier. This is also based on the experimental results

on our data. Alternative way is to use an MEM trained from the negative examples to

derive the Fisher score as suggested in [69]. Another way of deriving the Fisher score is

to construct a mixture MEM based on both the MEM for target ERPs and the MEM for

non-target ERPs. We can calculate the probability density function for class c,

p(yi|c) = P1p(yi|c = 1) + P0p(yi|c = 0), (5.35)

where c = 1 for ERPs and c = 0 for nonERPs, P1 and P0 are the prior probabilities for

ERP class and nonERP class, respectively.

Fisher scores of parameter α

Fisher scores respective to the fixed effect parameter of the MEM α is a 1× p row vector

∂l

∂α
=

[
∂l

∂α1

, ...,
∂l

∂αm
, ...,

∂l

∂αp

]
(5.36)

where α = [α1, ...,αm, ...,αp]
T is a column vector. Based on the log-likelihood expres-

sion, if we let a = y − Xα, where y is a concatenated column vector of all training

samples and X is a concatenated population design matrix, we have

∂l

∂αm
= −1

2

∂(aTV−1a)

∂αm
= aTV−1X:m (5.37)

where X:m denotes the mth column of basis vectors and V−1 is the symmetric blockwise

covariance matrix consisting of all covariances in the the Gaussian distributions p(yi|θ),

we have

∂l

∂αT
= (y −Xα)TV−1X (5.38)

Fisher scores of parameter D

The covariance matrix D of the random effects of the MEM is a k× k matrix, where k is

the number of basis vectors used in individual random effect modeling. The Fisher scores



111

with respect to the entries of D are given by:

∂l

∂D
= −1

2

[
∂ln |V|
∂D

+
∂(aTV−1a)

∂D

]
. (5.39)

For each entry (m, l) of D, we have

∂l

∂Dml

= −1

2

[
∂ln |V|
∂Dml

+
∂(aTV−1a)

∂Dml

]
. (5.40)

The first part of (5.40) is

∂ln |V|
∂Dml

=
∑
ij

∂ln |V|
∂Vij

· ∂Vij

∂Dml

=
∑
ij

(V−1)ij · (Z · Eml · ZT )ij, (5.41)

where Eij is an elementary matrix with only nonzero entry of 1 occurring at location

(i, j). The second part of (5.40) is

∂(aTV−1a)

∂Dml

= −aT (V−1 · Z · Eml · ZT ·V−1)a. (5.42)

Based on (5.41) and (5.42), (5.40) can be written as

∂l

∂Dml

= −1

2
[
∑
ij

(V−1)ij · (Z · Eml · ZT )ij

−aT (V−1 · Z · Eml · ZT ·V−1)a]. (5.43)

Therefore (5.39) can be written as

∂l

∂D
=
∑
ml

Eml
∂l

∂Dml

. (5.44)

Fisher scores of parameter σ2

Under the white spatiotemporal noise assumption, the noise covariance matrix is deter-

mined by the scalar σ2, which is the noise variance in any spatiotemporal sample value.

The Fisher score for this parameter is

∂l

∂σ2
= −1

2

[
∂ln |V|
∂σ2

+
∂(aTV−1a)

∂σ2

]
. (5.45)
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The first term is explicitly given by

∂ln |V|
∂σ2

= tr(V−1). (5.46)

The second term is
∂(aTV−1a)

∂σ2
= −aT · (V−1)2 · a (5.47)

Therefore we can write (5.45) as

∂l

∂σ2
= −1

2
[tr(V−1)− aT · (V−1)2 · a] (5.48)

Concatenating all of these terms in 5.38, 5.44, and 5.48, we obtain the Fisher score with

respective to the overall parameter vectors for each data sample as

Uyi =

[
∂l

∂α
,

∂l

∂vec(D)
,
∂l

∂σ2

]
. (5.49)

5.3.3 Fisher Information Matrix

By definition, the Fisher information matrix I entry (m,n) can be written as

Im,n =

∫
yi

∂ log p(yi;θ)

∂θm

∂ log p(yi;θ)

∂θn
p(yi;θ)dyi. (5.50)

The exact analytical calculation of the Fisher information matrix under the expectation

with respect to the MEM might be infeasible or cumbersome. Assuming that the MEM

is an accurate approximation of the true underlying data distribution, we employ sample

averaging over the training data to obtain an approximate expression for this matrix,

Îtr =
1

Ntr

Ntr∑
k=1

Uytr
k
UT

ytr
k
. (5.51)

Other simplifications in the literature [48] suggested by Jaakkola include simply using

the identity matrix in place of the Fisher information matrix. In this study we use the

natural approximation for the matrix I by averaging over the training samples.
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5.3.4 Fisher Kernel from MEM

Once the Fisher scores are available, they can be used to construct the Fisher kernel using

the Mahalanobis inner product with the Fisher information matrix as the scaling matrix as

in (5.52). Here we use linear Fisher kernel. The Fisher kernel between any two samples

yi and yj, is finally given by

KF (yi,yj) =
1

ρ
Uyi

Î−1
tr UT

yj
, (5.52)

where in training both of these samples are training samples and in test mode one is

a support vector sample and the other is a test sample. In 5.52, ρ is scaling constant.

The Fisher kernels above can be used in the SVM formalism as a replacement for the

commonly used Euclidean/Mahalanobis similarity measures. It may be advantageous

to search in the feature space of quadratic decision boundaries for non linear separable

examples by using the quadratic Fisher kernel

KF (yi,yj) = (1 + Uyi
Î−1
tr UT

yj
)2, (5.53)

or Gaussian Fisher kernel

KF (yi,yj) = exp[− 1

2σ2
(Uyi

−Uyj
)Î−1
tr (Uyi

−Uyj
)T ], (5.54)

where σ is a scaling parameter.

5.4 Experiments

5.4.1 Data Description

We assess dimension reduction on four datasets (Group #1 (IA Dataset #1, Group #2

(IA Dataset #2), Group #3 (naive dataset #1), Group #5 (naive dataset #3) as described

in Section 2.1 and Section 2.5). We evaluate the other cross-session ERP detection

performance on two IA datasets with each three subjects Group #1 (IA Dataset #1) and

Group #2 (IA Dataset #2). For IA Dataset #1, there are three subjects and each has
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one training session and seven test sessions. For IA Dataset #2, we exclude one subject

because this subject only has one test session with single target. The other two IA subjects

each has one training session. One subject has five test session and the other one has seven

test sessions. The feature dimension is 129 times the reduced channel number (such as

4), selected by 10-fold cross validation. There are dozens of ERP training samples and

hundreds of nonERP training samples for each subject.

5.4.2 Performance Evaluation

For performance comparison, we examine the four classifiers : (i) the MEM likelihood ra-

tio test (simplified as MEM) between the MEM for ERPs and the MEM for nonERPs, (ii)

the SVM using linear Fisher kernel (simplified as FKSVM), derived from the MEM for

ERPs, (iii) the linear kernel SVM (simplified as LinearSVM), (iv) the nonlinear SVM us-

ing Gaussian kernel (simplified as GKSVM). We use the overall areas under ROC curves

(AUCs) to depict the ERP detection performance. The overall ROC for each subject is

constructed by congregating multiple test session outputs from the classifiers. We use

a non-parametric approach to evaluate the correlated AUCs by calculating the statistical

significance as describe in Chapter 4 Section 5.4.

We employ 10-fold cross-validation [26] on each subject for parameter regularization.

Considering small samples of training data and high feature dimensionality, we select the

model order of MEM equal one in this study for reliable model fitting. The optimal

number of channel – LDA generalized eigenvectors – in initial dimension reduction, the

percentage of energy retained in the population design matrices, and the scaling constant

and cost parameter in the FKSVM are selected using exhaustive search within discrete

sets of values. Cross-validation performance measure utilized for these assessments is the

average of the the AUC estimates within the 10-fold validation framework. We also em-

ploy the same approach for parameter regularization in GKSVM training when obtaining

baseline performance results for comparisons. These parameters include the kernel width

for the isotropic Gaussian kernel and the overlap penalty parameter in its training.
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(a) Dataset 1&2 (b) Dataset 3 (c) Dataset 4

Figure 5.3: Dimension order selection. We apply the LDA for dimension reduction for the
MEM classifier on four datasets: (a) Group #1 (IA Dataset #1) and Group #2 (IA Dataset
#2), (b) Group #3 (naive dataset #1), (c) Group #5 (naive dataset #3). We evaluate 10-fold
cross validation performance in term of area under ROC curve on the training sessions for
each subject. The color thin curves represent the detection performance for each subject.
The thick lines represent the averaged performance across all subjects. The black circle
represents the optimal order at the highest performance point. It is clear that the optimal
number of channel projection dimension is much lower than the the original number of
channel dimensions (32 for (a) and (b), 64 for (c)) across all subjects for four datasets.

5.4.3 Results

Dimension Reduction

To select dimension order of dimension reduction for the MEM, we apply 10-fold cross

validation on the training session for each subject. We use the LDA approach for reduce

channel dimensionality on four datasets (Group #1 (IA Dataset #1, Group #2 (IA Dataset

#2),Group #3 (naive dataset #1),Group #5 (naive dataset #3)as described in Section 2.1

and Section 2.5). The dimension reduction performance is tested on the MEM classifier.

The original channel number is 32 for two IA datasets and naive dataset #1. The original

channel number is 64 for naive dataset #3. We first run similar dimension reduction

procedure as Section 4.4 to select a few discrete numbers in the range from 1 − 32 or

1 − 64 and find that the best range is 1 − 10 for all datasets. Therefore we conduct the

dimension order selection in this range. Figure 5.3 shows the 10-fold cross validation

performance in term of area under ROC for four datasets. The results show that the

optimal dimension order averaged across subjects for these groups of subjects are 4, 5, 2

respectively. It is clear that the optimal number of channel projection dimension is much



116

Figure 5.4: Detection performance in term of area under ROC curve for the MEM using
three design matrix selections. The design matrix selections are: (1) the PCA for popula-
tion design matrix and the LDA for individual design matrix, (2) the LDA for population
design matrix and the LDA for individual design matrix, and (3) the PCA for population
design matrix and the PCA for individual design matrix. The MEMs are applied to two
IA datasets, Group #1 (IA Dataset #1) and Group #2 (IA Dataset #2), which consist of 6
subjects and 33 test sessions. The performance are averaged across 33 test sessions. It is
clear that the first design matrix selection (the PCA for population design matrix and the
LDA for individual design matrix) achieves the best performance in average.

lower than the the original number of channel dimensions (32 or 64) across all subjects

for four datasets. These results further confirm the dimension reduction performance in

Section 4.10 by using a difference classifier. It demonstrates that the dimension reduction

using projection features produces better performance with much less computational cost.

Design Matrix Selection

To select the population design matrix and the individual design matrix for the MEMs,

we compare the ERP performance using three design matrix selections. The performance

in terms of area under ROC curves is evaluated on 33 test sessions from six subjects of

two IA datasets , Group #1 (IA Dataset #1) and Group #2 (IA Dataset #2). Figure 5.4

shows the averaged performance across all test sessions for six subjects. One can see that

the MEM with the PCA for population design matrix and the LDA for individual design

matrix achieves the best performance in average. Therefore we use this design matrix

selection for both the ERP MEM and the nonERP MEM.
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Figure 5.5: Comparison of Fisher Information Matrices based on the approximation of
sample averaging over the training data and the identity matrix on three IA subjects,
Group #1 (IA Dataset #1). The detection performance is in term of averaged AUC across
seven test sessions for each subject.

Comparison of Fisher Information Matrices

We compare the Fisher information matrices based on the approximation of sample av-

eraging over the training data and the identity matrix. Figure 5.5 shows the detection

performance using the linear FKSVM based on the sample mean and the identity matrix.

The detection performance is in term of averaged AUC across seven test sessions for each

subject. The result shows the linear FKSVM using the sample mean has less variance and

better performance in terms of the mean AUC than the model using the identity matrix

on this dataset. Therefore in this study we use the natural approximation for the Fisher

Information matrix I by averaging over the training samples.

Comparison of Classifiers

We compare the hybrid model (the FKSVM) with the generative model (the MEM) and

the discriminative models (the LinearSVM and the GKSVM). For each subject, using

the reduced dimension data, four classifiers are trained using one training session. The

ROC of each classifier as well as the corresponding overall AUC values over the corre-

sponding test sessions for each subject (32 test sessions in total) for IA Dataset #1 and

IA Dataset #2 are shown in Fig. 5.6 and Fig. 5.7 respectively. The significance levels

of the hypothesis comparing the AUCs of the FKSVM to others are shown on the title
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 5.6: Comparison of the ERP detection performance in terms of the overall area
under ROC (AUC) between four classifiers on three subjects in Group #1 (IA Dataset #1).
The p-values in the titles are based on pairwise correlated AUCs comparison between the
FKSVM and the following classifiers, respectively: (p1) the MEM, (p2) the LinearSVM,
(p3) the GKSVM.

(a) Subject 2 (b) Subject 3

Figure 5.7: Comparison of the ERP detection performance in terms of area under ROC
(AUC) between four classifiers on two subjects in Group #2 (IA Dataset #2). The p-values
in the titles are based on pairwise correlated AUCs comparison between the FKSVM
and the following classifiers, respectively: (p1) the MEM, (p2) the LinearSVM, (p3) the
GKSVM.
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of each subgraph. This figures show that the FKSVM achieves substantial improvement

over the original generative model (the MEM) in single-trial ERP detection. The FKSVM

using the linear Fisher kernel has better performance than the linear SVM and has com-

parable performance as the GKSVM. On average across five subjects, the FKSVM out-

performs the other classifiers with the mean values of the AUCs for the MEM, the Lin-

earSVM, the GKSVM and the FKSVM as 0.846, 0.846, 0.874, and 0.892 respectively.

These results indicate that the FKSVM significantly outperforms the generative model

(the MEM), provides better performance than the discriminative models (the LinearSVM

and the GKSVM) in average.

5.5 Discussions

Discriminative classifiers have been more successful than their generative counterparts

in many tasks since the task of the former is to model the lower dimensional classifica-

tion boundary while the generative model needs to distribute its accuracy effort across

the whole data space. In BCI literature, discriminative classifiers are quite popular for

this reason, however, generative models of EEG signals also offer additional opportuni-

ties for future BCI algorithm development, separation of muscle and other artifacts from

components of interest while detecting relevant brain signals within one generative model

framework being the most important one.

We have developed a generative model for single-trial ERP responses using a hi-

erarchical Bayesian model, referred to as an MEM. The MEM approaches the single-

trial ERP detection problem by characterizing between trial variation in signal statistics.

Our dimension(rank)-reduced version of the MEM significantly lowers the computational

complexity from O(n2) to O(k2) (k << n). We employ channel dimension reduction us-

ing the LDA to benefit the parameter estimation for the models. To capture the average

large power trends in the signals of each class and to exploit discriminative patterns, we
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develop the population design matrices for each MEM using the PCA and the individ-

ual design matrix using the LDA. Our experiments using cross-validation showed that in

most datasets, using the largest generalized eigenvector give optimal generalization ca-

pability, while adding more basis vectors did not improve performance significantly. To

estimate the gain from distinguishing random effect from observation noise in the MEMs,

we compare the MEM to a a least square fitting, which is a simpler generative model that

assumes no random effect. The least square model can be viewed as a special case of the

MEM with constraint on random effect covariance D = 0. Our experimental results show

no significant different between the MEM and the the least square model. We suspect that

some form of regularization effort needed for the MEM to improve the discriminant power

of the random effect on the high dimensional data.

Fisher kernel formalism provides a way to incorporate information obtained from a

generative model into the design of a kernel that can be utilized by an SVM classifier.

We begin with a trained MEM and use this MEM to map each new data vector we wish

to detect into its Fisher score. We then compute the Fisher kernel function on the basis

of the Euclidean distance between the score vector for the new ERP example and the

score vectors for training examples. Next we measure the discriminant value for this new

ERP example from the discriminant function of the SVM. Jaakkola suggests [48] using

the Fisher kernel found by setting the Fisher information matrix to an identity matrix for

computational simplicity. However our data analysis show that the sample mean approx-

imation in (5.51) for the Fisher information matrix produces better performance than an

identity matrix.

The performance of the FKSVM was compared with that produced by the genera-

tive model (the MEM) and a competing discriminative models (the LinearSVM and the

GKSVM). The likelihood ratio test based on the MEM, as expected did not outperform a

well designed Gaussian kernel SVM. One of the reason of lower performance of the MEM

might be the high dimension of EEG data (4∗129) and small training samples (around 50
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ERP samples). It indicates that the performance could be improved by some form of reg-

ularization. However, upon introducing Fisher kernels obtained from this model, we have

obtained significant improvements on single-trial ERP detection accuracy over the orig-

inal generative models (the MEM). The hybrid model also outperforms the LinearSVM

and the GKSVM (the improvement is more significant in the fair comparison between the

two linear kernels, the linear FKSVM and the LinearSVM), especially in subjects where

the overall performance is lower. Clearly, for subjects where the performance is on the

high end, improvements are also more difficult to obtain. The results show that the pro-

posed method, which combines the MEM and SVM via the Fisher kernel, outperforms

both the MEM and the SVM used in isolation for single-trial ERP detection in our data.

This work indicates the promising use of the mixed modeling techniques in the BCI

design and the potential of the Fisher kernel formalism in SVM design. While the con-

cept of our underlying MEM has been relatively simple, we believe that future work in

this direction where the generative model will be developed using more rigorous sig-

nal propagation models such as those used in source localization. In that case, it could

yield Fisher kernels that dramatically outperform generic kernels such as Gaussian in

BCI design. This general approach of combining a generative model with a discrimina-

tive method may have applications in other areas of biosignal classification and analysis

as well.



Chapter 6

Conclusions

6.1 Summary

The two main purposes of this thesis were to investigate ERP characteristics and to im-

prove single-trial ERP detection performance. Specifically, the work enhanced our under-

standing on the neural signatures in human visual information perceptual system and we

developed an effective ERP-based BCI that increased throughput in image analysis. In

contrast to the previous studies [94, 40, 52, 96, 53, 39], in this thesis we used the ERP as

a physiological marker to examine human visual perception and cognition in a dynamic

recognition task. As opposed to the traditional ERP trial-averaging method, we built on

Sajda’s single-trial ERP detection approach, which used spatial integration to improve

signal to noise ratio. We proposed an online BCI algorithm that used cross-session train-

ing and a novel, hybrid generative/discriminative classifier in attempt to address problems

associated with high dimensionality, noise, non-stationarity and a dearth of training sam-

ples.

We provided an overview of BCI and the state-of-the-art developments in this emerg-

ing field. We also reviewed recent works related to neural signatures of visual informa-

tion processing and the EEG-based BCI applications for visual object recognition. We

described ERPs and their relationship with cognitive events, and discussed problems and

solutions related to ERP detection on a single-trial basis. We described experimental pro-

cedures for acquiring high-quality EEG data and the pre-processing techniques that were

122
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used to for EEG data analysis.

We presented insights on attention allocation in visual information processing by list-

ing and describing several neural correlates of human cognitive processing that occurred

in a dynamic task. We examined allocation processes used in visual detection as a func-

tion of both task difficulty (image duration) and target difficulty on real target detection

tasks. Our results suggested that the cognitive visual processing system dynamically al-

located attentional resources as a function of both target and task difficulty.

We reported the design and performance of a BCI system for target image search

using single-trial ERP. The feasibility of cross-session training and the efficacy of incre-

mental learning on cross-session data were demonstrated. We found that the two SVMs

significantly outperformed the linear logistic classifier on high dimensional EEG data. In

addition, we demonstrated that the LDA successfully extracted a subset of salient elec-

trodes, which reduced the computational cost of the classifier. The MEM was a generative

classifier that incorporated domain knowledge by modeling the underlying distributions

of the variables and constructing a probability density from which decision functions for

ERP detection were computed. We applied the MEM as a modeling tool and a classifier

as well in ERP detection. The support vector machine (SVM) is a discriminative classi-

fier, which is widely considered to be one of the best classifiers. In Chapter 5 we showed

how to combine these two classifiers, the MEM and the SVM (the latter of which used

the Fisher kernel), to produce a classifier that significantly outperformed the MEM alone

and performed as well as or better than the SVM alone for single-trial ERP detection.

We found that there was high level of correlation between the underlying ERP char-

acteristics and visual detection processes. Our single-trial ERP detection system, which

used incremental learning, cross-session training and channel dimension reduction, was

amenable for real-time implementations. The improved performance based on the hybrid

generative / discriminative classifier enhanced the functionality of ERP-based BCIs.



124

6.2 Major Contributions

The major contributions of this work are:

• We developed a BCI that used cross-session training and incremental learning and

showed that, for our data, the system performed well for single-trial ERP detec-

tion and it had low computational complexity. More specifically, our cross-session

method outperformed the standard single-session method, in spite of the problems

associated with intra-trial variability, and incremental learning had a computational

load that was 1/3 that of the standard SVM for the same level of detection perfor-

mance.

• We developed a hybrid generative/discriminative classifier for single-trial ERP de-

tection that had better detection performance then either system used in isolation.

Morover, we used dimension-reduction within the MEM, which lowered the com-

putational complexity from O(n2) to O(k2) where (k << n).

• The channel dimension reduction using the LDA successfully extracts representa-

tive features and improved the ERP detection performance with less computational

cost. This dimension reduction technique was validated on different classifiers in-

cluding the linear and nonlinear SVMs, and the MEM.

• We quantified stimulus difficulty for complex real stimuli and subject performance.

The stimuli was estimated as the minimum exposure duration necessary for subjects

to detect a specified target correctly at a fixed detection rate. The subject perfor-

mance was estimated as the image duration thresholds at a fixed detection rate of

behavior performance averaged across all targets.

• We made several important discoveries concerning the dynamics of attention al-

location that occured in a rapidly changing environment. First, EEG components

occurring at 110ms and 250ms were related to both target and task difficulty. The

target and task difficulty effects were more sensitive when behavioral performance
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is poor. The earlier component was related to feature extraction and the later com-

ponent was highly predictive of behavioral performance. The earlier component

was more sensitive than the earlier component to the degree of attention. Based on

our findings, we hypothesized that subjects needed to allocate additional neural re-

sources, such as attention, to detect increasingly difficult targets or to detect targets

in increasingly difficult tasks.

6.3 Future Work

We could extend this work in the direction of improving the single-trial ERP detection

performance. In this work, we developed a method for single-trial ERP detection that used

a learning method that approximated online learning. It would be beneficial for real-time

applications to develop a BCI that uses (exact) online learning. Cauwenberghs’ online

learning method [14]), constructs the solution recursively, one point at-a-time. This work

indicates the potential of MEM on ERP detection. Another avenue is to investigate the

optimal configuration for the random effects model in the MEM classifier. For example,

it would be worthwhile to explore the performance of MEM classifiers when multilevel

random effects on trials, sessions or subjects are incorporated. We could develop a good

model for the ERP signals. We envision using wavelet-based methods, such as Saito’s

local discriminant basis [107], to reduce the dimensionality in hopes of further enhancing

the performance. To improve the overall ERP-based BCI performance, we could explore

the effects of minimizing the error rate by detecting error related negativity (ERN) [138,

90], which is an EEG signal that is correlated with perceived error.

Here we only use the ERP as the input to the BCI for rapid image search. We have also

investigated a fusion approach, which combines (behavioral) button presses and (neuro-

logical) ERPs [43]. Another set of potential inputs is gaze directions [110, 11, 101]. Eye

gaze interaction can provide a convenient and natural addition to BCI dialogues [49, 98]

The previous works demonstrated that the gaze information can be a useful source for
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target image search. By combining the gaze features with the current source information,

we can develop a fusion scheme to improve the target detection performance.

The experimental design we used for investigating the neural correlates to human

visual information system is limited in that could not, because we used real images, care-

fully control the characteristics of the stimuli. We could use synthetic stimuli, which we

could have multi-dimension controlling of the detectabilty, to confirm some of our find-

ings. Synthetic stimuli may allow us to control the experiment with more precision and

provides us more flexibility on the design of the perceptual task. In addition to analyzing

neural responses associated with hits and true negatives, we could also assess the neural

responses associated with false positives and misses. The analysis of these responses will

help us understand the perceptual mechanism even better.
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