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Defined as self consistent smooth curves passing through the middle of the data,

principal curves are used in many applications of machine learning as a general-

ization, dimensionality reduction and a feature extraction tool. The amount of

smoothness and the middle of the data are not well-defined and the ill-posed defi-

nition of principal curves leads to practical difficulties in designing principal curve

fitting algorithms, main causes of which are the desire to use global statistics such

as conditional expectations to build a self consistent definition, and not decoupling

the definition of principal curve from the data samples.

xiii



We take a novel approach by redefining the concept of principal curves, surfaces

and manifolds with a particular intrinsic dimensionality, which we characterize in

terms of the gradient and the Hessian of the probability density estimate. The theory

lays a geometric understanding of the principal curves and surfaces, and a unifying

view for clustering, principal curve fitting and manifold learning by regarding those

as principal manifolds of different intrinsic dimensionalities.

Given the probability density of the data, the principal manifold of any intrinsic

dimensionality and projections of any point in the feature space onto the principal

manifold are uniquely defined. In real life, however, probability densities are never

known, and should be estimated from the data samples. At this point, our definition

of principal curves and surfaces does not impose any particular density estimation

method, and we will provide results for kernel density estimation and Gaussian

mixture models based density estimates. We will emphasize natural connections

between challenges in the principal curve fitting and known results in kernel density

estimation, and develop several practical algorithms to find principal curves and

surfaces from data.

To present practical aspects of our theoretical contribution, we apply our princi-

pal curve algorithms to a diverse set of problems including image segmentation, time

warping, piecewise smooth signal denoising, manifold unwrapping, optical character

skeletonization, sharpening of time-frequency distributions, multiple-input multiple-

output channel equalization and neighborhood graph construction.

All in all, this dissertation presents a theoretical contribution that brings a novel

understanding of principal curves and surfaces, practical algorithms as general pur-

pose machine learning tools, and applications of these algorithms to practical prob-

lems in several research areas.

xiv



Chapter 1

Introduction

Principal curves and surfaces fall into the general area of manifold learning and

dimensionality reduction. As well as reviewing related approaches in dimensionality

reduction literature, this chapter briefly presents in which category principal curve

techniques fall into. Although it presents approaches related to principal curves, the

aim of this chapter is not to provide a complete survey of existing dimensionality

reduction techniques.

We leave the deeper review of existing approaches in principal curve literature

to the introduction of Chapter 2, where we will provide our definition of principal

curves and surfaces. Similarly, a review of current applications of principal curves

is given in the beginning of chapter 4, where we focus on applications of principal

curves.

1.1 Historical Background

The aim of the dimensionality reduction problem is to generate a useful low dimen-

sional representation of the data, where close data points in the original space are

mapped to close points in the projected space, and faraway points in the original

space are mapped to faraway points in the projected space. As any unsupervised

learning problem, the objective of dimensionality reduction is ill-defined and the

1



2

vagueness of useful in the definition above is intensional, since what useful is de-

pends on the particular application. As well as exploratory data analysis and visual

inspections, dimensionality reduction has been used for discovering patterns in the

data.

Early methods in the dimensionality reduction literature are linear methods.

If the data in a high dimensional space is mainly confined in a low dimensional

subspace, linear methods can efficiently be used. However, even if the intrinsic

dimensionality of the data is low, the data generally lies on a nonlinear manifold in

the high dimensional space, and linear methods are bound to fail.

Principal components analysis (PCA) -also known as Karhunen-Loeve Transform

in signal processing- is perhaps the most commonly used dimensionality reduction

method [65, 64], which is defined using the linear projection that maximizes the

variance in the projected space [62]. For a dataset, principal axes are the set of

orthogonal vectors onto which the variance of the projected data points remains

maximal. PCA has been widely used in many applications of multivariate analysis

such as dimensionality reduction, feature extraction, noise reduction, enhancement,

and coding, primarily because of its conceptual simplicity and its analytical prop-

erties.

Another closely related property of PCA, which in fact is discussed earlier in

the literature [98], is that of all linear projections, the projection defined by the

first principal component, namely the principal line, minimizes the mean square

error between the data and its projection. Hence, the principal line provides a

one-dimensional approximation for the data distribution, and gives the best linear

summary of the data in the mean square reconstruction error sense. This property

holds for principal subspaces of any dimension. In addition, for Gaussian distribu-

tions, the principal line is also self-consistent; that is, any point on the principal

line is the conditional expectation of the data on the orthogonal hyperplane. Other
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most widely used linear subspace projection methods include independent compo-

nents analysis (ICA) [28, 63], linear discriminant analysis (LDA) [47], and factor

analysis [53]. Linear methods are attractive due to their simplicity; however, they

become insufficient in modelling nonlinear dependencies in the data.

Due to the insufficiency of the linear methods, many nonlinear projection ap-

proaches are proposed and studied. A common approach for building nonlinear

projection schemes is to use a mixture of linear models [9]. Mixture models are

attractive, since they are simple and analyzable as linear methods, however assum-

ing the suitable model order, they are able to provide much more powerful tools

compared to linear methods. Model order selection is a tough discrete optimization

problem, and mixture methods suffer from the problems introduced by improper

selection of model order. Techniques based on local PCA are good examples for

mixture models [51, 87, 69, 70]. Another common way of developing nonlinear

projections is to use generalized linear models [86, 43], which is based on the idea

of constructing the nonlinear projection as a linear combination of nonlinear basis

functions.

All reproducing kernel Hilbert space techniques such as kernel PCA [112] and

kernel LDA [5] could be considered as nonparametric generalized linear models.

These methods are based on mapping the data into a high dimensional space and

performing the original linear method in this space, where the dot products are

computed via a kernel function using the so-called kernel trick. More recent methods

in this category use similarity matrices stemming from a weighted neighborhood

graph rather than a kernel function, where the underlying implicit kernel functions

are referred to as data-dependent or context-dependent kernel functions. These

methods are referred to as graph-based kernel methods [113, 54].

Another track in dimensionality reduction is manifold learning algorithms based

on generating the locality information of data samples using a neighborhood graph,

which are also known as graph-based methods. In the neighborhood graph, the
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nodes are the data points and the edges represent the neighborhood information.

Generally these methods use the eigendecomposition of the data similarity matrix,

generated using the neighborhood graph, and fall into the category of spectral meth-

ods in dimensionality reduction literature. Most well known spectral methods in-

clude isomap, local linear embedding, Laplacian eigenmaps, and maximum variance

unfolding [120, 107, 6, 129]. The drawback of these methods is that the efficiency of

these approaches depends on the quality of the neighborhood graph, and generally

K -nearest neighbor or ǫ-ball graphs used for this purpose. Since they are based

on data neighborhood graphs, these methods do not provide information on out-of-

sample points in the feature space, and for every novel data the neighborhood graph

needs to be reconstructed.

Hastie’s proposition of self consistent principal curves [58] point out a whole dif-

ferent track in dimensionality reduction. Defining the self-consistency over the local

conditional data expectations, they generalize self-consistency property of principal

components and introduce the concept of principal curves. The main difference be-

tween the regression line and the principal line is that the regression line minimizes

the squared error only in the response variable and it is not symmetric, whereas the

principal line is symmetric and minimizes the squared error in all variables. Sim-

ilarly, the regression curve is also not symmetric, and the idea of principal curves

stems from generalizing the symmetry property of the principal line to a nonlinear

regressor. Principal curves are defined as smooth curves passing through the middle

of the data to provide a nonlinear summary of the data [58]. There are many prin-

cipal curve algorithms in the literature, and it is probably safe to say that most of

the algorithms in the literature are some variants of the Hastie’s original approach.

We will review these in section 2.1 in detail.
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1.2 Brief Overview of Contributions of this Thesis

to Current State-of-the-Art

This section briefly describes our main contributions in this dissertation. We start

with a novel definition of principal curves and surfaces. Formal derivations in Chap-

ter 2 are independent of the density estimation method used. Defining principal

manifolds in terms of the probability density of the data allows us to link open

ended problems of principal curve fitting literature, like optimal regularization con-

straints and outlier robustness to well established principles of density estimation

literature, and yields practical algorithmic approaches as we will present in Chapter

3.

One significant problem with most principal curve algorithms in the literature is

that, by definition, they are seeking for a smooth curve. In general, data may have

loops, self intersections, and bifurcation points, in which case there does not exist a

smooth curve passing through the data that can represent the data sufficiently. In the

presence of such irregularities, our definition yields a principal graph, a collection

of smooth curves, and the algorithms we present in Chapter 3 require no additional

parameter to handle these irregularities.

The general definition of the d-dimensional principal manifold that we give in

Chapter 2 converges to the modes of the data pdf for d = 0, which is a widely

accepted clustering solution. The algorithms that we present in Chapter 3 simply

show that principal curve and surface fitting can be done very similarly to cluster-

ing. Overall, both theoretically and practically, we provide a unifying framework

for clustering, principal curve fitting, and manifold learning by regarding these as

principal manifolds of different intrinsic dimensionality. This yields algorithm de-

signs that can naturally be extended to higher order manifolds, as we will present

in Chapter 3.

We also present solutions to very practical problems using principal curves. We



6

show that our principal curve definition provides a novel perspective for many ap-

plications, in which principal curve based approaches have never been used before.

Overall, we will present a theoretical contribution into the field of manifold

learning, practical algorithms as general purpose machine learning tools, and novel

applications of principal curves/surfaces in Chapters 2, 3, and 4, respectively.

1.3 Outline of the Thesis

In Chapter 2, we review the existing definitions and algorithms in the principal

curve literature, and provide our definition of principal curves and surfaces. To

underline the fact that the definition does not impose any particular density esti-

mation method, we will present principal curve solutions for different density esti-

mation methods using numerical integration methods that directly result from the

definition.

Although numerical integration methods prove the validity of the definition,

they cannot provide practical machine learning tools. Chapter 3 is on practical

algorithms to find principal curves and surfaces that are based on the kernel density

estimate of the data. After discussing why kernel density estimation is the density

estimation method of our choice, we will develop practical algorithms based on KDE

and present results in notional and real datasets. At the end of Chapter 3, we discuss

the limitations due to finite sample sizes and the curse of dimensionality.

Chapter 4 is on several applications of our principal curve definition. We will

present results on image segmentation, optical character recognition, signal denois-

ing, manifold unfolding and blind source separation, and proximity graph construc-

tion, in all of which we directly use the algorithms that we developed in Chapter 3.

Chapter 5 concludes the dissertation with our final comments and projected future

work in both theoretical and practical aspects.



Chapter 2

Principal Curves and Surfaces

This chapter starts with a review of existing definitions in the principal curves liter-

ature. After the review, we present our definition of principal curves and surfaces.

We start with a simple illustrative example, and then provide the formal definition

of principal curves and surfaces. The existence conditions and limitations of our

principal curve is also discussed.

Leaving real-data examples to the next chapter, the results we present in this

chapter are mostly illustrative examples and the experiments are performed on no-

tional datasets. Since the definition is not coupled with a particular density estima-

tion method, we believe that the definition itself should be presented independent

of the practical algorithms we derive in the next chapter. Therefore, all principal

curve fitting results presented in this chapter are obtained using numerical integra-

tion methods that directly come from the definition, and we will present results

using KDE and Gaussian mixture models.

2.1 Principal Curves and Closely Related Topics

Trevor Hastie and Werner Stuetzle’s proposition of self consistent principal curves

[57, 58] point out a whole different track for nonlinear dimensionality reduction.

Defining the self-consistency over the local conditional data expectations, Hastie

generalizes self-consistency property of principal components and introduces the

7
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concept of principal curves. Hastie and Stuetzle define the principal curve as an

infinitely differentiable finite length curve that passes through the middle of the data.

Self-consistency means that every point on the curve is the expected value of the

data points projecting onto this point.

Hastie and Stuetzle’s major theoretical contributions are the following: (i) they

show that if a straight line is self-consistent, it is a principal component (ii) based

on the MSE criterion, self-consistent principal curves are critical points under some

conditions. They use this second property to develop an algorithm that starts from

the principal line and iteratively finds the principal curve by minimizing the average

squared distance of the data points and the curve [57, 58]. Although they cannot

prove the convergence of their algorithm, Hastie and Stuetzle claim that principal

curves are by definition the fixed point of their algorithm, and if the projection step

of their algorithm is replaced with least squares line fitting, the algorithm converges

to the principal line.

There is no proof of convergence for Hastie-Stuetzle principal curve algorithm,

which makes the theoretical analysis impossible. Therefore, existence of principal

curves could only be proven for special cases such as elliptical distributions or dis-

tributions concentrated around a smooth curve, until Duchamp and Stuetzle’s work

on principal curves on the plane [39, 38].

Duchamp and Stuetzle also analytically calculate the principal curves of several

planar distributions based on Hastie-Stuetzle definition, and they show that (i)

principal curves in general are not unique (ii) if a density has several principal

curves, they have to cross (iii) all principal curves are saddle points of MSE between

the projection and the original data samples. The second property is somewhat

analogous to the orthogonality of principal components, and the third property

explains why cross-validation is not a suitable method for choosing the complexity

of principal curve estimates. Third property is also interesting that it shows that it

is problematic to design a principal curve algorithm just by minimizing projected
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error. Hastie-Stuetzle principal curve algorithm is based on the idea of building a

nonlinear counterpart of the principal line. In PCA, the principal line minimizes the

mean squared projection error, and the smallest principal component maximizes it

and all the remaining are saddle points. However, the same is not true for principal

curves, and all principal curves are saddle points of the MSE distance function

[39, 38].

Jeffrey Banfield and Adrian Raftery extend the Hastie-Stuetzle principal curve

algorithm to closed curves and reduces the estimation bias[4]. Tibshirani introduces

a semi-parametric model for principal curves. By approaching the problem from a

mixture models point of view, they provide an algorithm that uses expectation max-

imization [121]. Pedro Delicado’s proposition uses another property of the principal

line rather than self-consistency [33]. Delicado’s method is based on the total vari-

ance and conditional means and finds the principal curve of oriented points of the

dataset. Stanford and Raftery propose another approach that improves on the out-

lier robustness capabilities of principal curves [119]. Probabilistic principal curves

approach, which uses a cubic spline over a mixture of Gaussians to estimate the

principal curves/surfaces [17], is known to be among the most successful methods to

overcome the a common problem of the principal curve algorithms; the bias intro-

duced in the regions of high curvature. Verbeek and coworkers use local principal

lines to construct principal curves [125], and a soft version of the algorithm is also

available [126], known as K-segments and soft K-segments methods. Mulier and

Cherkassky point out the similarities between self-organizing maps [79] and principal

curves [88].

Many principal curve approaches in the literature, including the original Hastie-

Stuetzle algorithm, are based on the idea of minimizing mean projected error. An

obvious problem with such approach is overfitting, and there are different methods in

the literature to provide regularization. Sandilya and Kulkarni provide a regularized

version of Hastie’s definition by constraining bounds on the turns of the principal
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curve to avoid overfitting [111]. They also show that principal curves with bounded

turn always exist if the data distribution has finite second moments.

Kegl and colleagues define the regularization in another way by bounding the to-

tal length of the principal curve [75]. Similar to Sandilya’s principal curve definition

of bounded curvature, Kegl and colleagues show that principal curves of bounded

length always exist, if the data distribution has finite second moments. Polygo-

nal line algorithm, based on the bounded length principal curve definition provides

better results than previous methods and merits special attention here.

Kegl’s Polygonal Line algorithm starts with the principal line, and in each iter-

ation, it adds a vertex to the polygonal line. After adding the vertex, the position

of each vertex is updated by the projection and optimization steps. Projection step

simply clusters the data with respect to the segment they project onto, and opti-

mization step finds the new position of each vertex, based on minimizing the mean

squared projection error and a curvature penalty term.

Kegl’s Polygonal Line algorithm starts with the principal line, and in each iter-

ation, it adds a vertex to the polygonal line. After adding the vertex, the position

of each vertex is updated by the projection and optimization steps. Projection step

simply clusters the data with respect to the segment they project onto, and opti-

mization step finds the new position of each vertex, based on minimizing the mean

squared projection error and a curvature penalty term. The most important advan-

tages of this approach is that it is more robust than Hastie-Stuetzle algorithm, it

eliminates the estimation bias, and it is faster than Hastie-Stuetzle algorithm, which

has O(N2) computational complexity.

Later, Kegl also applies this algorithm to skeletonization of handwritten digits

by extending it into the Principal Graph algorithm [74]. At this point, note that

Hastie-Stuetzle definition of the principal curve requires the the principal curve not

to intersect itself, which is quite restrictive, and perhaps, Kegl’s Principal Graph

algorithm is the only approach in the literature that can handle self-intersecting
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data.

The disadvantage of bounded length principal curve approach is that the adap-

tation of the smoothing term employs heuristics, and the effective values of the

required parameters cannot be obtained from the data directly. Unfortunately, the

fact that principal curves exist as long as the data distribution has finite second mo-

ments and the algorithm converges to the principal curve of given length requires

knowledge of the suitable length (or curvature), which, in general, is not known.

Works on extending principal curves into higher dimensions to seek principal

manifolds mostly include approaches that use a linear combination of nonlinear

multidimensional base functions and variants of self-organizing maps. LeBlanc and

Tibshirani use multivariate adaptive regression lines [82]. Smola and colleagues

use different regularization operators and obtain corresponding learning rates [117],

[118]. Der and colleagues use self-organizing maps to construct principal manifolds

[34].

Overall, the original principal curve definition by Hastie forms a strong basis for

many, possibly all, principal curve algorithms one can find in the literature. Hastie

and Stuetzle’s algorithm, and all of its variants in the literature use the conditional

data statistics to obtain the principal curve. Namely, they use either conditional

expectation or squared projection error on the hyperplane orthogonal to the princi-

pal curve. Since it employs hyperplanes that extend to infinity, this approach uses

global statistics of the data, which creates difficulties, where the nonlinear structure

of the data makes turns such that the orthogonal hyperplane intersects the data at

two distinct regions. Another difficulty arises when the hyperplanes that correspond

to two different points on the principal curve intersect. This makes it ambiguous to

which point the intersection is should be projected to. All these problems actually

can be traced back to Hastie’s original definition.

Many existing principal curve and principal manifold algorithms use least squares
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regression or minimum squared projection error properties of linear principal com-

ponent analysis to build a non-linear counterpart. Most probably, the underlying

symmetric unimodal density distribution assumption implied by conditional expec-

tation or least squares regression based approaches is also why many illustrations

of current algorithms provide the most satisfactory results on synthetic datasets

that are radially perturbed by a uniform or Gaussian distribution around a pre-

constructed principal curve.

2.2 Definition of Principal Curves and Surfaces

2.2.1 An Illustration

Before we go into the details of the formal definition, we will present a simple

illustration of our goals. For a point x ∈ ℜn, our principal manifold definition will

generalize condition (i) into (ii): (i) A point is a local maximum of the pdf iff the

gradient of the pdf is zero and the eigenvalues of the Hessian of the pdf are negative

at x. (ii) A point x is in the d dimensional principal manifold iff the gradient of the

pdf is orthogonal to at least (n-d) eigenvectors of the Hessian of the pdf at x, and

the eigenvalues corresponding to these orthogonal eigenvectors are negative. For

one-dimensional principal manifolds, namely principal curves, this further simplifies

to the following statement: A point is on the principal curve iff the gradient of

the pdf is an eigenvector of the Hessian of the pdf at this point and the remaining

eigenvectors of the Hessian have negative eigenvalues.

Figure 2.1 presents a simple comparison of the trajectories that follow eigenvec-

tors of the local covariance, which is the proposed principal curve projection (will be

defined later), and the trajectories of the local gradient directions, which essentially

coincide with mean-shift projections used for clustering [21, 27]. These trajecto-

ries are shown for a two-dimensional Gaussian mixture probability density with five

components. For different initial points in the feature space, following the trajectory
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Figure 2.1: An illustration on a Gaussian mixture
.
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of the local gradient (red) leads to the closest local maximum, whereas following the

eigenvectors of the local covariance (blue) leads to the projection onto the principal

curve. The principal curve of the probability density is also given (green).

Essentially, our proposition is to define the principal curves as the ridge of the

probability density function. This can be regarded as likelihood maximization in a

constrained space, where every point on the principal curve is a local maximum of

the probability density in the orthogonal subspace of the curve.

2.2.2 Formal Definition of Principal Curves and Surfaces

We believe that a mathematically precise definition of principal curves should be

given in terms of the data probability density, not in terms of data points or sam-

ple statistics. Therefore, in the rest of this chapter while proposing the definition

and deriving the properties of principal curves and surfaces, we will assume that a

probability density function expression that describes the data is available; it is ei-

ther known or can be estimated parametrically or nonparametrically from the data.

We will present results on theoretical distributions, and particulary for Gaussian

distributions, we will show that our principal curve definition coincides with PCA.

Given a random vector x ∈ ℜn, let p(x) be its pdf, g(x) be the transpose of the

local gradient, and H(x) be the local Hessian of the probability density function. To

avoid mathematical complications, we assume that the data distribution p(x) > 0 for

all x, and is at least twice differentiable. Also let {(λ1(x), q1(x)), . . . , (λn(x), qn(x))}
be the eigenvalue-eigenvector pairs of H(x), where the eigenvalues are sorted such

that λ1(x) ≥ λ2(x) ≥ . . . ≥ λn(x).

Definition 2.1. A point x is an element of the d -dimensional critical set,

denoted by Cd iff g(x) is orthogonal to at least (n-d) eigenvectors of H(x), where

orthogonality of two vectors means null Euclidean inner product.

Lemma 2.1. Critical points of p(x) constitute C0.

Proof. A point x is a critical point of p(x) iff g(x)=0. Consequently, for i =
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1, . . . , n, 〈g(x),qi(x)〉 = 0. Thus, g(x) ⊥ qi(x). �

This lemma illustrates that for d = 0 the critical set of zero intrinsic dimension-

ality converges to the critical points of the probability density; the local minima,

local maxima, and saddle points. After partitioning the Cd into principal, minor

and saddle sets, we will return to this point to use this connection between critical

points and higher order critical sets to provide a unifying framework for clustering,

principal curve fitting, and manifold learning.

Lemma 2.2. Cd ⊂ Cd+1.

Proof. Let x ∈ Cd. By definition 〈g(x),qi(x)〉 = 0 for i ∈ I where I is some

index set, a subset of {1, . . . , n}, with cardinality |I| ≥ (n − d). Therefore, there

exist (n − d) subsets of I with (n − d − 1) elements. Let I⊂ denote one of these

subsets. Then we have 〈g(x),qi(x)〉 = 0 for all j ∈ I⊂. Consequently, x ∈ Cd+1. �

In words, this lemma states that, by definition, lower dimensional critical sets

are subsets of any higher dimensional critical set. For example, for any twice differ-

entiable probability density, one can say that the principal curves must pass from

the local maxima of the pdf. Similarly, two dimensional principal surfaces contain

principal curves, and so on. From the aspect of implementing practical algorithms

to find principal curves and surfaces, this is a very important property. Due to this

hierarchical nature, same as in the sequential PCA algorithms [80, 130, 60], a defla-

tion or inflation procedure could be employed to obtain the principle set of desired

dimensionality in a sequential way.

Definition 2.2. A point x ∈ Cd but x /∈ Cd−1 is called a regular point of Cd.

A point x ∈ Cd−1 is called an irregular point Cd.

Lemma 2.3. If x is a regular point of Cd, then there exists an index set

I ⊂ {1, . . . , n} with cardinality |I| = (n− d) such that 〈g(x),qi(x)〉 = 0 iff i ∈ I. If

x is an irregular point of Cd, then |I| > (n− d).

Proof. Let x be a regular point of Cd. By definition x ∈ Cd but x /∈ Cd−1,

then there exist some index set I ⊂ 1, . . . , n with cardinality |I| ≥ (n − d) but



16

not |I| ≥ (n − d + 1), such that 〈g(x),qi(x)〉 = 0 for all i ∈ I. This implies that

|I| = (n−d). Let x be an irregular point of Cd. By definition, x ∈ Cd and x ∈ Cd−1.

Therefore, there exists some I with cardinality |I| ≥ (n− d) and |I| ≥ (n− d + 1).

Hence, |I| > (n− d). �

Lemma 2.4. Let x be a regular point of Cd and I be an index set with cardi-

nality |I| = (n− d) and such that 〈g(x),qi(x)〉 = 0 iff i ∈ I. The tangent subspace

of Cd at x is Cd
‖ (x) = span{qi(x)|i /∈ I} and the normal subspace of Cd at x is

Cd
⊥(x) = ℜn − Cd

‖ (x) = span{qi(x)|i ∈ I}.
Proof. Consider the following Taylor approximation in the vicinity of x: p(x +

δ) ≈ p(x)+gT (x)δ +δTH(x)δ/2+O(‖δ‖3). Define parallel and orthogonal compo-

nents of the local Hessian as follows (dropping the argument x whenever it is clear

from context):

H‖ =
∑

i/∈I

λiqiq
T
i H⊥ =

∑

i∈I

λiqiq
T
i (2.1)

Since by hypothesis gTqi = 0 for i ∈ I, we can express the local gradient as a

linear combination of the remaining eigenvectors: g =
∑

i/∈I αiqi. For an arbitrary

vector δ = δ‖ + δ⊥ =
∑

i/∈I βiqi +
∑

i∈I βqi, clearly, gT δ = gT δ‖. Also similarly

δTHδ = δT
‖ H‖δ‖+δT

⊥H⊥δ⊥. Substituting these two expressions in the Taylor series

approximation:

p(x + δ) ≈ p(x) + gT δ‖ + (δT
‖ H‖δ‖ + δT

⊥H⊥δ⊥)/2 (2.2)

Consequently, at x, a perturbation δ‖ ∈ S‖(x) yields p(x + δ‖) ≈ p(x) + gT δ‖ +

δT
‖ Hδ‖/2. If infinitesimally small, this perturbation yields a point x+δ‖, where g(x+

δ‖) ≈ g(x)+H‖(x)δ‖. Noting that gT (x+δ‖)qi(x) = gT (x)qi(x)+δT
‖ H‖(x)qi(x) =

αi + βiλi 6= 0 for i /∈ I. Hence, x + δ‖ ∈ Cd; therefore, Cd
‖ (x) is locally tangent

to Cd at x. Similarly for δ⊥ ∈ Cd
⊥(x), g(x + δ⊥) ≈ g(x) + H⊥(x)δ⊥. Then

gT (x + δ‖)qi(x) = 0 for i /∈ I. Hence, x + δ⊥ /∈ Cd; therefore Cd
⊥(x) is locally

orthogonal to Cd at x. �
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So far, we have defined the critical sets. Critical set of dimension d partitions the

space into two parts, the d -dimensional tangent space and the (n− d)-dimensional

normal space, and we have characterized these tangent and normal Euclidean sub-

spaces to these submanifolds at every point. However, we have not characterized the

critical manifolds as being locally maximum, minimum, or saddle. This characteri-

zation has to utilize the sign of the eigenvalues of the local Hessian corresponding to

the eigenvectors that are in the orthogonal space, and will lead to the definition of

locally maximal principal sets as the canonical solution for dimensionality reduction

in a maximum likelihood manner.

Theorem 2.1.(Subspace Stationarity) Let x be a regular point of Cd and I

be an index set with cardinality |I| = (n − d) such that 〈g(x),qi(x)〉 = 0 iff i ∈ I.

The following statements hold:

1. x is a local maximum in Cd
⊥(x) iff λi(x) < 0 ∀i ∈ I.

2. x is a local minimum in Cd
⊥(x) iff λi(x) > 0 ∀i ∈ I.

3. x is a saddle point in Cd
⊥(x) iff ∃λi(x) < 0 and ∃λj(x) > 0 for i, j ∈ I.

Proof. Recall the definitions used in the proof of Lemma 2.4. Consider a pertur-

bation δ⊥ ∈ Cd
⊥(x) at x -a regular point of Cd-where ‖δ⊥‖ > 0: p(x+ δ⊥) ≈ p(x)+

gT δ⊥+δ⊥H⊥δ⊥/2 = p(x)+(1/2)
∑

i∈I λiβ
2
i . Note that (1) p(x+δ⊥) < p(x) ∀ δ⊥ iff

λi(x) < 0 ∀i ∈ I; (2) p(x+δ⊥) > p(x) ∀ δ⊥ iff λi(x) > 0 ∀i ∈ I; (3) p(x+δ⊥) ≶ p(x)

for various δ⊥ iff λi(x) ≶ 0 ∀i ∈ I for various i ∈ I. If some eigenvalues are zero at

x, then perturbations in the direction of corresponding eigenvectors will have the

same quality as x as described by the theorem, thus plateaus will form, making x a

platitude point (e.g., as in the case of a ring with uniform angular distribution and

a unimodal radial perturbation). Furthermore, in the case of repeated eigenvalues

uncertainties similar to those in PCA may occur.

Relaxing the inequalities to include zero-eigenvalues would result in platitude
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points as usual. However, for the purposes of the following definitions, inequalities

are kept strict for local maximum and minimum to simplify the discussion.

Definition 2.3. A point x is an element of the: (1) principal set P d iff x is

a regular local maximum point in Cd
⊥(x); (2) minor set Md iff x is a regular local

minimum point in Cd
⊥(x); (3) Saddle set Sd iff x is a regular saddle point in Cd

⊥(x).

Lemma 2.5. (P d,Md, Sd) is a partition of Cd.

Proof. This conclusion is trivially obtained since the conditions for a point being

an element of P d, Md, or Sd requires them to be in Cd besides the additional condi-

tions on the sign of eigenvalues set by Theorem 2.1. This implies that (P d,Md, Sd)

are all subsets of Cd, they do not intersect, and their union is Cd. �

Lemma 2.6. (1) x ∈ P 0 iff x is a local maximum of p(x). x ∈ M0 iff x is a

local minimum of p(x). (3) x ∈ S0 iff x is a saddle point of p(x).

Proof. Let x be a critical point (local max, local min, or saddle) of p(x). Then

g(x) = 0, therefore 〈g(x)qi(x)〉 = 0 for i ∈ I = {1, . . . , n}. Let C0
⊥(x) be ℜn. Fur-

thermore, the eigenvalues of H(x) have appropriate signs (all negative, all positive,

mixed). This implies x is a regular critical point (local maximum, local minimum,

saddle) of C0
⊥(x) = ℜn, and by definition x ∈ (P 0,M0, S0). The converse is true

with the same reasoning in reverse order. �

This lemma states that the modes of a probability density function (now called

principal points), form the 0-dimensional principal set. Note that for a given pdf,

modes provide a natural clustering solution. In fact, the widely used mean-shift al-

gorithm [21, 27] utilizes this property to provide the clustering solution by mapping

the data points to the modes of the density estimate obtained by KDE. Similarly,

according to constrained likelihood maximization criteria based principal curve pro-

jections that we propose, the modes -the principal points- of the data probability

density provides the best 0-dimensional summary of the data, obtained by mapping

all the data points to the corresponding mode of each attraction basin1 of the pdf.

1Attraction basin is defined as the set of points in the feature space such that initial conditions
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Lemma 2.7. P d ⊂ P d+1. Md ⊂Md+1.

Proof. This fact can be concluded in a manner similar to Lemma 2.2 by con-

sidering the appropriate eigenvalue sign combinations defined in Theorem 2.1. The

same is not true for Sd since some x ∈ Sd may also satisfy x ∈ P d+1 or x ∈ Md+1

(e.g., a saddle point might be in the principal or minor curve). �

In words, the principal and minor sets are confined in higher dimensional prin-

cipal and minor sets. However, note that the same is not true for saddle sets.

Going back to Figure 2.1, one can observe this inclusion property, as the principal

curve (green) presented in this example passes all the local maxima points P 0 of the

Gaussian mixture pdf.

For algorithmic purposes, the importance of this property is that the principal

and minor sets can be, in principal, constructed by a procedure similar to deflation

(inflation). One can determine the peaks P 0 and the pits M0 of a pdf p(x) and

then trace out P 1 and M1 by following the eigenvectors of the local covariance via

a suitable differential equation with P 0 and M0 initial conditions. The same could

be done for each element of P 1 and M1 as initial conditions to suitable differential

equations to determine P 2 and M2, etc. Similarly, projecting the data to a lower

dimensional principal manifolds in a sequential manner, which is the opposite of

what is explained above, is also possible.

If directly applied from the definition, the procedure outlined above, in general,

requires numerical integration of complex nonlinear differential equations to identify

the lines of curvature, which provide a natural local coordinate frame on the man-

ifold. We have experimented with the numerical integration approach, employing

Runge-Kutta order-4 as the integration technique, to determine P 1. The details on

this will be presented in the next section along with examples on notional datasets.

chosen in this set evolve to a particular attractor. In the context of mean-shift the underlying cost
function is the KDE of the data. In this case, attraction basins are regions bounded by minor
curves, and the attractors are the modes of the pdf.



20

Definition 2.4. A point x ∈ (P d,Md) but x /∈ (P d−1,Md−1) is called a regular

point of (P d,Md). A point x ∈ (P d,Md) and x ∈ (P d−1,Md−1) is called an irregular

point of (P d,Md).

Lemma 2.8. Let x be regular point of (P d,Md) and I be an index set with

cardinality |I| = (n− d) such that 〈g(x),qi(x)〉 = 0 iff i ∈ I. The tangent subspace

to (P d,Md) at x is (P d
‖ (x),Md

‖ (x)) = span{qi|i /∈ I} and the normal subspace of

(P d,Md) at x is (P d
⊥(x),Md

⊥(x)) = span{qi|i ∈ I}.
Proof. The argument is similar to Lemma 2.3. �

So far we have achieved the following: (1) a self-consistent local definition of

critical, principal, minor, and saddle sets of a pdf is presented and the relationships

between them are established, (2) the concept of critical nets is generalized to en-

compass manifolds with dimensionality higher than one, (3) a unifying framework

between maximum likelihood clustering, curve and surface fitting, and manifold

learning using deflation has been established. Theorem 2.1 establishes generalized

conditions for a point being in a critical (stationary) submanifold utilizing local gra-

dient and Hessian spectral information, of which the usual stationary point condi-

tions remain as special cases. The definitions demonstrate that in general a globally

smooth and maximally likely dimensionality reduction manifold that passes through

the data may not be feasible. As will be illustrated with examples below, the princi-

pal sets for optimal dimensionality reduction might form irregular, self-intersecting

manifolds in the global scheme, although their local existence and uniqueness is

guaranteed.

2.2.3 Special Case of Gaussian Distributions, Connections

to PCA

For a jointly Gaussian pdf p(x) the definitions above reduce to the usual hyperplanes

spanned by the eigenvectors of the covariance matrix. Consider a Gaussian density
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with Σ−1 = VΓ−1VT = V‖Γ
−1
‖ V‖ + V⊥Γ−1

⊥ VT
⊥ and

p(x) = CΣe−xT Σ−1x/2,

g(x) = −p(x)Σ−1x,

H(x) = p(x)[Σ−1xxTΣ−1 −Σ−1]

(2.3)

where V = [V‖,V⊥] and Γ = blockdiagonal(Γ‖,Γ⊥) are appropriately defined for

some d -dimensional critical set. Consider a point x = V‖ α ∈ Cd. One can calculate

easily

g(x) = −p(x)V‖Γ
−1
‖ α = V‖β

H(x) = V‖[p(x)−1ββT − p(x)Γ−1
‖ ]VT

‖ + V⊥[−Γ−1
⊥ ]VT

⊥ = Q‖Λ‖Q
T
‖ + Q⊥Λ⊥QT

⊥
(2.4)

where [p(x)−1ββT − p(x)Γ−1
‖ ] = B‖Λ‖B

T
‖ and Q‖ = V‖B‖. Also, naturally we

observe that Q⊥ = V⊥ and Λ⊥ = −Γ−1
⊥ . The latter identities indicate that at

x∈ Cd, the normal-subspace eigenvectors of the local Hessian coincide with some

of the eigenvectors of the data covariance Σ. Thus, linear PCA emerges naturally

from the proposed principal curve definition for Gaussian distributions.

In the case of an arbitrary pdf p(x), consider the following quadratic Taylor

approximation:

log p(x+δ) ≈ log p(x)+ p−1(x)gT (x)δ +(1/2)δT [p−1(x)H(x)− p−2(x)g(x)g(x)T ]δ

(2.5)

This approximation corresponds to approximating the pdf locally with a Gaussian,

thus establishes a connection with local PCA, nonlinear PCA, and local linear mani-

fold learning techniques investigated earlier in the machine learning literature. Since

the usual linear PCA induced hyperplanes remain as special case of the proposed

definition corresponding to a joint Gaussian pdf, the following definition for ranking

local eigendirections as principal-minor components is motivated.

Definition 2.5. Let x be a regular point in P d (Md). Let 〈g(x),qi(x)〉 = 0

for i ∈ I = {1, . . . , n} − Ic, where I is some index set with cardinality d. Define
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the local covariance matrix of p(x) to be Σ−1(x) = −p−1(x)H(x) + p−2g(x)Tg(x)]

and assume that its eigendecomposition is {γi(x),vi(x)} for i ∈ {1, . . . , n}. Assume

that the eigenvalues with index i ∈ IC of the local covariance matrix satisfy the

following: γ1 > . . . > γm > 0 > γ(m+1) > . . . > γd. Then, the local ranking of

principal directions at x from minor to principal follow the same ranking of indices.

For the special case of Gaussian distributions, the local covariances defined above

becomes constant over the data space and equal to the data covariance. Thus,

the local principal directions are aligned with the global principal directions and

following these directions starting from any point, takes one to the corresponding

subsurface of Cd−1. The process of solving a partial differential equations starting

from any data point and following the direction of a particular eigenvector is the

ideal nonlinear data projection method, which preserves the coordinates of the data

in their projections.

An important point to note is that our principal curve definition preserves the

ambiguities of PCA. Similar to PCA, the principal curve of a spherically symmetric

distribution is not well-defined; however, local ranking can be achieved for any d-

dimensional principal manifold under the assumption that the Hessian matrix has

distinct eigenvalues.

2.2.4 Ranking of principal curves/surfaces in a principal set

In principal components analysis, the ordering of the principal component directions

are naturally given by sorting the corresponding eigenvalues of the covariance matrix

in an descending order. In this case, the first d components of the ordered principal

component directions give the best d -dimensional summary of the data according

to the mean squared projection error criteria.

As mentioned before, similar conditional expectation or mean squared projection

error based definitions has driven the principal curves research, but in general, the

definition is limited to the nonlinear counterpart of the first principal component.
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Figure 2.2: A T-shaped Gaussian mixture
.

In fact, there is no definition of second, third, etc. principal curve in the literature.

Similarly, according to our definition, it is ambiguous to designate a portion of a

principal set into the first, second, third, etc. component of that principal set.

Considering the above connection to PCA, one can see that our principal curve

definition is not limited to the nonlinear counterpart of the first principal component,

in fact, it covers all principal components in the one-dimensional principal set. At

this point, one may think that our definition may allow to define an orthogonal set

of principal curves, in other words, partition the one-dimensional principal set into

ordered principal curves that are locally orthogonal to each other.

To define the ordering, one can employ the ordering of the eigenvalues of the local

covariance at every point. It is easy to see that this approach will give the correct

ordering in the trivial Gaussian example, where the principal set analysis converges

to linear PCA. This idea, in fact, can be generalized into all radially symmetric

probability densities, and second, third, etc. principal curves can be defined for



24

these densities using the eigenvalues of the Hessian matrix.

However, in general, data densities may take complex forms and counterintuitive

scenarios may arise. Hence, generally, local information may not always indicate

the global rank, and a global ordering in a principal set of given dimensionality may

not be possible. To illustrate this fact, we will study a T-shaped Gaussian mixture

consisting of two components, where principal curves form a graph, where the modes

are the nodes. Note that both branches of this principal graph correspond to the

leading eigenvector of the local covariance at different portions of the feature space

and a global ranking is not possible. For this reason, we will stick to the local

ranking at all times. This easily yields the informative portions of each branch in

the principal set, to collection of which we will call the principal graph.

2.2.5 Existence of Principal Curves and Surfaces

The assumptions under which we define principal curves and surfaces already gives

the existence conditions directly. Still, it is worthwhile to mention these briefly,

before we move on to examples.

Considering Hastie’s principal curve definition, the existence proof of principal

curves is limited to some special cases, such as elliptical or spherical distributions

concentrated around a smooth curve. It should also be noted that this definition of

the principal curve requires the the principal curve not to intersect itself, which is

quite restrictive.

The principal curve definition of Kegl and coworkers is theoretically more ap-

pealing in this context, since by their definition, the principal curve always exists

if the distribution has finite second moments. Moreover, their definition also allows

self-intersections, and Kegl presents results with self-intersecting data as well [74].

In our perspective, the principal curve exists locally as long as the data proba-

bility density is twice differentiable, such that the Hessian is nonzero. There is no
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restriction of finite moments, which is an improvement on existing methods. How-

ever, by our definition the principal curve does not exist for uniform distributions.

In practice, however, since we build our algorithms based on KDE with Gaussian

kernel functions, even if the true underlying distribution is uniform, KDE guarantees

that the gradient and Hessian exist for uniformly distributed datasets. In general,

for densities with piecewise constant gradients, smoothing by convolution with a

twice differentiable unimodal circularly symmetric pdf is possible. This corresponds

to adding some independent noise.

2.3 Numerical Integrations to Find Principal Curves

and Surfaces

2.3.1 Finding the Principal Set

Finding the principal set can be achieved by solving the partial differential equation

to follow the eigenvectors of the local covariance matrix along the ridge of the pdf.

Since, by Lemma 2.7, we know that the principal curve is passing from the modes of

the pdf, one can find the modes of a pdf and shoot a trajectory along the direction

of each eigenvector at the mode of interest to combine these modes. Finding the

modes of a pdf is an easy problem. In practice, one can start with a number of initial

points and use a gradient ascent or fixed point algorithm to find the corresponding

modes. In Gaussian mixture densities or kernel density estimates, such a fixed

point algorithm might be the well-known mean shift algorithm [21, 27]. To find the

principal curve portion that connects the modes, one can reach to the other modes

by following the corresponding eigenvector of the local covariance. We used forth

order Runge-Kutta numerical integration algorithm (RK4) to follow the eigenvectors

[81].

With a suitably small step size, we have obtained good results for principal curves
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of various Gaussian mixture densities. The green curves in the illustration presented

in Figure 2.1 is obtained using this method. Given the data probability density,

the principal curve is uniquely defined. However, error accumulation, especially at

high curvature points of P 1, prevent accurate determination of P 1 by brute force

numerical integration using a fixed integration step size and this method is not

preferred for practical purposes in learning theory and applications.

2.3.2 Finding the Projections onto the Principal Set

Similar to above, one can employ the numerical integrations to follow the eigen-

vectors of the local covariance until the stopping criterion is satisfied, that is the

gradient is parallel with an eigenvector of the Hessian.

The projection trajectories (blue) presented in Figure 2 and 3 are obtained by

using the RK4 numerical integrations initialized to the data samples. Given the data

probability and the initial point, the locally-optimum projection onto the principal

curve using lines of curvature is uniquely defined.

At this point, note that this procedure offers an alternative method to iden-

tify the principal curve by building the principal curve by combining the principal

curve projections of data samples. This not only gives where on the curve the data

points are being projected onto, but also overcomes the problems with numeric error

accumulation at the high curvature points.

2.4 Examples of Principal Curves and Surfaces by

Numerical Integrations

Here we present the results of the direct implementation of our definition. For visu-

alization purposes, all examples here are selected two or three dimensional datasets,

some of which has been used in earlier papers in principal curve literature. As well

as these datasets, the results of polygonal line algorithm [75] and Hastie-Stuetzle
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Figure 2.3: Gradient (red) and principal curve projection trajectories (blue) for a
Gaussian mixture pdf.
.

algorithm [58] is courtesy of Balazs Kegl.

Again for the visualization purposes, sought principal manifolds in this section

are either one or two dimensional. Experiments include theoretical known distribu-

tions, KDE and Gaussian mixture models, and RK4 numerical integration method

is used to implement the principal curve projection.

2.4.1 Projection Trajectories on a Gaussian Mixture

Similar to the earlier illustration, here we present the trajectories of the gradient

and the principal curve projection on Figure 2.3 - with more samples than in Figure

2.1. Trajectories of the gradient (red) maps the data points to the closest mode of

the dataset and yields a clustering result. The trajectories of the principal curve

projection (blue) and the principal curve being projected onto are given (green).
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Figure 2.4: Zig-zag dataset (blue), generating curve (red), and Hastie-Stuetzle prin-
cipal curve (green)
.

2.4.2 Zig-Zag Dataset

Zig-Zag dataset has been used in an earlier principal curve paper by [75], where

a piece-wise linear principal curve is proposed. Figure 2.4 shows the data samples

(blue) the true underlying generating curve (red) and result of Hastie’s algorithm

(green). Figure 2.5 presents the results of Kegl’s polygonal line algorithm for differ-

ent penalty coefficients. The length penalty coefficient is equal to 0.1 (top left), 0.3

(top right), 0.5 (bottom left), and 0.7 (bottom right), respectively.

We are going to present our principal curve fitting results for two different density
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Figure 2.5: Zig-zag dataset (blue), generating curve (red), and result of the Polyg-
onal Line Algorithm (green)
.
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Figure 2.6: Zig-zag dataset, and KDE-based principal curve projetions
.

estimates. For this dataset xi ∈ ℜn for i ∈ {1, . . . , N}, one can write the KDE as

p(x) =
1

N

N∑

i=1

K(x− xi) (2.6)

where the kernel function is selected as a Gaussian and bandwidth of the Gaussian

is optimized using leave-one-out maximum likelihood approach2. Since ML kernel

bandwidth selection is a data-driven procedure, for this case the resulting density

estimate is purely nonparametric. Figure 2.6 shows our KDE-based principal curve

results for the same dataset, where the data samples (blue) and their principal curve

projections (red) are shown.

At this point, we will change the density estimation method and repeat the

experiment for the same dataset using a Gaussian mixture model density. Here we

employ a GMM with four components and use expectation-maximization (the details

2The details of leave-one-out maximum likelihood kernel bandwidth selection will be detailed
in next chapter.
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of which can be found in [40]). Results of GMM-based principal curve projections

is given in Figure 2.7.

Comparing KDE-based results in Figure 2.6 and GMM-based results in Figure

2.7, one may argue that obtaining a good density estimate with GMM would require

less data samples for this piecewise linear generating curve. As long as the para-

metric model is a suitable fit for the dataset and given the suitable model order,

this is true. In the next chapter, we will provide a much detailed comparison of

KDE and GMM based principal curves that includes quantitative results, and dis-

cusses well-known topics in density estimation like model order selection and curse

of dimensionality.

2.4.3 Spiral Dataset

Since many principal curve algorithms are based on the idea of starting with the

principal line and adding complexity to the structure (for example adding a vertex

to piecewise linear curve) to minimize mean projected error, a dataset that folds

into itself may lead to counterintuitive results, and spiral dataset is a benchmark

dataset, that has been used in manifold learning and principal curve algorithm

literature [75, 127] (again, this dataset is provided by Kegl).

Similar to above, we start with the results of Hastie-Stuetzle algorithm and

Kegl’s polygonal line algorithm. Figure 2.8 shows the data samples (blue) the true

underlying generating curve (red) and result of Hastie’s algorithm (green). Figure

2.9 presents the results of Kegl’s polygonal line algorithm for different penalty coef-

ficients. The length penalty coefficient is equal to 0.1 (top left), 0.2 (top right), 0.4

(bottom left), and 0.5 (bottom right), respectively.

As in the previous example, we use KDE and use the leave-one-out ML kernel

bandwidth for this dataset as well. Figure 2.10 shows the same spiral dataset (blue)

along with the principal curve projections (red). Comparing Figure 2.9 and Figure

2.10, one can see that both Polygonal Line algorithm (with the suitable parameter
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Figure 2.7: Zig-zag dataset, and GMM-based principal curve projetions (green)
.
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Figure 2.8: Spiral dataset (blue), generating curve (red), and Hastie-Stuetzle prin-
cipal curve (green)
.
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Figure 2.9: Spiral dataset (blue), generating curve (red), and result of the Polygonal
Line Algorithm (green)
.

set) and our locally defined principal curve can achieve satisfactory results. There-

fore, we create a more challenging scenario, where the spiral has more noise and

fewer samples. Figure 2.11 shows our results (again using KDE with ML kernel

bandwidth), and Figure 2.12 shows results of Polygonal Line algorithm for different

penalty coefficients; 0.05 (top left), 0.1 (top right), 0.2 (bottom left), 0.3 (bottom

right).

Figure 2.11 shows that our local definition is able to find the underlying spiral

shape in this more challenging noisy case as well. An important question at this

point is the following: Is there a theoretical upper limit for the noise level that our
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Figure 2.10: Spiral dataset (blue), and KDE-based principal curve projections (red)
.
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Figure 2.11: Spiral dataset (blue), and KDE-based principal curve (green), and
projections of data samples onto principal curve (red)
.
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Figure 2.12: Spiral dataset (blue), generating curve (red), and result of the Polygonal
Line Algorithm (green)
.
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principal curve approach can handle? In practice, the principal curve projection

can identify these two branches, as long as there is a minor curve in between; so

that in the orthogonal space of the principal curve, there is a local minimum of the

pdf in between these two branches. Generating a theoretical upper bound on the

noise level, however, requires the knowledge of the true generating curve (to know

the spacing in between these two branches) and the noise model. Below derivation

provides the upper limit for the common case of additive Gaussian noise model.

Assume the orthogonal space of the principal graph is given as a Gaussian mix-

ture with two components with the same standard deviation, centered at 0 and

µ,

p(x) = G(0, σ) + G(µ, σ)

= 1√
2πσ

e−
x2

2σ2 + 1√
2πσ

e−
(x−µ)2

2σ2

(2.7)

For this distribution, the gradient and the Hessian are

∇p(x) = 1√
2πσ

(
−

(
x
σ2

)
e−

x2

2σ2 −
(

x−µ
σ2

)
e−

(x−µ)2

2σ2

)

H(x) = 1√
2πσ

((
x2

σ4 − 1
σ2

)
e−

x2

2σ2 +
(

(x−µ)2

σ4 − 1
σ2

)
e−

(x−µ)2

2σ2

) (2.8)

Using (2.8) and solving for H(x) = 0|x=µ/2, one obtains µ = 2σ. So, under the

additive Gaussian noise model assumption, the standard deviation of the Gaussian

noise has to be less than µ/2 to identify separate branches of the principal curve.

2.4.4 Loops, Self-intersections, and Bifurcations

Since they are specifically designed to fit smooth curves to the data, traditional

parametric and nonparametric principal curve identification approaches in the lit-

erature have difficulties if there are loops, bifurcations and self intersections in the

data. Perhaps the most efficient algorithm in this context is Kegl’s principal graph

algorithm [74], where Kegl modifies his polygonal line algorithm [75] with a table of

predefined rules to handle the loops, intersections and bifurcations.
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Figure 2.13: Snow crystal dataset (blue), and principal curve projections of the data
(red)
.

Our definition can handle these irregularities with no additional effort. To un-

derline this fact, in this experiment, we use a synthetically-created snow crystal

dataset that has a number of loops, self intersections, and bifurcation points. To

estimate the pdf of the data nonparametrically from the samples, here we employ

KDE with ML kernel bandwidth again. Results are presented in Figure 2.13.

2.4.5 Extending the Definition to Higher Dimensional Man-

ifolds

The generalization of principal curves to principal surfaces and manifolds is natu-

rally achieved with the proposed definition and the framework as seen in previous

discussions. Here we present the one and two dimensional principal manifold of the

three-dimensional helix dataset. Figure 2.14 and Figure 2.15 show the results ob-

tained for the principal curve and principal surface of this dataset from two different

angles. In Figure 2.15, we present the surface built by the Delaunay triangulations

[32] of the principal surface projections for better visualization.
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Figure 2.14: Helix dataset (blue), and principal curve projections of the data (red)
.

Figure 2.15: Helix dataset (blue), and principal surface of the data
.



Chapter 3

Practical Algorithms to Find

Principal Curves and Surfaces

Developing practical machine learning tools are as important as the novelty of the

theoretical contributions. Although the results that use numerical integration meth-

ods presented in the previous chapter verify the validity of the definition, they

cannot be presented to the machine learning community as practical tools due to

required computational load and error accumulation problems. In this chapter, we

will implement several fast and nonparametric approaches stemming from subspace

constrained likelihood maximization criterion that yield algorithms in the spirit of

well-known mean shift algorithm [21, 27].

All algorithms presented in this section are based on the KDE of the data, and for

this reason the chapter starts with the underlying reasons of why this is the density

estimate of our choice. After developing some practical approaches and presenting

comparisons with some quantitative results for different sample sizes and noise levels,

we will analyze the effects of finite sample sizes and the extremal characteristics in

high dimensional spaces.

Mainly, two types of algorithms are required. In applications like denoising,

dimensionality reduction, and manifold unwrapping, the projections onto the prin-

cipal curve are required for all data samples. On the other hand, for applications

like OCR feature extraction, the principal curve itself -or a sufficient approximate-

40



41

is sufficient, and data projections are not required. The second type is generally

much easier, and also yields faster implementations.

All algorithms we will present are deviants of the Eigenspace-constrained Mean

Shift (ECMS) algorithm that is presented in Section 3.2. Eigenspace-constrained

Mean Shift (Section 3.2) and Subspace-constrained Mean Shift (Section 3.3) have

O(N2) computational complexity when using a KDE, where N is the number of

samples. Both of these methods are nonparametric approaches and provide the

data projections accurately. Parametric density estimate variations are trivial to

derive.

Piecewise-linear and vector quantized versions presented in Section 3.4 and Sec-

tion 3.5 have O(Nm) computational complexity, where m is the number of points

used in the principal curve approximation, and usually m≪ N . These approaches

bring the advantage of lower computational complexity, however the accuracy of the

principal curve approximations and data projections also decrease as m decreases.

3.1 Connections to Kernel Density Estimation

One can see many natural connections between the open ended problems in principal

curve fitting, and studies in KDE literature. Translating these problems into known

techniques in KDE literature not only yields practical algorithms, but also allows us

to approach various problems in principal curve fitting literature from a principled

point of view. Connections to density estimation bring the advantage of providing

the regularization and outlier robustness in a nonparametric way, leading to purely

data-driven nonparametric principal curve algorithms.

3.1.1 Seeking the principal curve in a region of interest

One of the challenges in principal curve literature is to define only a part of the

principal curve in the region of interest without having to struggle with the data
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points that are far from the region of interest, especially for large number of samples.

The original principal surface formulation itself is stated to be inefficient for large

sample sizes [57, 58], and the reason behind all difficulties in this problem with

the earlier definitions is the use of global statistics. In this framework, solution

approaches to define the region of interest are limited to heuristic attempts like

thresholding the distance and disregarding the rest of the data while employing

global statistics.

In our KDE-based approach, one can easily see that the problem of region of

interest translates to selecting a finite support kernel. To define the principal curve

only in the region of interest, one only needs to estimate the pdf in this portion

of the feature space, and the support of the kernel function clearly defines the

boundaries of the feature space that need to be used in the estimation. Moreover,

from a theoretical point of view, this approach makes theoretical analysis much

easier as compared to above mentioned heuristics, since asymptotic properties of

finite support KDE is well-known.

3.1.2 Outlier robustness of principal curves

Outlier robustness is another key issue in principal curve identification. Principal

curve definitions that involve conditional sample expectations and mean squared

projection error do not incorporate any data likelihood prior; hence, they treat each

data sample equally. Such approaches are known to be sensitive to noise and in the

presence of outlier data samples, of course, this will bias the results from the sought

principal curve towards the outliers. Stanford and Raftery present results on outlier

robustness along these lines by applying their principal curve clustering algorithm

to reconnaissance images [119].

Outlier robustness is a well-known property of variable bandwidth KDE. In

this approach, a data dependent kernel function is evaluated for each sample such
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(c) Pdf of the data using KDE with a variable ker-
nel bandwidth using the K-nearest neighbor dis-
tance with a global scale parameter optimized with
maximum likelihood criterion

Figure 3.1: KDE with variable kernel width and outlier robustness
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that the width of the kernel is directly proportional with the likelihood that sam-

ple is an outlier. This can be implemented in various ways, and the most com-

monly used methods are the K-nearest neighbor based approaches, namely: (i)

the mean/median distance to the K -nearest neighbor data points, (ii) sum of the

weights of K -nearest neighbor data points in a weighted KDE. Hence, the kernel

bandwidth increases for the samples that are in a sparse neighborhood of data sam-

ples. At this point, note that to obtain an asymptotically unbiased and consistent

density estimate the neighborhood parameter K should satisfy

lim
N→∞

K =∞ , lim
N→∞

K

N
= 0 (3.1)

Typical choices for K are K =
√

N , or K = 4
√

N . Depending on the application,

this parameter can also be adjusted empirically.

Figure 3.1(a) presents a dataset consisting of two crescent-like clusters buried in

noise. In fact, this dataset is similar to the illustration that Stanford and Raftery

use as they propose their noise robust principal curve approach [119]. We present

the fixed and variable bandwidth - using K -nearest neighbor method (i) mentioned

above and selecting K = N1/4- KDE of the dataset in Figure 3.1(b), and Figure

3.1(c), respectively.

Note that in the resulting density estimate the variable size KDE eliminates

the effects of the outliers without oversmoothing or distorting the pdf significantly

in the support of the data. Selecting the kernel functions in a data dependent

manner, by definition, makes our principal curve algorithms based on KDE robust

to outliers in the data. Although the complexity of some of the above mentioned

methods are negligible as compared to the principal curve projection step, depending

on the method used, additional computational load of variable kernel bandwidth

evaluations may increase the overall computational complexity.
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Figure 3.2: Mean projection error vs. overfitting as a kernel width selection
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3.1.3 Mean projection error vs. overfitting

As in most unsupervised learning problems, principal curve algorithms have the

problem of overfitting when they are defined over the sample expectations or mini-

mization of the average projection error. However, note that overfitting is an issue

that arises if the problem is defined in terms of a finite number of samples. On

the other hand, by defining the principal curve fitting problem in terms of the data

density, we assume that the required regularization constraints should be enforced

by the preceding density estimation scheme directly.

Considering the trade-off between regularization and mean projection error, the

original definition by Hastie-Stuetzle does not consider optimal regularization con-

straints. As mentioned before, there are many approaches in the principal curve

literature to prevent overfitting, by constraining the length [75, 74] or curvature

[111] of the principal curves. However, unfortunately it is not possible to obtain the

optimal length or curvature from the data directly.

More explicitly, there are two main points here: (i) one may have to rerun

the algorithm several times with different constraints and stopping conditions until

the desired trade off between the projection error and overfitting is achieved (ii)

for a particular result of the algorithm, it is not straightforward to decide about

overfitting without visually observing the data. Both of the above two arguments

become crucial while working in high-dimensional spaces. It is very hard to judge

whether the desired trade-off between projection error and overfitting is reached,

without observing the data, and this is why many principal curve applications in the

literature are limited to two or three dimensional applications of the input domain.

Kegl brings up this question in his PhD dissertation. Considering the dataset

and principal curve estimates in Figure 3.2(a), Kegl asks, which of the curves is the

sought one. ”Is the solid curve following the data too closely, or is the dashed curve

generalizing too much?” [78] In general, of course, this is an open ended question

that depends on the particular application. Still, with the connection to density
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estimation, regularization methods that has been used in this field can provide

nonparametric methods to define the regularization, where the related methods vary

from heuristics to theoretically well-founded approaches like maximum likelihood.

In other words, instead of trying for different length or curvature parameters, the

connection to density estimation can provide purely data-driven approaches, where

the regularization parameters are learned from the data directly.

Figure 3.2(b), Figure 3.2(c),and Figure 3.2(d) show regarding density estimates

obtained using KDE for different kernel bandwidth selections for the dataset pre-

sented in Figure 3.2(a). Considering our KDE based algorithms, the trade-off be-

tween projection error and overfitting can be adjusted by setting the kernel width.

One can select the kernel bandwidth manually by observing the data or exploiting

the domain specific knowledge of the data. This is, of course, not much different than

observing the data and selecting a suitable length or curvature constraint. However,

the real advantage here is the rich literature on how to select the kernel function,

and there are many theoretically well-founded ways of optimizing the kernel width

according to maximum likelihood or similar criteria [116, 97, 26, 114, 66, 11, 102].

In KDE literature, perhaps the most common kernel optimization approach is to

use the leave-one-out cross validation maximum likelihood procedure. Consider the

random vector x with samples {x1,x2, . . . ,xN}. The kernel density estimate that

leaves the ith sample out of density estimation is given by

pi(x) =
1

N

N∑

j=1, j 6=i

KΣj
(x− xj) (3.2)

where Σj = σ2I and the objective of the kernel bandwidth optimization problem is

defined by maximizing the log-likelihood function over all samples.

maxσ log
∏N

i=1 pi(xi) (3.3)

This optimization problem can be solved using a line search. Applying the maxi-

mum likelihood procedure to select data-oriented variable kernel bandwidths is also
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straightforward. Let cKNN
j denote the mean distance to K -nearest neighbor sam-

ples. One can select the variable bandwidth of the jth sample as Σj = σcKNN
j ,

where σ is a global scale constant optimized using the ML procedure given above.

An anisotropic counterpart of the isotropic selection method mentioned above can

easily be obtained by defining CKNN
i as the covariance of K -nearest neighbor data

sampled instead of their mean distance, yielding Σj = σCKNN
i .

Furthermore, anisotropic and/or variable size kernel functions naturally imple-

ment many types of constraints that cannot be defined by any length or bound of

turn. By selecting anisotropic kernel functions, one can define the regularization

constraint at different scales among different directions. Data-dependent variable

bandwidth kernels will define varying constraints throughout the space, which can

be estimated from the data directly, or manually adjusted according to specific needs

depending on the application.

In summary, KDE not only connects the trade off between the projection error

and generalization into well studied results of density estimation field, it also allows

one to derive data-dependent constraints that vary throughout the space, which

cannot be given by any length or curvature constraint whatsoever. Although this

still cannot ultimately answer the open-ended question on the trade-off between the

regularization and projection error, it provides a principled way to approach the

problem in a nonparametric manner. We will provide results for fixed and variable

maximum likelihood kernel bandwidth, which yields purely nonparametric principal

curve algorithms, and maximum likelihood selection proves to be efficient in many

practical applications. All arguments above also apply to parametric density models.

3.2 Eigenspace-constrained Mean Shift (ECMS)

A natural consequence of Theorem 2.1 is that a point is on the one dimensional

critical set iff the local gradient is an eigenvector of the local Hessian, since the
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gradient has to be orthogonal to the other (n − 1) eigenvectors. Furthermore, for

this point to be on the principal curve, the corresponding (n− 1) eigenvalues must

be negative.

By using KDE, a modification of the mean-shift algorithm by constraining the

fixed-point iterations in the orthogonal space of corresponding (n − 1) eigenvector

directions of the at the current point in the trajectory leads to an update that

converges to the principal curves and not to the local maxima. For this case, the or-

thogonal space of corresponding (n−1) eigenvector directions of the local covariance

is the parallel space of the leading eigenvector of the local covariance. The algo-

rithm could be modified to converge to the d-dimensional principal manifold P d in a

conceptually trivial manner, by selecting the constrained subspace as the subspace

spanned by corresponding (n − d) eigenvectors of the local covariance to constrain

the mean-shift iterations into the subspace spanned by d leading eigenvectors of the

local covariance.

Consider the data samples {xi}Ni=1, where xi ∈ ℜn. The KDE of this data set

(using Gaussian kernels) is given as

p(x) = (1/N)
N∑

i=1

GΣi
(x− xi) (3.4)

where Σi is the kernel covariance for xi; GΣi
(y) = CΣi

e−yT Σ−1
i y/2. Note that for

the derivation we use the general case of anisotropic variable kernel functions. For

isotropic kernels one can use a scalar value instead of a full covariance, or for fixed

kernel functions one can constrain the data dependency and drop the sample index

i. Again for the general case, the gradient and the Hessian of the KDE are

g(x) = −N−1
∑N

i=1 ciui

H(x) = N−1
∑N

i=1 ci(uiu
T
i − Σ−1

i )

where ui = Σ−1
i (x− xi) and ci = GΣi

(x− xi)

(3.5)

Let {(γ1(x),v1(x)), . . . , (γn(x),vn(x))} be the eigenvalue-eigenvector pairs of Σ−1(x)
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as defined in Definition 2.5 and the mean-shift update emerging from (3.5) is

x←m(x) = (
∑N

i=1 ciΣ
−1
i )−1

∑N
i=1 ciΣ

−1
i xi (3.6)

At x, the subspace mean-shift update is performed by projecting x into the con-

strained space x̃k = (vvTm(x)). This nothing but the general approach of update

and back-project that has been widely used in constrained optimization.

The stopping criterion can be selected according to the definition directly, which

checks if the gradient is an eigenvector of the Hessian. Alternatively, the stopping

criterion can be selected similar to mean-shift, where the magnitude of the update is

used. This gives a computationally cheaper stopping criterion, since it does not use

the Hessian, and the algorithm stops if the updates get smaller than a reasonable

tolerance, ‖VVTm(x(k))− x(k)‖ < ǫ.

The iterations can be initialized any arbitrary location in the feature space, if

the principal curve in a region of interest is sought. To find the principal curve

projections of the data samples as well as the curve itself, the suitable way is to

initialize the algorithm to the data samples themselves, as in mean-shift. The gen-

eralized version of ECMS algorithm that converges to the d-dimensional principal

manifold is presented in Table 3.1, where the regarding principal curve algorithm

can simply be obtained by setting d = 1.

‘

3.3 Subspace-constrained Mean Shift (SCMS)

The bottleneck of the computational load in ECMS is in the step 3 (in Table 3.1),

where the Hessian and local covariance matrices, and the eigendecomposition of the

local covariance matrix is evaluated. If the pdf is a flat ridge, the eigenvectors of the

local covariance does not significantly change throughout the iterations. Exploiting

this, one simplification over the ECMS algorithm is to perform this eigendecomposi-

tion at the initial point and keep the constrained space constant until convergence.



51

Table 3.1: ECMS Algorithm

1. Initialize the trajectories to a mesh or data points and t = 0.

2. For every trajectory evaluate m(x(t)) as in (3.6).

3. Evaluate the gradient, the Hessian, and perform the eigendecomposition of
Σ−1(x(t)) = VΓV.

4. Let V=[v1 . . .vd] be the (d−m) leading eigenvectors of Σ−1

5. x̃(k) = VVTm(x)

6. If |gTHg|/‖g‖‖Hg‖ > threshold then stop, else x(t + 1)← x̃.

7. Convergence is not achieved. Increment t and go to step 2.

Also the stopping criterion is different than ECMS, so that the Hessian evaluation

is eliminated. The resulting Subspace-constrained Mean Shift algorithm is given in

Table 3.2.

3.4 Piecewise Linear SCMS

Although SCMS gives the advantage of lower computational load as compared to

ECMS with accurate results, the dependency on number of data samples is still

quadratic. The way to get a lower data dependency is to select a representative

subset of points for principal curve projection, and use these projections to interpo-

late the curve. Principal curve literature shows that in many cases piecewise linear

structures can provide significantly accurate results; and therefore, in this section

we will present a piecewise linear approach that lowers the computational load.

We propose a two step solution to find the representative points of the dataset

to be used in principal curve projection: (i) find the modes (local maxima points)

of the pdf (ii) combine the principal curve segment in between pairs of these modes.

The modes of the pdf constitute the zero-dimensional principal set P 0, and we use
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Table 3.2: SCMS Algorithm

1. Initialize the trajectories to a mesh or data points and t = 0.

2. Evaluate the gradient, the Hessian, and perform the eigendecomposition of
Σ−1(x(0)) = VΓV.

3. For every trajectory evaluate m(x(t)) as in (3.6).

4. Let V=[v1 . . .vd] be the (d−m) leading eigenvectors of Σ−1

5. x̃(k) = VVTm(x)

6. If ‖VVTm(x(k))− x(k)‖ < ǫ then stop, else x(k + 1)← x̃.

7. Convergence is not achieved. Increment t and go to step 3.

the mean-shift iterations given in (3.6) to find the modes.

The next step is to construct P 1 by combining principal curve segments from

these modes. For this, we use a subset of points for each principal curve segment.

We select the subset of points to be projected in a sequential way, very similar to

Kegl’s polygonal line algorithm: for each pair of mode, we will project the midpoint

of the line segment that connects two projected points in the piecewise linear ap-

proximation. This can be performed up to a depth of m, leading to 2m + 1 points

in between every pair of mode. Table 3.3 summarizes the PL-SCMS algorithm.

For a simple illustration of the proposed piecewise linear approach for different

depth values we use a semi-circle shaped dataset. This dataset has 500 samples,

drawn from a uniform distribution along a circle with a Gaussian perturbation in

the radial direction. Figure 3.3a shows the data samples (blue) along with the modes

(green), that is the result of step 1 in Table 3.3, and leads to the principal curve

approximation of depth 0. Figure 3.3b, 3.3c, and 3.3d presents the principal curve

approximations of depth 1, 2, and 4, respectively. The piecewise linear principal

curve approximations are shown with green.

The piecewise linear approximations provided by our approach is similar to the
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Table 3.3: PL-SCMS Algorithm

1. Select the kernel size and run mean-shift iterations in (3.6), to find the modes

2. For all mode pairs project the midpoint of the line that connects these modes
onto the principal curve by the following:
- Evaluate the local covariance Σ−1(x) given in (6)
- Find the greatest eigenvector of the local covariance v, select the constrained
subspace direction as either v or -v, depending on which of these has a positive
inner product with the gradient given in (6): d = v sign(gTv)
- Until convergence: iterate (3.6), and project the update onto the constrained
subspace direction d.

3. Go back to step 2 if the required depth is not reached.

outcome of Kegl’s piecewise linear apporach [75]; however, the difference is that once

you estimate the probability density of the data, the principal curve estimate will

not overfit the data no matter how dense you would like to populate the points on

the principal curve. The irregularities like loops, self intersections, and bifurcation

points do not require special attention and are handled naturally by the definition.

Other than the kernel bandwidth which can be learned from the data, the resulting

algorithm has only a single parameter, which is the depth that is used to control

the trade off between accuracy and computational load.

In summary, the piecewise linear subspace constrained mean shift provides a

computationally much cheaper accurate estimate of the principal graph that we

define. In the cases where the projection of all data samples onto the principal

curve is required like in denoising, compression, and dimensionality reduction, this

approach might be insufficient. On the other hand, this approach provides accurate

results for OCR feature extraction as we will present in the next chapter.
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Figure 3.3: Principal curve approximations on the semicircle dataset with depths 0,
1, 2, and 4.

3.5 ECMS with Vector Quantization

We will present another cheap algorithm that uses the principal curve projections

of a subset of points, similar to above piecewise linear approach. The construction

of the principal curve is composed of three main parts: (i) selecting representa-

tive points from the data (ii) projecting these points onto the principal curve (iii)

building the neighborhood graph over the pairwise distances of these principal curve

projections.

There are two important points for the selection of the representative points

from the dataset. First, this selection should be performed in a computationally
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inexpensive manner, and second, the selected points are uniformly distributed in

the support of the data. The cheapest way to achieve this is to use a subsampling of

the data under the assumption that the data distribution is iid. On the other hand,

although it brings some additional computational load, using a vector quantization

or clustering algorithm relaxes the iid assumption. Many clustering or vector quan-

tization algorithms can be used here for this purpose. We select K-means algorithm

due to its simplicity and relatively low computational complexity [56].

Similar to piecewise linear SCMS in Section 3.4, we will use the SCMS algo-

rithm to project the K-means of the dataset onto the principal curve. Note that in

piecewise linear SCMS, since each curve segment is refined sequentially, the neigh-

borhood of the points that are used in the principal curve approximation are given

by definition. On the other hand, this information is not available in vector quan-

tized SCMS approach, and a neighborhood graph over the projected points has to

be constructed. Minimum spanning tree (MST) algorithm offers a robust way for

constructing the neighborhood graph, and provides good results if the dataset does

not have loops. If the data has loops, more elaborate approaches are required, and

evaluating an ensemble of MST for slightly perturbed (by a Gaussian noise) versions

of these points [14], or the postprocessing steps of Kegl’s principal graph algorithm

[74] can be used here.

As well as the graph construction method, the distance metric is also very im-

portant. Euclidean distance provides good results if the noise around the true

underlying principal curve is low, and points that are used in the principal curve

projection step are dense enough. On the other hand, density geodesics [94] provide

a better alternative that provides accurate results in noisy data as well. Details

of density geodesics is presented in the Appendix, and implementation of vector

quantized SCMS is given in Table 3.4.
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Table 3.4: VQ-SCMS Algorithm

1. From the dataset, select a subset of points x∗ either by subsampling, clustering
or vector quantization.

2. Project x∗ onto the principal curve using SCMS to obtain x̃∗

3. Build pairwise distance matrix of x̃∗, and construct the MST of x̃∗ to obtain
the principal tree.

3.6 Comparisons and Experimental Results

Here we will show some experimental results of above algorithms, and provide com-

parisons between them and also with Kegl’s popular Polygonal Line algorithm [75].

We already presented comparisons with this approach in the previous chapter. Here

we take a step further where we provide quantitative results for different noise level

and compare the computation times as well.

For illustrative purposes we use a two-dimensional dataset here. The noiseless

data points are sampled from a spiral, and additive Gaussian noise is added to

these points along the orthogonal (that is the radial) direction. Figure 3.4 shows

the dataset for different noise levels. Results for ECMS, SCMS, and Polygonal

line algorithm is presented in Table 3.5 along with corresponding running times.

ECMS and SCMS use ML fixed isotropic ML kernel bandwidth, and presented

running times include the ML training as well. For the Polygonal Line algorithm

we performed a manual parameter tuning for each noise level and best results are

presented.

Overall, as the noise level increases, the computation time of ECMS and SCMS

both increase, presumably due to more iterations are required. Still, the compu-

tation time of both of these algorithms are much less as compared to Polygonal

Line algorithm. In terms of MSE between the estimated and the true curve, ECMS

and SCMS provide better performance as compared to Polygonal Line algorithm,
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and for some noise levels the difference in performance is very small. However, the

real advantage is being able to reproduce the similar/better results with no manual

parameter tuning.

Table 3.5: Computation Time and MSE Performance Comparisons

Computation time Mean squared projection error σnoise

ECMS 3.237 sec. 0.00003184 0.005
SCMS 2.028 sec. 0.00003265 0.005

PL 18.422 sec. 0.00017677 0.005
ECMS 3.508 sec. 0.00011551 0.01
SCMS 2.143 sec. 0.00013057 0.01

PL 20.547 sec. 0.00024497 0.01
ECMS 3.986 sec. 0.00062832 0.02
SCMS 2.367 sec. 0.00064603 0.02

PL 22.671 sec. 0.00066665 0.02
ECMS 6.257 sec. 0.00194560 0.04
SCMS 4.198 sec. 0.00198021 0.04

PL 27.672 sec. 0.00269184 0.04
ECMS 7.198 sec. 0.00433269 0.06
SCMS 4.555 sec. 0.00441386 0.06

PL 19.093 sec. 0.00618819 0.06
ECMS 8.813 sec 0.00912748 0.08
SCMS 5.183 sec 0.01297617 0.08

PL 19.719 sec 0.01883287 0.08

3.7 Limitations, Finite Sample Effects, and the

Curse of Dimensionality

In our perspective, density estimation is a prerequisite step for principal curve esti-

mation. Since our principal curve definition assumes the pdf to be given, it depends

on the reliability of the preceding density estimation step, which in general may

not be an easy task. Stated by Bellman as the curse of dimensionality [7], it is a

very well-known fact that density estimation becomes a much harder problem as the
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dimensionality of the data increases. Therefore, before we move on to applications

on real data, in this section we will present the performance of our principal curve

fitting results for various density estimates with different number of samples and

dimensions.

The first comparison is with the principal line estimation based on eigendecom-

position of the data, where the true underlying probability distribution is Gaussian.

The second comparison examines the model order estimation using a Gaussian mix-

ture model, which in the limiting case, where the number of Gaussian mixtures is

equal to the number of samples, converges to KDE. In all comparisons presented be-

low principal curve projections are obtained by the SCMS algorithm given in Table

3.2, using the ML kernel bandwidth detailed in Section 3.1.3.

3.7.1 Comparison with eigenvector estimation

As mentioned before, the reason why we prefer to use KDE is its ability to adapt

different complex shapes that data may take. Indeed, in the next chapter, KDE

based principal curve estimation proves to be efficient in adapting many real-life

data distributions of a diverse set of applications. However, one well-known disad-

vantage of KDE is the required number of samples as the dimensionality of the data

increases. Here we discuss the case where the true underlying probability density

is Gaussian; hence, the claim of the requirement to adapt to complex shapes in the

data is an obvious overstatement. In this scenario, we will compare the principal

line estimator based on PCA to the principal curve based on KDE, for different

number of dimensions.

Consider the dataset {xN
i=1}Gaussianly distributed in d-dimensional space, where

v denotes the true principal line of this distribution, and v∗ denotes the principal

line obtained by sample PCA. What we are going to compare here is the following:

1. mean squared distance between the projection of the data samples onto the

true first eigenvector and the estimated first principal component, E{‖vTx−
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vT
∗ x‖}

2. mean squared distance between the projection of the data samples onto the

true eigenvector and the principal curve projection x̃, E{‖vTx− x̃‖}.

Figure 3.5 presents the MSE the principal line (red) and principal curve (blue)

projections for 2, 3, 4, 5, 10, 20, 30,and 40 dimensions, and average MSE for 100

Monte Carlo simulations is shown. For all cases the MSE decreases for both methods

as the number of samples increase. Principal line projection always results in better

accuracy and the performance of principal curve projections drop exponentially for

increasing dimensions.

3.7.2 Effects of the model order estimation

An important problem in parametric density estimation is model order selection.

At this point, to develop general purpose algorithms and to avoid model order

selection problems in the underlying density estimate, we work on the KDE of

the data; however, note that all algorithms presented in this chapter can easily be

modified to work over Gaussian mixtures, instead of KDE. Since we use a Gaussian

kernel function in KDE-based implementation already, the required modification

is as simple as replacing the data samples with the Gaussian mixture means and

incorporating the individual weights and covariances. Using a parametric model has

two advantages:

1. As opposed to O(N2) complexity of the KDE based SCMS and ECMS, the

computational complexity of these approaches would decrease to O(MN),

where M is the number of mixtures in the Gaussian mixture and N is the

number of samples, since typically M ≪ N .

2. As also implied in the previous section, a parametric approach with a suitable

model order and a correct fit, the algorithm would need less samples to achieve

good principal curve estimates.
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Here we will evaluate the stability of principal curve estimation for improper

model order selections in the density estimation step, and compare the principal

curve projection results for a Gaussian mixture with 3 components. For this purpose

we use ECMS algorithm and modify it accordingly such that the underlying density

estimate is a Gaussian mixture. Since the true underlying density is known to have

3 components, we measure the performance as of principal curve projection results

for different number of components in the density estimate as the distance to the

principal curve projections obtained with three components

Jd = E{‖x̃3(x)− x̃d(x)‖}, d = 1, 2, 3, 4, 5, 6, 10, 15, 25, 50, 100, 200, 400 (3.7)

where the dataset x has 400 samples in 2-dimensional space. Figure 3.6 shows

a realization of the Gaussian mixture, and Figure 3.7 presents the performance of

the principal curve projections for different number of components in the Gaussian

mixture estimation, and results of 50 Monte Carlo simulations is shown. Note that

for increasing model orders, if the GMM has more number of components than the

true underlying distribution, the generalization performance of the principal curve

does not change significantly.
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Figure 3.4: Sprial dataset (red) with its noisy versions (blue) for different noise
levels.



62

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−8

−7

−6

−5

−4

−3

−2
2 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−7

−6

−5

−4

−3

−2

−1
3 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−7

−6

−5

−4

−3

−2

−1

0
4 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−6

−5

−4

−3

−2

−1

0
5 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−6

−5

−4

−3

−2

−1

0

1
10 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−5

−4

−3

−2

−1

0

1

2

3
20 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−4

−3

−2

−1

0

1

2

3

4
30 dimensions

Number of samples in logscale

M
S

E

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−4

−3

−2

−1

0

1

2

3

4
MSE in40 dimensions

Number of samples in logscale

M
S

E

Figure 3.5: Mean projection error in log scale for principal line (red) and principal
curve (blue). Average of 100 Monte Carlo simulations is shown.
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Chapter 4

Applications of Principal Curves

In this chapter, we will present applications of principal curves on a diverse set

of problems, including image segmentation, optical character recognition, signal

denoising, neighborhood graph construction, manifold unfolding, time-frequency re-

assignment and multiple-input multiple-output channel equalization. Note that the

applications presented here use the algorithms presented in Chapter 3 directly, and

they do not use any domain specific information. Our aim here is to show the appli-

cability of the principal curve concept and the effectiveness of the general purpose

algorithms presented in Chapter 3 into practical applications, rather than developing

techniques specifically designed for a particular purpose. If necessary, preprocess-

ing and postprocessing methods that exploit the domain specific information -like

the differences between the polygonal line algorithm [75] and the principal graph

algorithm [74]- can always be added to improve the performance.

This chapter starts with a literature review of existing principal curve applica-

tions in the literature. As well as existing applications of principal curves like optical

character skeletonization, we will also present new application areas that principal

curve based approaches have never been used before. For each application, a brief

literature review will be presented. However, note that these are intended to pro-

vide a general understanding of current state-of-the-art, rather than providing a

complete survey of these areas.

64
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4.1 Principal Curve Applications in the Litera-

ture

The Hastie-Stuetzle principal curve algorithm was designed to be used in Stanford

Linear Collider project [57]. The aim of the project was to discover new subatomic

particles by colliding two intense and focused particle beams. There are two colliders

of about 3 km length, and hundreds of magnets that guide the positron and electron

beams. The principal curve approach is used to align misplaced magnets and reduce

the total magnet movement required.

Banfield and Raftery used principal curves for identification of ice floes and their

outlines in satellite images [4]. This identification is important to investigate the

physical processes in the polar regions, and also for transportation in these areas.

Banfield and Raftery model ice floes as closed principal curves and provide a robust

method for estimating closed principal curves.

Stanford and Raftery apply their noise robust principal curve algorithm to de-

tection of curvilinear seismic regions in reconnaissance images [119]. For this they

use a two step approach: a hierarchical and agglomerative clustering method, and

an EM algorithm that refines the principal curve clustering results and handles the

background noise.

Kegl and Krzyzak provide handwritten character skeletonization results using the

Principal Graph algorithm, which is an extension of the Polygonal Line algorithm

[74]. The skeletons can be used for two purposes; feature extraction for optical

character recognition or compression. Since skeleton is supposed to capture the

overall structure of the character, it can be used as a feature set for automatic

character recognition. Using the skeleton for compression is based on the idea that

the handwritten characters are not observed pixel by pixel, but as a whole. Hence,

the principal graph of the data can be used for this purpose as well.

Reinhard and Niranjan use the Hastie-Stuetzle principal curve algorithm to
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model short term frequency spectrum of speech signals, and they compared the

principal curve based approach with Hidden Markov Models and Generative To-

pographic Mapping [103, 104]. Their approach used principal curves to obtain a

parametric modelling of the trajectory in the time-frequency space, which they used

to generate a distance metric for diphone classification.

Glenn De’ath used the Hastie-Stuetzle Algorithm for indirect gradient analy-

sis of multispecies abundance data for estimating the species response curves [31].

De’ath reports that the principal curve based technique outperforms correspondence

analysis and multidimensional scaling, and provides results with and without noise.

Hermann, Meinicke, and Ritter used principal curves for sonification [61]. Soni-

fication is the represention of high-dimensional data as a time-varying sound signal.

As well as capturing the structure in the high-dimensional space, the principal curve

is also used to define a time order for these high-dimensional data points.

Dong and McAvoy combined the principal curve method with an autoassociative

neural networks-based algorithm to build a model that can be used for prediction

[36]. They applied their algorithm to process control. Wilson and colleagues used

radial basis functions to build self-consistent principal manifolds, and they applied

their method to process monitoring and fault detection.

Chen and colleagues used principal curves to analyze freeway traffic streams [19].

Most of the prior work in this field is based on functional forms of traffic stream

variables, whereas the proposed principal curve based method offers a nonparametric

alternative. Comparisons show that the principal curve based model is superior to

earlier modelling methods.
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4.2 Image Segmentation and Active Contours

Image segmentation is one of the fundamental problems in image processing. The

most common image segmentation applications include feature extraction from im-

ages, filtering of noisy images, object recognition, and object based video or image

coding. Definition of the image segmentation problem is as follows: partition the

image into distinct regions in a way that these regions are homogenous, and none of

the unions of these distinct regions form a homogenous structure. The homogeneity

can be defined in any feature space; hence, it does not strictly require homogeneity

in the color or the intensity space.

Existing image segmentation methods can be categorized into few main groups.

The earliest methods are the edge-based approaches [13]. Edge-based approaches

first detect the edges of the image, which are subsequently connected and combined

to build object contours. However, these methods are efficient only if the pixel

intensity itself is a suitable feature for segmentation; the main disadvantage of the

edge-based methods is the fact that they are applicable only when the edges can

be computed, which is not always possible. There are region-based approaches, like

region growing, that have the advantage of low computational cost [50]. However,

region-based methods are parametric, and results of these methods suffer from being

very sensitive to the parameter values. Another category is split and merge approach

that partitions the image into primitive regions and merges them to provide the

final results. A similarity measure is defined to compare similarities between the

pairs of neighboring regions to merge them until a stopping criteria is ensured [95].

The problem of setting good thresholds and selecting an effective stopping criterion

is mostly overcome by utilization of clustering methods for image segmentation

problems. Clustering-based methods bring the strength of generalization properties

of unsupervised learning problems into the image segmentation area [27, 115]. These

approaches are generally nonparametric or have a few parameters, whose efficient
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values can usually be estimated from the data.

Another approach that has evolved from edge based approaches is the active

contours, so called snakes [72, 84, 131]. Snakes are based on the utilization of the

shape priors with the gradient of the edge map of the image. Active contours move

with the effect of internal and external forces. Internal forces, such as elasticity forces

or bending forces, depend on the contour itself; the external forces are independent

of the shape of the contour and are only evaluated from the image intensities. These

forces are determined in a way that they will make the snake move towards the object

boundaries. The external energy function is defined such that it takes its optimal

(generally minimum, depending on the definition of the optimization problem) values

at the object boundaries, while the internal energy function preserves the shape of

the snake. Generally, in parametric and geometric active contours, edge maps or

some derivatives of edge maps are used to define the external energy function. A

different track in active contours is the region-based active contours [105], which are

based on the idea of making the contour move towards a boundary, such that both

the interior and the exterior of the contour form homogenous regions.

There are several practical difficulties in using snakes, with the original definition,

most of which are later addressed by the gradient vector flow (GVF) snake [131].

The most important problem is that the initialization of the active contour has to be

in a narrow neighborhood of the object boundary. The range of initializations that

leads to the desired segmentation is known as the capture range of the corresponding

external force field. To overcome the low capture range problem in real life scenarios,

snakes are usually initialized using the output of another segmentation algorithm,

in which case, snakes can be regarded as a fine tuning step for another segmentation

algorithm. To increase the capture range, several methods have been proposed

[25, 10, 24]. Determining the way the snake should move through varying resolution

levels remains unsolved. Another approach to solve the same problem is distance

potentials method proposed by Cohen and Cohen [24], which introduces an external
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force model to guide the contour towards the object boundary. This approach

significantly increases the capture range and overcomes the initialization difficulty

in most of the cases.

Another well-known problem is that the snakes have difficulties in progressing

into concavities along the boundary. Directional attractions [1], control points [30],

pressure forces [25] are among the methods proposed to solve this problem. However,

the most satisfactory results are obtained with the GVF formulation by Xu and

Prince [131], which also solves the capture range issue very effectively. GVF snakes

provide a principled and effective way of defining the external field, providing an

insensitivity to initialization and an ability to progress into boundary concavities.

However, the method of defining the internal energy function with the optimal

selection of its parameters remains to be determined. As with most parametric

methods, the usual way of seeking the desired result is to run the algorithm several

times for a set of different parameter values until a satisfactory performance is

obtained.

In Nonparametric Snake formulation, we approached the problem of defining

the energy function in a nonparametric way. The approach is based on the density

estimate of the edge image. Here, we mainly focused on kernel density estimation

(KDE) [97], and derived an algorithm that exploits the underlying kernel density

estimate of the edge image.

4.2.1 Nonparametric Snakes

In this section, we will briefly review our Nonparametric Snake formulation. In this

particular realization of the concept, we use kernel density estimation, Euclidean

inner product, and fixed point iterations. A discussion of how to address typical

problems encountered by active contours in the proposed nonparametric framework

is very similar to the discussion in 3.1 [93] and is omitted here.

Consider an image I(x, y). For each pixel, the vector s = [x, y]T denotes its
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location. Let E(s) denote the edge map of this image as a function of space. The

edge maps can be obtained using any suitable edge detector of choice and the edge

values can be binary or continuous.

In order to illustrate the edge distribution estimates obtained using KDE, con-

sider the more intuitive case of a binary edge map E(s) such that

E(s) =





E(si) = 1 : si is an edge pixel

E(si) = 0 : otherwise
(4.1)

A KDE of the edge map can be constructed using variable-anisotropic-bandwidth

kernels as follows:

pedge(s) =
1

Nedge

N∑

i=1

E(si)KΣi
(s− sedge

i ) (4.2)

where N is the number of pixels and

Nedge =
N∑

i=1

E(si); (4.3)

Now suppose we have a continuous edge map Econt(s) ∈ [0,∞). The most

common choices for a continuous edge map include: (i) a binary edge map convolved

with a Gaussian, (ii) the magnitude-square of the gradient field, (iii) the magnitude-

square of the gradient field convolved with a Gaussian. Explicitly, these choices are

Econt(s) =





(i) : Ebinary(s) ∗G(s)

(ii) : ‖∇I(s)‖2

(iii) : (ii) ∗G(s)

(4.4)

For continuous edge maps, the density can be expressed as a variable-weight variable-

bandwidth KDE as

pedge(s) =
N∑

i=1

wiKΣi
(s− si) (4.5)

where the weights wi are obtained for each pixel as its normalized edge map value:

wi =
E(si)∑N

j=1 E(sj)
(4.6)
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Note that the binary edge map density is a special case of the latter, obtained

by thresholding the weights appropriately to obtain binary weights for each pixel.

Given the active contour samples {ssnake
j }Nsnake

j=1 and the density of the edge map

pedge(s), our aim is to find a contour that captures the structure of the edge field

E(s) around the object to be segmented. We formulate this idea as maximizing the

inner product between the probability density function of the snake psnake(s) and

the probability density of the edge map pedge(s):

max
{ssnake}

J({ssnake}) = max

∫
pedge(s) psnake(s) ds (4.7)

where the probability density of the snake psnake(s) is also evaluated as a KDE,

using the samples of the snake:

psnake(s) =
1

Nsnake

Nsnake∑

j=1

KΓj
(s− ssnake

j ) (4.8)

where Nsnake is the number of points on the snake. Substituting (4.8) and (4.5) into

(4.7), the plug-in KDE-based estimate of the objective function is obtained:

J(ssnake) =

Nsnake∑

j=1

N∑

i=1

wi

Nsnake

KΣi+Γj
(si − ssnake

j ) (4.9)

Note that this cost function is additive in terms of the samples of the snake, therefore

near the optimal point along the ridge of the edge density, higher and lower sampling

rates of the snake would lead to an accordingly denser or sparser evaluation of the

optimality criterion along the ridge.

To derive a fixed-point iteration for the samples of the snake, we equate the

gradient of the optimization criterion by using the fact that for any fixed point

of the density inner product cost function, the gradient of the inner product with

respect to ssnake should be equal to zero. This yields the following:

∂J(s)

∂ssnake
j

=
N∑

i=1

wi(Σi + Γj)
−1

N snake
(ssnake

j − si)KΣi+Γj
(si − ssnake

j ) = 0 (4.10)
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Reorganizing the terms and solving for ssnake
j , the fixed point update rule can be

written as 1

ssnake
j ←

∑N
i=1 si wi(Σi + Γj)

−1 KΣi+Γj
(si − ssnake

j )
∑N

i=1 wi(Σi + Γj)−1 KΣi+Γj
(si − ssnake

j )
(4.11)

This iteration is similar to that of mean-shift and has been shown to be an EM-

update [15, 21], thus is convergent. Due to the elimination of spurious edge maxima,

the nonparametric snake does not suffer from poor capture range.

The fixed point iterations above introduce a drawback: depending on the ini-

tial conditions, the original set of snake samples might be unable to progress into

boundary concavities. We overcome this problem and also densely populate the

boundary by using the fixed-point iterations recursively. A step by step summary

of the Nonparametric Snake algorithm is given in Table 4.1.

4.2.2 Interpolations Using Principal Curves

Note that all active contour methods in the literature leave the smooth interpolation

of the final samples to general purpose interpolation methods like nearest neighbor

interpolation, bilinear interpolation, bicubic interpolation, and spline interpolation.

Similarly, nonparametric Snake also leaves the interpolation step to these selections.

Using the underlying density estimate of the edge image, suitably initialized

principal curve projections can be used for interpolating the missing edges through-

out the active contour. A suitable interpolation metric should bend the original

feature space in a way that, where the probability density of the edge is high, the

curve should be allowed to bend to follow the underlying edge density; conversely,

where the underlying edge probability density is low, the interpolating curve should

be smooth.

1In (4.11) the division denotes left multiplication with the inverse of the matrix given in the
denominator. Specifically, for a spherical Gaussian the matrix in the denominator will become a
scalar.
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Table 4.1: Nonparametric Snake with principal curve interpolations

1. Generate the edge image, E(s).

2. Select the kernel size and estimate the probability density of the edge image
pedge(s).

3. Select the initialization of the snake and estimate the probability density of
the snake psnake(s)

4. Use the iteration scheme given in (4.11) to iterate the points on the snake.

5. Select a neighborhood threshold thneighbor, which will define the resolution level
of the snake - default value should be unity.

6. For the points on the snake, build a graph of pairwise distances and find the
points that have no neighbors for the given threshold.

7. Select a perturbation step size µ and perturb these points towards M randomly
selected directions. Typical values are µ = thneighbor/5 and M = 5. Optionally,
if it’s known that the interior or the exterior of the boundary provides a
smoother cost function, these M randomly selected directions could be selected
accordingly. This can be implemented by utilizing the inner product of the
selected directions and the vector that connects the particular point to be
perturbed to its location in the previous iteration.

8. Use SCMS to map these perturbed points to their projection on the contour.
After convergence, add these points to the snake and include them in the
neighborhood threshold calculation.

9. Repeat until the predefined neighborhood threshold is satisfied at all points.
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25

Figure 4.1: Two examples for the optimal interpolating curve with the edge probabil-
ity density, where the big circles represent the points on the snake and interpolating
curve combine these points

Figure 4.1 shows the edge density and the principal curve. Here, we zoom into

the boundary and present the interpolating curve for several pairs of samples.

Pulling the interpolation curve towards the edge probability density, presented

interpolation technique automatically detects boundary concavities. If the boundary

has many concavities and the snake is initialized with insufficient number of points,

the snake will presumably have difficulties in progressing into concavities. However,

if the proposed ridge detection idea is used to interpolate the points on the snake,

all concavities in the edge map will automatically be detected.

We used the approach presented in Table 4.1 for automatic lung and lung tu-

mor segmentation for 3D-CT applications in radiation oncology [68]. Figure 4.2

shows the results of nonparametric snake with and without principal curve interpo-

lations, where blue shows the edge pixels (of a binary edge image), red shows the

initialization and white contour is the final result of the nonparametric snake. The

nonparametric snake, being essentially a mean-shift approach using weighted KDE,

can cause the snake points to cluster in regions of high density if the edges are non-

uniformly sampled along the ridge. Principal curve interpolations solve this problem

-again, nonparametrically- as presented with the light blue contour in Figure 4.2(b).

Aside from interpolations, seeking for the ridges in an image is a known image
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Figure 4.2: Two examples for the optimal interpolating curve with the edge probabil-
ity density, where the big circles represent the points on the snake and interpolating
curve combine these points

segmentation tool, which finds use in medical image processing [29, 85]. In this

approach, the image is mapped into a three dimensional space consisting of the

pixel coordinates, x, y; and the corresponding intensity, I(x, y). The segments of

the image are considered to be relatively constant, and the segmentation is achieved

by using the ridges of the image in this space. Principal curves would be directly

applicable in this context, and one can use SCMS in the feature space of x, y and

I(x, y), starting from all pixels.

4.3 Optical Character Skeletonization

Principal curves have been used for skeletonization of optical characters [74]. Op-

tical character skeletonization can be used for two purposes: feature extraction for

optical character recognitionf and compression. One significant problem for apply-

ing principal curve algorithms to skeletonization of optical characters is that, by

definition, algorithms are seeking for a smooth curve. In general, data may have

loops, self intersections, and bifurcation points, which is obviously the case for the

optical characters.

Kegl’s principal graph algorithm is perhaps the only method in the literature that

can successfully handle such irregularities [74]. In this approach, Kegl reshapes his



76

Figure 4.3: Principal graph results in optical characters

polygonal line algorithm [75] to handle loops, and self intersections by modifying

it with a table of rules and adding preprocessing and postprocessing steps. The

polygonal line algorithm, which is the basis of the principal graph algorithm, is based

on the idea of bounding the length of the principal curve to prevent overfitting. At

this point, modifying this algorithm with a table of predefined rules that include

parameters and thresholds is nothing but further parameterizing the problem.

Since the back projection of the data samples is not required and the principal

graph itself is sufficient, we use piecewise linear SCMS algorithm to show how our

principal curve definition performs in this application. The dataset we use in this

experiment consists of handwritten digits, and this dataset is provided by Kegl. We

use the ML kernel bandwidth given in Section 3.1.3, and the depth parameter of

PL-SCMS is selected as m = 2. Results are presented in Figure 4.3.
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4.4 Principal Curve Time Warping

Time series analysis is an important field in adaptive signal processing with nu-

merous applications in econometric studies in stock market, various biomedical and

speech processing applications, or intelligent transportation systems analysis. A

common problem in all these applications is to derive a suitable distance measure

between time series signals. One common case in time series applications is that

although some pairs of signals demonstrate similar characteristics (for unsupervised

scenarios) or belong to the same class (for supervised scenarios), the predominant

structures of the signals do not align in the time axis.

Dynamic time warping (DTW) is a technique to solve this alignment problem.

DTW has evolved from the speech processing field and later applied to many differ-

ent areas [109]. In general, DTW is a method that finds an optimal match between

two sequences of feature vectors with certain restrictions - monotonicity, continu-

ity, and boundary conditions. The problem is modelled as finding the minimum

distance through the matrix of pairwise distances of the data samples, and as the

name implies, to achieve the solution, DTW uses dynamic programming techniques.

DTW algorithm is later referred to as the DTW model, as it was reinterpreted to

be a parametric model [110]. Although it has found widespread use, DTW is very

susceptible to noise, and time warpings over low SNR signals may end up with many

singularities. Singularities are defined as ”unintuitive alignments where a single

point on one time series maps onto a large subsection of another time series” [76].

Literature on DTW is rich on modifications to increase noise robustness; however,

most of these are heuristic attempts. These approaches are not guaranteed to remove

all singularities, and even worse, they may prevent the optimal solution from being

found. Techniques include using moving average filters on the time series signals to

reduce the high frequency content, assuming that most of the high frequency content

is the noise [110, 8, 89]. This approach can be thought of as constraining the search
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space of allowable warpings. Although constraining the search space of allowable

warpings may prevent the optimal solution from being found, this approach is also

reported to increase the classification performance [101].

It is probably safe to claim that almost all time warping algorithms in the litera-

ture are derivatives of the original DTW algorithm. Most recent approaches include

derivative dynamic time warping (DDTW) [76] that uses the derivative of the signals

rather than the original values, enhanced dynamic time warping (EDTW) [132] that

brings a unifying view to DTW and hidden Markov models, and context dependent

dynamic time warping (CDDTW) [100] that exploits application specific contextual

characteristics of the signals to improve performance. The idea of DDTW is based

on reducing the singularities of the final solution and provides an improvement over

the noise robustness of the original DTW algorithm, whereas EDTW introduces the

HMM based modelling of the time series to provide robustness.

We propose to use principal curves to improve the noise sensitivity of the time

warping problem, and our approach allows one also to evaluate the time warping

function in low SNR cases. This improvement not only brings increased robustness

to current time warping applications, but also may trigger new application areas

where the signals that need to be compared are buried in noise. Principal curve

projections can be performed either in the original signal space or any feature set

derived from the data. Therefore, this nonparametric denoising step can be coupled

with the original DTW approach, or DDTW, EDTW, CDDTW or any other time

warping approach in the literature.

In template matching or hypothesis testing algorithms, the test signals are com-

pared with the noiseless template signal. Here, we consider the more realistic case of

the time warping between two noise corrupted signals, assuming a noiseless template

signal may not be available -or even necessary- in all applications. For the signals
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to be compared, one can write

r1(t) = s(f(t)) + n1(t), t = t1 < . . . < tN

r2(t) = s(t) + n2(t), t = t1 < . . . < tN
(4.12)

where f(t) is the time warping function and n1(t) and n2(t) are unimodal additive

noise, and here we assume that the signals r1(t) and r2(t) have the same length. We

build the principal curve feature space as

ri =




r1(ti)

r2(ti)

ti


 , t = t1 < . . . < tN (4.13)

Figure 4.4 depicts some realizations of r along with the corresponding noisy sig-

nal pairs r1(t) and r2(t), and noiseless signal pairs s(t) and s(f(t)). Figure 4.4(a)

presents piecewise linear signals s(t) and s(f(t)) (red), and their noisy versions r1(t)

and r2(t) (blue). Note that, the data structure in r that is given in Figure 4.4(b)

demonstrates the pairwise signal characteristics, as a perturbation around a pre-

dominant shape in time. As the noise level increases, the amount of perturbation

around the predominant shape increases. Obviously, the noiseless signals are not

available in real applications, and we propose to use the principal curve projec-

tions of the data samples to approximate the noiseless signal characteristics in r

domain. Projecting the signal samples onto the principal curve can be regarded as a

nonparametric nonlinear filtering. This projection provides a generalization of the

whole shape of the data in feature space and effectively implements a data driven

nonparametric noise reduction filter. This yields

r̃i =




s̃(f(ti))

s̃(ti)

ti


 , t = t1 < . . . < tN (4.14)

where r̃i is the projection of ri onto principal curve.
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Figure 4.4: Some examples for pairs of -noisy and noiseless- signals and their struc-
ture in s space.

Particularly for the time warping application, we have a much easier scenario as

compared to the general principal curve fitting problem due to the following:

1. Only the samples of the principal curve at time indices t = t1 < . . . < tN are

sufficient. Higher time resolution or seeking for the portion of the principal

curve that lies outside the given time interval are unnecessary.

2. Under the unimodal additive noise assumption, there will be no branching in

the principal curve, since s(t) and s(f(t)) are functions of time. Thus, for every

subspace of r defined by t = ti ti ∈ [0, 1] there is a single point in the principal

curve.

3. Unlike the general case of random vectors, the 3rd dimension of r is deter-

ministic; in the case of uniform sampling, we can model this density as being

uniform for theoretical analysis.

One can select the initialization of the algorithm and the constrained space of the
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Figure 4.5: A pair of noisy signals and the principal curve in the r domain, and
alignment of this signal pair

projection using above simplifications. At this point, starting from the data samples

themselves, and selecting the constrained space as t = ti for each data sample is our

choice for the following reasons:

1. Selecting constrained space orthogonal to time index guarantees that there is

only one denoised signal value at all time indices.

2. One important observation here is that the peak of the pdf in each constrained

space t = ti is very close to principal curve.

The second observation here is based on the additive unimodal noise assumption.

Although it is close, the constrained space t = ti does not exactly lead to the

principal curve. Therefore, after convergence in t = ti subspace, we will use SCMS

to ensure the projection onto the principal curve.

Table 4.2 presents a step by step implementation of the proposed approach.

Overall, the proposed denoising scheme has a complexity of O(N) per sample per
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Table 4.2: Principal Curve Time Warping

1. Build the feature space x, select the kernel bandwidth σ of the Gaussian kernel.

2. Evaluate the mean shift update using (3.6).

3. Project the mean shift update to the constrained space t = ti.

4. If convergence is not achieved, go to step 2, if convergence is achieved go to
the next step.

5. For every trajectory evaluate the mean shift update in (3.6).

6. Evaluate the gradient, the Hessian, and perform the eigendecomposition of
Σ−1(x(k)) = VΓV.

7. Let v be the leading eigenvector of Σ−1.

8. x̃ = vvTm(x(k))

9. If |gTHg|/‖g‖‖Hg‖ > threshold then stop, else x(k + 1)← x̃.

10. If convergence is not achieved, increment k and go to step 6.

iteration, and projections onto principal curve approximates the noiseless signal

samples.

r̃i ≃




s̃(f12(ti))

s̃(ti)

ti


 , t = t1 < . . . < tN (4.15)

Figure 4.5(a) shows the found principal curve (green) for the signal pairs presented

in Figure 4.5(b). Figure 4.5(b) also shows the time alignments of this signal pair.

We will provide a more detailed analysis on the accuracy of the approximation given

in (4.15) in the experimental results section.

As discussed in the previous chapter, a significant practical consideration for the

implementation of the algorithm is the selection of the bandwidth of the Gaussian

kernel function. In many kernel machine applications, spherically symmetric Gaus-

sian kernels suffice. However, this cannot be the case for the r space. The variance



83

around the principal curve in the first two dimensions depends on the noise power of

the two compared signals, whereas time index in the third dimension may have any

arbitrary scale depending on the sampling rate. Moreover, in some applications, the

bandwidth of the Gaussian kernel can be adjusted by exploiting the actual physical

meaning of data feature space.

In many signal processing applications, the noise power can be estimated very

reliably. In such cases, the estimate of the noise distribution can be used as the

kernel function. Assuming n1 and n2 are independent Gaussian noise, one can write

the covariance of the Gaussian kernel function as

Σ =




σn1 0 0

0 σn2 0

0 0 N


 (4.16)

where N controls the amount of smoothness to be introduced along the time axis.

Generally, this choice is not optimal; still, it eliminates tedious kernel optimization

efforts and yields satisfactory results.

4.4.1 Experiments

To test the accuracy of the noiseless signal approximation provided by the principal

curve, we present the error between the noiseless signal structure and the princi-

pal curve for different noise levels. Afterwards, we will present signal pairs and

corresponding time warping functions for synthetic and real data examples.

Noiseless signal vs principal curve: As discussed before, an important prob-

lem in time warping applications is the increasing noise level. Therefore, here we

present results for the approximation we make in (4.15), and give the integrated

error between the noiseless signal structure and the principal curve structure for

different noise levels. To be able to repeat the experiment for different noise levels,
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Figure 4.6: The noiseless signal given in (4.17).

in this experiment we will use the following synthetic signal

rsynthetic(t) =





t
t1

: 0 ≤ t ≤ t1

1 : t1 ≤ t ≤ t2

t−1
t2−1

: t1 ≤ t ≤ 1

(4.17)

where t1 is uniformly distributed between 0.05 and 0.45, and t2 is uniformly dis-

tributed between 0.55 and 0.95. The shape of the signal is given in Figure 4.6. We

generate realizations of this random signal rsynthetic(t) of length N = 200 for each

noise level, and add white Gaussian noise to obtain the samples of the noisy signal

ssynthetic(t) for 10dB, 5dB, 3dB, and 2dB. Hence, the noisy signal is

ssynthetic(t) = rsynthetic(t) + nGaussian(t) (4.18)

For 100 pairs of random realizations of ssynthetic(t), we use the iterative scheme

given in Table 4.2 to project the data onto the principal curve. We evaluate the

integrated error between the noiseless structure using pairs of rsynthetic(t) and the

approximation provided by principal curve for different noise levels.

Figure 4.7 shows the mean and the variance –the error bar demonstrates ±2

standard deviation from the mean– of the integrated error of these 100 Monte Carlo
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Figure 4.7: SNR vs. integrated error between the noiseless signal structure and the
approximation given by the principal curve

simulations at noise levels 10dB, 5dB, 3dB and 2dB. The accuracy of the princi-

pal curve approximation decreases with increasing noise level. Still, the method is

able to provide reliable approximations for noise levels as high as 2dB. The princi-

pal curve denoising results presented in this subsection exclude the solution of the

time warping function to give the reader the chance to evaluate the principal curve

denoising step independently.

Time Warping Functions in Different Noise Levels: In this section, we

present the solutions of PCTW on synthetic and real data for different noise levels

to show how the denoising actually affects the final results. For this experiment, we

select the same signal structure used in the previous experiment for simplicity, and

we compare results of DTW algorithm using (i) the original noisy signals (ii) the

principal curve projections.

Figure 4.8 presents the solution of the time warping function for different noise

levels. Also note that for this simple piecewise linear case, the correct time warping

function is known, and presented along with the solutions. As the noise level in-

creases, the principal curve denoising still leads to reasonably good results, whereas

for the original noisy signal, the performance drops significantly.
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Figure 4.8: The correct time warping function and solutions in different noise levels
using the original data (left) and the principal curve projections (right).

Time Series Clustering: In this section, we will compare time series classifi-

cation results for a synthetic dataset using DTW, with and without the principal

curve denoising. To show how much the principal curve denoising changes the final

classification performance, we will provide the pairwise distances for two clusters.

In this experiment, we use the following two-cluster dataset

rcluster1(t) =





1 : 0 ≤ t ≤ t1

0 : t1 ≤ t ≤ 1
t1 ∈ U(0.3, 0.4)

rcluster2(t) =





0 : 0 ≤ t ≤ t2

1 : t2 ≤ t ≤ 1
t2 ∈ U(0.5, 0.6)

(4.19)

where t1 and t2 are uniformly distributed as shown above. Figure 4.9 shows a

collection of 20 signals, 10 signals per each cluster. Each realization of the signal

has 50 samples.

Figure shows the pairwise distances between these signals, evaluated using DTW,

with (red) and without (blue) the principal curve denoising for different noise levels.

Here, we present the sorted in-cluster and inter-cluster distances, a total of 400

pairwise distances. The first 200 pairwise distances are between sample pairs of
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Figure 4.9: Time series clustering dataset

same cluster, and the second 200 represent the distances between sample pairs of

different cluster. Principal curve denoising preserves the gap between in- and inter-

cluster distances for noisy cases as well, which is essentially what is required for

good clustering results.

Time Series Classification: Very similar to previous section, we will present

time series classification results. In this experiment we use a publicly available

process control dataset [99, 77] for different noise levels. This dataset has 300

training and 300 test samples.

We present the ratio of samples from the correct class among the K-nearest

neighbors using Euclidean distance, DTW distance with (red) and without (blue) the

principal curve denoising. We add Gaussian noise to both training and testing data

and repeat the experiment for different noise levels and report results for different

values of K.

Figure 4.4.1 presents the times series clustering results using Euclidean distance

(blue) and DTW distance with (green), and without (red) the proposed principal

curve denoising. One can see that for the original dataset in Figure 4.4.1(a), prin-

cipal curve denoising does not change the results significantly. We repeat the same

experiment by adding Gaussian noise to the data, and for the noisy cases, using
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Figure 4.10: Time series clustering results. Pairwise DTW distances for original
(blue) and principal curve denoised data (red) are presented.
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Figure 4.11: Time series classification results.
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principal curve denoising at the preprocessing stage improves the performance sig-

nificantly.

Considering the results presented in time series classification context, note that

our aim is not to improve upon the existing time warping applications. For compar-

ison, here we use the original DTW algorithm and the signals themselves; however,

principal curve denoising can be coupled with any time warping algorithm in the

literature and can be used in any feature space. Different time warping algorithms

or feature sets can always be introduced for particular applications.

4.4.2 Discussions

Reinterpreting the problem in the feature space of pairwise signals, one can employ

principal curves to increase the noise robustness of time warping algorithms. In this

context, the principal curve projections implement a nonlinear nonparametric noise

reduction filter.

We derive the principal curve based denoising under unimodal additive noise

assumption. Since the proposed principal curve projection converges to the maxima

of the pdf in the constrained space, unimodal noise assumption is required for theo-

retical analysis to have a single maxima point -hence a single denoised signal value-

in the pdf for all time indices. If the noise is multimodal, the effect of the multi-

modal noise can be removed by increasing the bandwidth of the Gaussian kernel in

the subspace constrained mean shift. However, this may potentially lead to over-

smoothing of the signal and should not be preferred if the signal has high frequency

content. Overall, PCTW lays a robust and effective time warping technique.
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4.5 Piecewise Smooth Signal Denoising

One common problem in signal denoising is that if the signal has a blocky, in

other words, a piecewise-smooth structure, the denoised signal may suffer from over-

smoothed discontinuities. Under the known noise model assumption, optimal filter-

ing in frequency domain is a well established topic [59]. Frequency domain filtering

has a number of attractive properties; it is conceptually simple, easily analyzable

and computationally inexpensive. However, the main drawback of this approach is

obvious if the signal and the noise are not separable in the frequency domain. Prac-

tically, in frequency domain filtering, one should compromise the discontinuities in

the signal since they will be smoothed along with the noise.

As well as traditional frequency domain filtering techniques, current signal de-

noising techniques include wavelet transform and total variation based noise removal

algorithms. These techniques stem from the idea of preserving the high frequency

components, namely discontinuities of the signal while suppressing the noise. Since

piecewise smooth signal structure is typical in images, total variation based noise

removal is first introduced in image denoising [108, 35]. Later, Vogel proposed

a fixed-point iterative scheme to solve the total variation penalized least squares

problem [128].

Another way to achieve discontinuity preserving denoising is to utilize discrete

wavelet transform as an orthogonal basis decomposition. This method is based on

decomposing the signal into orthogonal wavelet basis, perform either soft or hard

thresholding to wavelet coefficients, and transform the data to the time/spatial do-

main by inverse discrete wavelet transform. Note that any orthogonal decomposition

of the signal can be used similarly for denoising. In such techniques, the performance

of the denoising is typically measured by the rate of decay of the basis coefficients

sorted in the magnitude. In the context of piecewise smooth signal denoising, wavelet

decomposition is known to be superior to other widely used choices like Fourier and
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cosine decompositions [23]. Earlier techniques based on hard thresholding of the

wavelet coefficients suffer from Gibbs effect like artifacts around the discontinuities.

This drawback is handled by soft thresholding of these wavelet coefficients [37], and

later by applying previously mentioned total variation based approaches in wavelet

domain analysis [41].

Techniques based on total variation and wavelet decomposition are parametric

methods, and we propose to use principal curve projections for artifact-free piece-

wise continuous signal denoising to implement a data-driven nonlinear filter in a

nonparametric way. To utilize principal curve projections, one should start with

translating the signal into a suitable feature space. The most intuitive selection is

to use the samples of the noisy signal itself along with the associated time indices.

Assuming that the observed signal x(t) is the original signal buried in additive noise

that is, x(t) = s(t) + n(t); this yields

xi =


 x(ti)

ti


 , t1 < . . . < tN (4.20)

where ti denotes the sampling times. At this point, we assume that the original signal

s(t) is sampled at least at the Nyquist frequency. Sampling and reconstruction are

well established topics in signal processing, the details of which are out of the scope

here.

Figure 4.12 depicts an illustrative piecewise smooth signal with its noisy version

as well as the kernel density estimate of the noisy signal. Now consider the kernel

density estimate of the noisy signal which is given by

p(x) =
N∑

i=1

KΣi
(x− xi) (4.21)

where Σi denotes the covariance of the kernel function for the ith sample2. Note

that, the density estimate of x in the vicinity of discontinuities is not effected much

2This density estimate is given for the most general case of data-dependent variable bandwidth
KDE. For fixed bandwidth version, one can just drop this data dependency.
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Figure 4.12: The underlying noiseless signal and its noisy counterpart

by the samples on the opposite side of the discontinuity. Although these are close

-or maybe even subsequent- samples along the time axis, the discontinuity in signal

value makes them sufficiently distant in the x space. For unimodal additive noise

distributions (as in the case of additive Gaussian noise) the noiseless signal will

most likely be a smoother signal passing through the middle of the observed noisy

samples. Hence, principal curve naturally fits into the context of artifact free signal

denoising of piecewise smooth signals.

As in the time warping application, selecting the constrained space orthogonal
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to time index guarantees that there is only one denoised signal value at all time

indices, and the mode of the pdf in this constrained space is close to the principal

curve. At this point, starting from the data samples themselves, and selecting the

constrained space as t = ti for each data sample is our choice. Again, SCMS will be

used as a postprocessing to ensure the projection onto the principal curve. A step

by step implementation of the algorithm is given in Table 4.3.
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Figure 4.13: Two realizations of the same piecewise smooth signal for two different
SNR levels are shown in (a) and (b), along with their time difference histograms in
(c) and (d).

Particularly for this problem, one can select the kernel bandwidth by considering

the actual physical meaning of the data. If the amount of noise and the amount of

fluctuations at the discontinuities are at different scales, kernel bandwidth selection

can be achieved by observing probability density of the time difference of the signal.

Figure 4.13 presents two realizations of a piecewise smooth signal at different noise

levels. Although this may not be the general case for all noise levels, note that the

noise distribution and discontinuities are clearly identifiable in this difference his-

togram for the presented signals, where the difference values at the discontinuities

seem like outliers of the Gaussian noise distribution. Thus, one can select the band-

width of the Gaussian kernel by observing the histogram of the one step difference

of the signal.
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Table 4.3: Principal curve signal denoising

1. Build the feature space x, select the kernel bandwidth σ of the Gaussian kernel.

2. Evaluate the mean shift update using (3.6).

3. Project the mean shift update to

[
1
0

]
, so that the mean shift procedure

remains in the constrained space.

4. If convergence not achieved, go to step 2, if convergence is achieved go to the
next step.

5. For every trajectory evaluate the mean shift update in (3.6).

6. Evaluate the gradient, the Hessian, and perform the eigendecomposition of
Σ−1(x(k)) = VΓV.

7. Let v be the leading eigenvector of Σ−1.

8. x̃ = vvTm(x(k))

9. If |gTHg|/‖g‖‖Hg‖ > threshold then stop, else x(k + 1)← x̃.

10. If convergence is not achieved, increment k and go to step 6.
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Figure 4.14: MSE (shown in logscale) between the noiseless signal and output of
the denoising filter for different SNR levels

4.5.1 Experiments

This section presents the performance of the proposed denoising algorithm. To be

able to control the SNR level in the experiments, synthetic examples are used, and

denoising performance is reported for different SNR values. Another important point

is, of course, the performance around the discontinuities. As well as quantitative

results, we present the actual signal plots to provide a visual comparison of the

noisy and denoised signals at different SNR levels. At the discontinuities, principal

curve denoising does not yield any pseudo-Gibbs artifact effects like discrete wavelet

denoising techniques, or any oversmoothing like frequency domain filtering. As one

can observe from the denoising on the ramp-signal components, principal curve

denoising also does not yield any staircase type effects like total variation based

methods.

Figure 4.14 presents the denoising results for the noiseless signal presented in

Figure 4.12 (blue) for different SNR levels. We measure the performance MSE

between the output of principal curve denoising and the underlying noiseless signal.

Here we also compare the number of samples used in the principal curve estimation.

As presented in Chapter 3, the accuracy of the principal curve projection depends
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Figure 4.15: Noisy signals (blue) and their principal curve projections.

on the accuracy of the underlying density estimate. As the statistical variance of the

density estimate increases in low sampling rates, the performance of the principal

curve denoising decreases.

For the same signals of different SNR and sampling rates, which are compared

in Figure 4.14, Figure 4.15 presents the noisy and denoised time signal pairs. For

all above experiments, we use the maximum likelihood kernel size for each signal.

So, we learn the kernel bandwidth from the signal directly, and use a different

kernel bandwidth for each realization of the signal. Maximum likelihood training

automatically adapts the kernel bandwidth according to the noise level of the data.

As a final remark, note that we are not presenting any comparisons with the other

principal curve approaches in the literature. Since, by definition, they are looking
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for smooth curves, earlier principal curve algorithms are not suitable for piecewise

smooth signals, and oversmoothing on the discontinuities would be unavoidable.

4.5.2 Discussion

Principal curve based denoising filter can successfully preserve the sharp discontinu-

ities in the data under the additive unimodal noise assumption, without introducing

any smoothing, high frequency Gibbs effect like artifacts or staircase type effects.

Further, this approach allows one to translate common problems in piecewise

smooth signal denoising into selection of the kernel function. For example, as op-

posed to earlier methods in the piecewise-smooth signal denoising that are based

on total variation or discrete wavelet transform, principal curve based denoising is

much easier to build an online counterpart just by selecting a finite support kernel

function. For a KDE built using a kernel function of finite support, the subset of

signal samples that affect the pdf on a particular point of interest are clearly given,

yielding an online version of the algorithm directly. Adapting the principal curve

denoising for nonstationary or data-dependent noise distributions is also straight-

forward.

With the current implementation, principal curve denoising is computationally

more expensive than earlier methods in the literature. At this point, KDE with

finite support kernel will save a lot of computational effort, which can bring the

computational cost up to linear complexity.

4.6 Principal Curve Proximity Graph

There are many algorithms in the machine learning literature that employ data

proximity (neighborhood) graphs, which have the data samples at the nodes and

the pairwise distances at the vertices. Recently, there has been a growing interest in

these graph based methods on dimensionality reduction, manifold learning, and data
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clustering; on the other hand, there is surprisingly less work on how to construct the

graphs themselves, and mostly K-nearest neighbor or ǫ-ball graphs have been used

for this purpose, which simply connect each data point to K nearest data points, or

every point within a distance of ǫ. As a more robust alternative, we propose using

principal curve projections that yields a proximity graph based on the probability

density of the data.

The main focus in dimensionality reduction and manifold learning methods based

on the data proximity graph are using the idea of enhancing the metric definition

of the feature space by seeking for shortest paths over a neighborhood graph. Most

famous methods that fall into this category include ISOMAP [120], Local Linear

Embedding [107], and Laplacian Eigenmaps [6]. The idea of using the data proximity

graph for clustering can simply be defined as ways of how to cut the graph into sub-

graphs [115, 44], and perhaps the normalized cut is most well-known method that

uses this idea [115], which is widely used in many applications in machine learning,

mostly in image segmentation. In fact, the whole research on spectral clustering is

nothing but variants of these graph based clustering methods. Overall, regardless

of the purpose that it is going to be used, the aim of the graph is to provide a good

summary of the data manifold. Simply, ”the graph should avoid shortcuts that travel

outside the manifold, avoid gaps that erroneously disconnect the manifold, and be

dense within the manifold and clusters” [14], and a desired property of data graphs

is robustness to its parameters and noise in the observed data.

In general, the optimal values of ǫ or K are never known, and since small changes

in these parameters may lead to important changes in the neighborhood graph -in

terms of shortcuts and gaps- these methods are problematic in terms of parameter

sensitivity. Thus, in most cases these parameters require a manual tuning, which

is achieved by running the graph-based algorithm for different parameters until

satisfactory results are obtained.

Another problem with these graphs is the noise in the observed data. In real life
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the observed data is rarely noisefree; it is buried in noise. Noise robustness is a very

desired property of data proximity graphs, which can be considered twofold: (i)

robustness to small perturbations in the data, (ii) robustness to background noise

and outliers. Firstly, the graph should not change significantly if the whole dataset

is perturbed by a small random noise. Secondly, outliers of the data distribution

have to be handled in a way that they will not yield shortcuts outside the data

manifold.

Unfortunately, neither the K-nearest neighbor nor the ǫ-ball graphs have these

properties. Carreira-Perpiñán proposes to use an ensemble of minimum spanning

trees by perturbing the dataset with a random noise for each realization of the en-

semble [14]. Although it is not using any density estimation directly, this approach,

in our opinion, is a stochastic approach for a kernel density estimate, where the

amount of random perturbation controls the kernel width, and the statistical vari-

ance of the underlying density estimate drops with the number of realizations of

perturbed data ensemble. Overall, this approach is effective in terms of perturba-

tions in the data samples. However, it does not address the problem of outliers,

which may yield shortcuts outside the data manifold.

We propose to use the principal curve - or a computationally cheap approximate

of it- to construct the data proximity graph. The proposed graph construction

method is composed of three main parts: (i) selecting representative points from

the data (ii) projecting these points onto the principal curve (iii) building the

neighborhood graph over the pairwise distances of these principal curve projections.

Particularly for the proximity graph construction problem, instead of using the

principal curve projections of the whole dataset we propose to use a representative

subset (or vector quantization) of the data to save computation. This approach

not only decreases the overall computational requirement of the graph construction,

but also enables one to update the graph efficiently for novel samples, providing a

suitable framework for online learning.



101

To build the principal curve, we propose to use VQ-SCMS algorithm. In the

corresponding neighborhood graph, the data points are connected to the nearest

node on the principal curve, and the connected nodes on the principal curve are

defined by the curve itself. Particularly for manifold learning approaches, to learn

the local structure of the points that are connected to the same node on the principal

curve may also be connected to each other.

Since shortest paths are defined only over the connection of the nodes on the prin-

cipal curve and M ≪ N , seeking for shortest paths is much cheaper than K-nearest

neighbor or ǫ-ball graphs. Moreover, for a novel sample, all pairwise distances are

given with O(M), since all that is required is to find the nearest node on the prin-

cipal curve. Using the principal curve projections bring robustness to the outliers

in the data as well as small perturbations in the dataset, and the shortcuts outside

the data manifold as well as gaps in the data manifold are eliminated effectively.

Figure 4.16 presents the results on a semicircle dataset with 300 samples for

M =
√

N (≃ 17) and M = 3
√

N (≃ 7); the data samples (blue), the nodes on the

principal curve (red) and the principal curve constructed using MST (green) are

shown. Real distances of the data samples along the manifold and the distances

evaluated over the principal curve proximity graph are presented in Figure 4.17.

Note that the block-wise structure becomes less apparent as M increases.

Figure 4.18 and Figure 4.19 present the same, for a much harder scenario, using

the spiral dataset with background noise. Note that the principal curve proximity

graph is able to approximate the data manifold in the presence of background noise

for different values of M effectively. In the presence of such background noise,

shortcuts outside the manifold would be unavoidable with K-nearest neighbor and

ǫ-ball graphs.
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4.7 Future Prospects and Preliminary Results

As presented throughout this chapter, general purpose principal curve algorithms

that we derived in Chapter 3 directly apply to many practical problems. Before we

continue on our conclusions, we will briefly discuss our future research directions by

presenting potential applications of principal curves and our preliminary results.

4.7.1 Manifold Unfolding and Nonlinear Blind Source Sep-

aration

Nonlinear blind source separation (NBSS) is an ill-posed problem that requires vari-

ous sources of a priori knowledge regarding the joint source distribution and topology

of the mixing function. In a landmark paper it has been shown that the square non-

linear independent component analysis (NICA) problem is ill-posed - that, without

additional constraints it does not have a unique solution accepting the usual gener-

alized scale and permutation ambiguities of ICA - and various conditions that would

force the problem to have a unique solution have been proposed [63]. Traditionally

several methods, primarily based on parametric model fitting - especially neural net-

works of various forms - have been proposed in the literature, while minimizing the

usual mutual information inspired independence or separation measures [2, 96, 67].

The general form of the NBSS problem is

x = f(s) (4.22)

where f : ℜm → ℜn maps the source vector s ∈ ℜm to the measurement vector

x ∈ ℜn. In general, f is assumed to be a smooth function and m = n, since even

in this case per existence theorems, there are infinitely many solutions to this ill-

posed inverse estimation problem. Limiting the search to the space of invertible

f makes both theoretical and practical sense, especially since without additional

domain information about the mechanisms that generate x, a noninvertible f would

cause information loss that cannot be recovered.
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An extensively studied invertible nonlinear mapping topology is the so-called

post-nonlinear mixture model of the form x = g(As), where A introduces an in-

vertible (or full column rank if n > m) linear mixture and g is an invertible nonlin-

ear map that acts elementwise (only monotonic scaling, not mixing further) on the

mixed intermediate vector [67]. This problem is well defined, and relatively straight-

forward extensions of traditional linear ICA techniques are able to cope with the

specific mixture topology.

An interesting contribution that focused on the overdetermined post-nonlinear

mixture problem by exploiting the geodesic distances on nonlinear manifolds was

made by Lee et al. [83]. Noticing that the monotonic nonlinearity simply acts as a

local metric distortion independently on each coordinate axis, ideas from isometric

dimensionality reduction and manifold learning were employed to unwrap the non-

linear mixture data manifold into the original source distribution space. Harmeling

et al also followed a similar manifold unfolding approach using kernel techniques

[55]. The idea of using principal curve projections for NBSS could be considered

as an extension of these works focusing on square mixture scenarios. The method

would be immediately applicable to overdetermined situations where the data lies

on a low dimensional manifold embedded in a higher dimensional Euclidean space

- the principal coordinates proposed in the following would simply reduce to zeros

for any additional dimension outside the data manifold automatically.

We presented our preliminary results on NBSS via nonlinear manifold unfolding

with case studies with periodic and random sources [42]. In general, nonlinear coor-

dinate unfolding can be achieved by measuring the distances along and orthogonal

to the principal curve.

Orthogonal distance to the curve: The easiest way to approximate the

orthogonal distance is to use the distance between the data sample and its principal

curve projection. This assumes that the projection path is a straight line, which in

general, is not true but it still provides a good approximate in many cases. Ideally,
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the distance can be measured using the numerical integration method with a small

step size and accumulating the distance at every step until convergence.

Measuring distances along the curve: Measuring the distance along the

curve can be achieved either parametrically and nonparametrically. One can fit a

parametric model, presumably a spline, to the curve to measure distances according

to this model. Alternatively, one can build a neighborhood graph over the principal

curve projections of the data and employ Dijkstra’s shortest path algorithm to mea-

sure distances along the curve. We will use this approach in the below illustration.

Consider the following mixture where the source distribution along the curve is

uniform and the source distribution orthogonal to the curve is Gaussian presented

in Figure 4.20(a). The data samples (blue) are shown with their principal curve pro-

jections (red). Figure 4.20(b) shows the scatter plot of the source distribution along

and orthogonal to the curve, where the histograms of these sources are presented in

Figure 4.20(c) and Figure 4.20(d), respectively.

4.7.2 Time-Frequency Reassignment

Spectrogram reassignment is a natural application area for our principal curve def-

inition. As any other bilinear energy distribution, the spectrogram is faced with an

unavoidable trade-off between the reduction of misleading interference terms and

a sharp localization of the signal components. To reduce the smoothing effects

introduced by the window function in short-term Fourier transform, reassignment

methods are used to sharpen the time-frequency representation by using the rate of

change of phase of the signal, which finds numerous applications in speech signal

processing and signal roughness analysis [52, 48]. Parameter envelopes of spectral

components are obtained by following ridges on the smooth time-frequency surface,

using the reassignment method [3] to improve the time and frequency estimates for

the envelope breakpoints.
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Current methods use the rate of change of the phase to reassign the spectro-

gram to find the ridges of the time-frequency surface. This approach is known to

be problematic, where rotation invariance is a desired property of the reassigned

spectrogram. Principal curve projections, on the other hand, would yield rotation

invariant reassignment results in 2D. Although most of the literature focuses on cross

interference terms, presence of the auto-cross terms yields a much more challenging

scenario [91, 92]. The auto-cross terms are also known as inner interference terms

and they appear if the signal has multiple signal components in the time-frequency

domain, and in the presence of the auto-cross terms, the rotation invariance property

of the reassignment method is more critical.

Overall, time-frequency reassignment is a natural application for our principal

curve definition, and developing a principal curve based spectrogram reassignment

method will be in our research agenda. Figure 4.21 shows our preliminary results for

a synthetic dataset. Figure 4.21(a) shows the ideal time-frequency representation.

Wigner-Ville distribution of the signal, and the smoothed Wigner-Ville distribution,

where the cross-terms in the original spectogram are eliminated are shown in Figure

4.21(c). Figure 4.21(d) also shows the principal curve of this time-frequency surface.

4.7.3 Clustering for MIMO Channel Equalization

Recently, multiple-input multiple-output wireless communication drawn consider-

able attention, and there are reliable and computationally inexpensive symbol de-

tection algorithms in the literature [49]. On the other hand, applications in time-

varying environments poses a harder problem to the changing channel state, and

some supervised algorithms have been proposed to tackle this issue, where an ini-

tialization phase is used in the beginning for training purpose [106, 71, 22].

Blind channel equalization approaches in the literature are based on clustering

[20]. However, these approaches mostly focus on time-invariant single-input single-

output channels. Recently, a spectral clustering technique is proposed that extends
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the applications into time-varying multiple-input multiple-output channels as well

[124, 123]; Van Vaerenbergh and Santamaria introduce the time scaling into the

feature space before employing the clustering algorithm to untangle the clusters.

A similar idea proves to be effective in Post-Nonlinear Blind Source Separation as

well [122]. Consider the clustering problem in four dimensions presented in Figure

4.22(a). The advantage in this application is that the actual number of clusters

is known, still the fast time-varying nature of the channel poses a very difficult

clustering problem.

Now consider the five dimensional case, where the time index of every sample is

added into the feature space. Figure 4.22(b) shows this case by plotting two three

dimensional subspace projections of the data, where the first four dimensions of the

data is given with respect to time index. By using this five-dimensional feature

space, Van Vaerenbergh and Santamaria employ a spectral clustering algorithm to

solve the channel equalization problem with no supervision. Still, noise robustness

and increasing symbols that leads to increasing number of clusters in the data,

remain a significant problem. At this point, observing the intertwined structure of

the clusters, one obvious question is the following: Can one improve the clustering

performance by using the geometry of the data, or more explicitly, exploiting the

fact that the clusters are curves in the feature space.

Our perspective to approach this question is to work on the pairwise clustering

of the principal curve projections instead of the data samples. Observing Figure

4.23 that shows the results of the principal curve projection of the data obtained

using SCMS, one can see that performing the pairwise clustering over the principal

curve projections instead of the samples is very promising.
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(b) Result for M = 17

Figure 4.16: Semicircle dataset and results of VQ-SCMS algorithm for different M
values.
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(c) Distances of PCPG for M = 17

Figure 4.17: Semicircle dataset: Real pairwise distances, and distances given by
PCPG for different M values.
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Figure 4.18: Spiral dataset and results of VQ-SCMS algorithm for different M
values.
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(c) Distances of PCPG for M = 24

Figure 4.19: Spiral dataset: Real pairwise distances, and distances given by PCPG
for different M values.



111

−10 −5 0 5 10

−2

0

2

4

6

8

10

12

14

(a) Scatter plot of the mixture,
along with the principal curve
and orthogonal distances to the
curve

0 5 10 15 20 25 30 35
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) Scatter plot of the sources

−5 0 5
0

50

100

150

200

250

300

350

(c) Histogram of the source or-
thogonal to the curve

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

(d) Histogram of the source along
the curve

Figure 4.20: Spiral dataset: Real pairwise distances, and distances given by PCPG
for different M values.
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(a) The Wigner-Ville distribution
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(b) Smoothed Wigner-Ville distribution and its principal curve

Figure 4.21: Wigner-Ville distribution, its smoothed version and principal curve of
the smoothed distribution
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Figure 4.22: Symbol clustering problem for a MIMO channel
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Figure 4.23: Samples (blue) and their principal curve projections (red)



Chapter 5

Conclusions and Future Work

Principal curves and surfaces have numerous applications in statistical machine

learning as well as other disciplines. As opposed to traditional methods that use

least square error type criteria or employ a parametric structure, we propose a novel

definition for principal curves and surfaces by generalizing the likelihood maximiza-

tion reasoning of earlier definitions, and characterizing the principal curves and

surfaces in terms of the gradient and the Hessian of the density estimate.

We provide a mathematically rigorous definition for principal curves and surfaces

as a function of the data probability density, in which we exclude any smoothness,

regularization, and overfitting constraints. Overfitting is an issue that arises in fi-

nite sample based learning with unknown model topology. Characterizing principal

curves and surfaces in terms of the probability density rather than the data samples,

allows one to borrow the required smoothness constraints and outlier robustness

properties from the density estimation literature directly. Using KDE and learn-

ing the bandwidth by likelihood maximization is a more theoretically well-founded

approach as compared to defining an additional parameter to control the amount

of smoothness, which in general requires manual tuning. Besides, since the ridges

of the pdf can intersect each other, handling self-intersecting structures requires no

additional effort.

Unlike traditional machine learning papers on manifold learning, which tend to

focus on practical aspects such as reconstruction error, we focus on the definition

115
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of the underlying manifold from a more theoretical point of view, and our proposi-

tion yields a unified framework for clustering, principal curve fitting and manifold

learning. A nice connection between principal curves/surfaces and data clustering is

given by the principal set of intrinsic dimensionality zero, which yields the modes of

the probability density. Hence, projecting the data onto zero dimensional principal

set coincides with a widely accepted clustering solution.

Algorithmically, principal curves can be found using subspace constrained like-

lihood maximization idea, very similar to well known mean shift algorithm, and

Subspace Constrained Mean-Shift implementation strengthens the theoretical con-

nection to clustering from a practical point of view. Our principal curve implemen-

tation does not require significantly more time or memory storage as compared to

mean shift, which already has been utilized in many practical application domains.

Moreover, approaches that have been proposed to accelerate mean shift can directly

be applied to algorithms that we provide.

Overall, the elegant approach finds use in many applications including signal

denoising, neighborhood graph construction, image segmentation and many other.

To demonstrate the usefulness of the algorithms presented in Chapter 3, results that

are presented in Chapter 4 do not use any domain specific information, which can

always be incorporated to increase performance in any particular application.

Some of our future goals are presented at the end of the Chapter 4 along with

preliminary results. From the theoretical point of view, we will work on the following

problems:

The relationship between the curvature of the curve and the number

of samples: Consider the case where the noise distribution is fixed, and the true

underlying curve is a sinusoid. As the frequency of the sinusoid increases, the number

of samples to estimate this true curve with a given statistical variance increases. In

general, one should investigate the relationship between the curvature of the true

underlying curve and the number of samples required to estimate the principal curve.
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A practical algorithm based on the principal curve projections of the

training set: To provide another practical algorithm construct convex regions from

the training set and project these data samples onto the principal curve. For the

testing set, evaluate the principal curve projections only using the projections of

the training set. Traditional interpolation techniques will not work here, since the

direct interpolation of projections of the training set may or may not be on the

principal curve. However, on average, as the volume of the convex region decreases,

the projection error should decrease.

The connection between the principal curve and density geodesics: The

path that minimizes the objective function of density geodesics can be evaluated in

a similar way to PL-SCMS. For a pair of points that are the on the principal curve,

the path is directly given by the principal curve segment in between these points.
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[110] Sambur, M., and Rabiner, L. A statical decision approach to the recogni-

tion of connected digits. IEEE Transactions on Signal Processing 24, 6 (Dec

1976), 550–558.



128

[111] Sandilya, S., and Kulkarni, S. R. Principal curves with bounded turn.

IEEE Transactions on Information Theory 48, 10 (2002), 2789–2793.

[112] Schölkopf, B., Smola, A., and Müller, K.-R. Nonlinear component

analysis as a kernel eigenvalue problem. Neural Computation 10, 5 (1998),

1299–1319.

[113] Shawe-Taylor, J., and Singer, Y., Eds. Regularization and Semi-

supervised Learning on Large Graphs (2004), vol. 3120 of Lecture Notes in

Computer Science, Springer.

[114] Sheather, S. J., and Jones, M. C. A reliable data-based bandwidth

selection method for kernel density estimation. Journal of the Royal Statistical

Society. Series B (Methodological) 53, 3 (1991), 683–690.

[115] Shi, J., and Malik, J. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–

905.

[116] Silverman, B. W. Density Estimation for Statistics and Data Analysis.

Chapman & Hall/CRC, April 1986.

[117] Smola, A., Williamson, R., and Scholkopf, B. Generalization bounds

and learning rates for regularized principal manifolds, 1998.

[118] Smola, A. J., Mika, S., and Schölkopf, B. Quantization functionals

and regularized principal manifolds. Tech. Rep. NC-TR-98-028, University of

London, UK, 1998.

[119] Stanford, D. C., and Raftery, A. E. Finding curvilinear features in spa-

tial point patterns: Principal curve clustering with noise. IEEE Transactions

on Pattern Analysis and Machine Intelligence 22, 6 (2000), 601–609.

[120] Tenenbaum, J. B., de Silva, V., and Langford, J. C. A global geo-

metric framework for nonlinear dimensionality reduction. Science 290, 5500

(December 2000), 2319–2323.

[121] Tibshirani, R. Principal curves revisited. Statistics and Computation 2

(1992), 183–190.



129

[122] Vaerenbergh, S. V., and Santamaŕıa, I. A spectral clustering approach
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Appendix A

Density Geodesics

We consider the problem of clustering a dataset using pairwise-affinity methods,

which are based on an affinity or similarity function w(x,y) that defines how close

two data points x, y are, as opposed to feature-based methods such as k–means,

which work directly with the feature vectors x and y. Examples of pairwise-affinity

methods are hierarchical (agglomerative and divisive) clustering [73] and spectral

clustering [115], among others. They have the advantage of dealing more easily with

clusters of complex shapes, since they do not impose a model (e.g. Gaussian-shaped

clusters) on the data. While different methods use the affinities in different ways

(e.g. sequentially merging data points in agglomerative clustering vs projecting the

data on the eigenspace of an affinity matrix in spectral clustering), the definition of

affinity is of paramount importance in all them, and it is our main focus here.

Most work uses an affinity function w(x,y) that depends only on the feature

vectors for the points x and y, and more specifically on the distance between x

and y. For example, the popular Gaussian affinity wσ(x,y) = exp (−‖x− y‖ /σ2),

which also introduces a scale parameter σ that offers more flexibility but has to

be tuned to each particular dataset, often by trial and error, for the method to

succeed. We call this a context-independent affinity function, in that it does not

depend on the rest of the data set (other than x and y). However, this is a very

limited representation of the metric structure of the feature space, which in our view

is determined by the dataset. Refer to fig. A.1. On the left, we have 3 points which
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are equidistant from each other, and so wσ(A,B) = wσ(A,C) = wσ(B,C). However,

in the context of the dataset shown on the right (represented as a density rather

than a finite dataset) and from a clustering point of view, it makes intuitively little

sense for the points to be equidistant. In order to go from A to B we have to traverse

a low-density region, while from A to C there are paths (not necessarily straight)

traversing high-density regions. Our objective is to define context-dependent affinity

functions where the context is given by the entire dataset (a global context). While

this might be achieved by working directly with the dataset points (e.g. by defining

a particular type of graph with appropriate edge weights), we aim at a more general

framework informed by differential geometry concepts where we define a density-

dependent metric on the feature space. By basing our metric on a probability

density function p(x), applicable to any point x in the space, we are also able

to define affinities between any pair of points in the space, not just between the

points in the dataset. In practice, the density is estimated from the data either

nonparametrically (e.g. with a kernel density estimate) or parametrically (e.g. with

a Gaussian mixture trained by EM). A second component of our affinity definition

is that of paths, more specifically geodesics—paths that extremize a cost functional.

This captures the idea of fig. A.1(right) where, of the many paths joining A and

C, we care about the one that is as short as possible in Euclidean distance while

traversing high-density regions; this will be made specific in the next section. In

summary, we propose a context-dependent affinity function wp(x,y), defined as the

largest path affinity of all paths joining x and y, where the path affinity depends

on the path and the density p, and is essentially the line integral along the path of

a function of p. Thus, we call this idea affinity by density geodesics.

The reason why we expect density geodesics to work with clustering is that the

corresponding affinities should make the cluster structure obvious. From fig. A.1(right),

the affinities between every pair of points in the left cluster (e.g. A, C) will be high

(and similar in magnitude), while the affinities between points in different clusters
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Figure A.1: Points A, B, C are equidistant in Euclidean distance (left), but data
distribution (right) suggests A and C are very close to each other and very far from
B.

will all be low. Thus, the affinity matrix will have a blocky aspect with near-zero

across-cluster affinities and high within-cluster affinities (and so will its eigenvec-

tors). A spectral algorithm will map the dataset to a structure consisting of widely

separated, point-like clusters, which is trivial to cluster. Note, however, that this

idea does not work for dimensionality reduction with pairwise-affinity methods such

as Isomap [120] or Laplacian eigenmaps [6], because the internal metric structure of

a cluster is almost completely erased.

Although our general formulation of clustering based on a metric induced by the

data density is new to our knowledge, previous work has considered (separately)

the ideas of paths between data points and of using the data density for clustering.

In path-based clustering [46], one assumes a neighborhood graph (e.g. k–nearest-

neighbors) on the dataset, and defines a distance (inverse affinity) as a minimax

distance

dnm = min
P∈Pnm

max
l=1,...,|P |

d(Pl, Pl+1)

where Pnm = “all paths joining data points xn and xm”. Thus, the distance is the

smallest bottleneck (= longest link) over Pnm. Its motivation, as in fig. A.1(right),

is to obtain low across-cluster affinities—the bottleneck being the distance between

the two clusters, which dominates other intermediate links. However, the minimax
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distance has the undesirable property that it does not change if we change the link

distances (other than the bottleneck), and is sensitive to outliers. Also, for overlap-

ping clusters, a bottleneck may not exist (particularly for large datasets), even if

the density across clusters is much lower than within clusters. Besides, the minimax

distance only applies to points in the dataset, unlike our affinity, which is defined

on the entire space. Several modifications have tried to address the sensitivity to

outliers, by using bagging [45] and by normalizing link distances by the node degree

[16]. In the method of [18], the minimax distance dnm is modulated by a Gaussian,

exp (−dnm/σ2), and further the “max” is softened via another user parameter to

interpolate smoothly between the two extreme cases of the maximum (= path bot-

tleneck) and the mean (= path length). However, they applied this not to clustering

but to transductive Support Vector Machines. Finally, the bottleneck geodesics [90]

seek paths that are both short (geodesics) and dense (no bottlenecks). They define

a local density estimate at each data point xn as
∑

n∼m ‖xn − xm‖−2 (where n ∼ m

is a link in a neighborhood graph). They then combine this with the path length

in various ways, e.g. by normalizing the link length by the density estimate, or by

normalizing the path length by the path bottleneck. Like the other methods, this

yields affinities only for the dataset points.

An alternative approach to introducing context in the definition of pairwise affini-

ties is by constructing better neighborhood graphs. The usual graphs (k–nearest-

neighbors, ǫ–ball, fixed grid for image segmentation) enforce global parameters for

each data point no matter its context, so every point must have k neighbors or

connect to all points at distance ǫ or less. In the perturbation approach of [14],

multiple graphs are built on jittered duplicates of the dataset and then combined

into an average graph that adapts locally to the data and is by construction more

robust to noise. However, in this method, point pairs such as (A,C) in fig. A.1

are still assigned a low affinity, and the path in the graph counts distances but not

density.
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A.1 Density Geodesics

A mathematically rigorous distance definition should be given as a function of the

data probability density function. The data pdf p : R
n → R

+ should warp the

metric space R
n as a metric imposing mass, such that the distance metric is inversely

proportional with the data pdf - lower the pdf higher the distance and visa versa. In

this context, under the presence of a nonuniform pdf, distances between data pairs

based on Euclidean distance are not accurate and the Euclidean distance metric,

which is uniform over the entire space R
n, is only optimal if the data pdf is uniform.

Using this fact, we postulate the Euclidean metric as the canonical metric under

uniform density and generalize this to an arbitrary pdf, defining density geodesics.

We achieve this using the transformation that maps the uniform function to an

arbitrary pdf.

A suitable distance metric that considers the data pdf as a mass imposing func-

tion has to have the following two properties: (i) the metric should emphasize the

valleys in the data density, should promote large density and penalize low density

regions, (ii) the metric definition should properly take into account local and direc-

tional stretching effects imposed on the data as well - very similar to the stretching

effects of the Mahalanobis distance. In a differential geometric framework, the in-

finitesimal length of a curve segment depends on its direction (tangent vector), the

local stretching (Riemann metric of smooth pdf manifolds) to make the metric lo-

cally invariant to stretching.

Let f : R
n → [0, 1]n be an invertible map that transforms the pdf p to a uniform

one in the unit hypercube. Due to change of variables, the Euclidean length of a

curve in the unit-cube under a uniform density has to be modified to utilize a metric

M(x) = (∇T f(x)∇f(x))−1. Assuming a density penalizing/promoting measure h, we

define the length of a curve c in R
n under the pdf p as

lc
.
=

∫ 1

0

h(p(c(t)))(ċT (t)M(c(t))ċ(t))1/2dt (A.1)
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Under this definition of curve length, the distance between two points x and y is the

length of the shortest curve (geodesic) connecting them: d(x,y) = minc lc such that

c(0) = x and c(1) = y. The minimization of the functional in (A.1) requires calculus

of variations and is computationally expensive. For a given iid data set {x1, . . . ,xN}
with sufficiently large N drawn from p, a simple yet sufficient approximation to the

geodesic could be determined by restricting the search to the paths over a fully- or

partially-connected neighborhood graph. We utilize the ǫ-ball neighborhood graph

where an edge is included in the graph if the length of the straight line connecting

xi to xj as measured by (A.1), lij < ǫ and employ a shortest path search algorithm

[12].

In pairwise affinity clustering, for sharp block-diagonal affinity matrices one

needs to penalize geodesics that pass through relatively low density regions and

promote geodesics that remain in high density regions. The bottleneck clustering

principle [46] is also aimed at achieving this, however, the length of a curve is mea-

sured not as an integral over the curve but as an extremum of local length, which

occurs at such valleys. By selecting monotonically decreasing h : R → R such that

limp→0 h(p) = ∞ and limp→∞ h(p) = 0, this could be achieved. Alternatively, one

could simply select the neutral measure of h(p) = 1.

A.1.1 One Dimensional Case Studies

To illustrate the proposed metric independently from the geodesic search step, we

will present three examples on one dimensional data densities: (i) distances under

a uniform density; (ii) piecewise uniform clusters; and (iii) distances under an

arbitrary pdf p.

Uniform Density: Consider the distance between two points a/ε and b/ε,

where {a, b} ∈ [0, 1], under a uniform density in the interval [0, 1/ε] as shown in

Figure A.2. The function that maps this density to a uniform density in [0, 1] has

a constant slope of ε; thus, the metric is M(x) = 1/ε2, x ∈ [0, 1]. For the contour c
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Figure A.2: Uniform density
.

connecting a to b, we have ċ = |b − a|/ε. Assuming h(p) = 1 and substituting all

expressions in (A.1), we obtain l[a/ε,b/ε] = |b−a|/ε2. The inverse square dependency

of this metric on ε is intuitively interpreted as one factor coming from the scaling of

the actual Euclidean distance and another from the local stretching of the density.

Piecewise Uniform Clusters: Consider a piecewise uniform density shown in

Figure A.3, and its local metric

p(x) =





1/2− ε if x ∈ [0, 1] ∪ [2, 3]

2ε if x ∈ [1, 2]

0 otherwise

M(x) =





1/(1− 2ε)2 if x ∈ [0, 1] ∪ [2, 3]

1/(2ε)2 if x ∈ [1, 2]

∞ otherwise

(A.2)

For {a, b} ∈ [0, 1] and c ∈ [2, 3], we are interested in the distances d(a, b) and d(a, c)

assuming h(p) = 1. For d(a, b), we have ċ = |b−a| and the integral can be computed

over the segment [0, 1] as l[a,b] = 2|b − a|/(1 − 2ε). For d(a, c), the integral needs

to be computed in three segments. Letting c(t1) = 1 and c(t2) = 2 for the curve

connecting a to c, we can determine that l[a,c] = |b−a|{2t1/(1−2ε)+(t2−t1)/(2ε)+

2(1− t2)/(1− 2ε)}. Note that limε→0 l[a,b] = 2|b− a|, while limε→0 l[a,c] =∞.
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Figure A.3: Piecewise Uniform Clusters
.

Arbitrary PDF: For a univariate pdf p(x), the invertible function that maps the

random variable to a uniform density in [0, 1] is its cumulative density function (cdf).

Consequently, its derivative is the pdf, thus the metric becomes M(x) = p−2(x). For

an arbitrary h(p) measure, by substituting M(x) and ċ(t) = (b−a) in (A.1), we can

determine that d(a, b) = |b− a|
∫ 1

0
h(p(a + (b− a)t))p−1(a + (b− a)t)dt. This shows

that appropriate selection of h(p) and consideration of local directional metrics will

modify the Euclidean distance in the desirable manner.

A.2 KDE-based Implementation of Density Geodesics

In this section, we will present our particular implementation of density geodesics.

Note that the distance definition is based on the data probability density, and any

density estimation technique can be used in this framework.

Data densities may take complex forms, and in general, it might be very hard to

find a suitable parametric family. After selecting the parametric form (for example

the number of components for a Gaussian mixture density estimate), model fitting

is achieved by a likelihood maximization over the data samples. At this point,

KDE offers a nonparametric alternative with a flexibility of adaptation to different

data structures. Mainly for this adaptation property, we will use KDE for our

implementation here. However, note that some density estimation schemes might
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be more advantageous in some specific scenarios, and for these cases, the density

estimation step can easily be replaced.

As mentioned earlier, a significant consideration in KDE is the selection of the

kernel bandwidth. As in the principal curve implementations, we again use leave-

one-out maximum likelihood kernel bandwidth here 1.

Another point is the selection of the penalty function h(p). To promote high

density regions and penalize low density regions, this function should be selected

such that limp→0 h(p) = ∞ and limp→∞ h(p) = 0, and a suitable family of penalty

functions could be h(p) = p−α. In our experiments, we used h(p) = p−1 and obtained

satisfactory results.

An important observation is that the data pairs that are far from each other

require much more computation. At this point, some simplifications to decrease the

computational complexity can be implemented into the distance evaluation. One

obvious simplification is to employ a neighborhood graph and evaluate the edges on

this graph only, assuming that the edges in shortest path that will be sought in the

final step are all in this graph. This leads the intercluster affinities to turn out to be

infinity. Further computational savings can be achieved by setting a maximum value

to pairwise distances, assuming that this edge will not be in the shortest path or

the difference between the preset maximum and the actual value is negligible. Table

A.1 summarizes our KDE based implementation, including these optional steps.

A.3 Experimental Results

In our experiments we concentrate on spectral clustering, but our definition is

equally applicable to hierarchical clustering and other affinity methods. We com-

pare the Euclidean distance (yielding the widely used usual Gaussian affinity), low

1For a more detailed discussion of using maximum likelihood method to evaluate fixed or data
dependent kernel bandwidths please refer to Section 3.1.3
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Table A.1: Summary of the KDE-based Density Geodesics Implementation

1. Select the kernel function K(·).
Use the ML procedure given in Section 3.1.3 or use any other method.

Anisotropic and data dependent variable bandwidth kernels lead to better
pdf estimates, but they are computationally more expensive.

2. (optional) Determine the pairs of data points that the direct path will be
evaluated.

Keep in mind that this step is optional. A neighborhood graph is not
required, but can be used to save computation.

One can use any neighborhood graph here. Where K -nearest neighbor
graph and ǫ-ball are the most commonly used choices, more elaborate options
are also can be used [14].

3. For all the pairs in the dataset (or connected pairs in the neighborhood graph)
integrate p(x)−1 along the line that connects these data points. Build the
matrix D, where Dij is

∫ xj

xi
p(x)−1dx and the integration path is the line that

connects these data samples. To evaluate the numerical integration we use the
adaptive Simpson quadrature method (quad function in MATLAB).

We estimate the data probability density using p(x) = 1
N

∑N
i=1 KΣi

(x−xi)
This KDE equation is given for the most general case of data dependent
anisotropic kernels, where Σi is the kernel function covariance for the ith sam-
ple. For isotropic kernels, simply use a distance, or for fixed bandwidth kernel
function drop the dependency on the sample index i.

4. Input D into Dijkstra’s algorithm and evaluate shortest distances over the
pairwise p(x)−1 distances.
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density separation (LDS) algorithm [18], and density geodesics. All three examples

have two natural clusters, and we use the eigengap between the second and third

eigenvalues of the affinity matrix to quantify the performance. As the difference

between these two eigenvalues approaches to -1, the desired two cluster solution is

more healthy. In Figure A.4, we present result for an easy clustering problem with

two Gaussian clusters with 100 samples each. As all the clusters are well separated,

all three methods return blockwise distance matrices for this example. The peak

performance of LDS is greater than Euclidean distances, yet still lower then density

geodesics. The interval of σ values that gives the correct clustering result is much

wider for the density geodesics. The dataset (top left), and the eigengap (bottom

left) are shown along with the distances (top row) and the corresponding similarity

values (bottom row) at their best performance for Euclidean distance, LDS, and

density geodesics (from left to right).

As some inter-cluster Euclidean distances are less than some in-cluster Euclidean

distances, ring dataset lays a harder clustering problem, and has been widely used

in clustering papers. In this example, density geodesics also demonstrate superior

performance as compared to LDS and Euclidean distance, with a bigger eigengap

for a wider interval of σ. Results are given in Figure A.5 similarly to the previous

example.

One problem with bottleneck methods is that due to noise or heavytailed distri-

butions, a bottleneck may not exist. Here we show an example where two Gaussian

clusters are next to each other. The pdf drops significantly at the cluster boundary,

yet there is no strong bottleneck due to the samples around the boundary. As shown

in Figure A.6, density geodesics provide a better eigengap for a wider range of σ in

this example as well.
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Figure A.4: Gaussians dataset
.

A.4 Discussion

The problem of affinity measure selection is at the core of similarity based clustering

techniques. Various propositions include the usual algebraic distance measures as

well as path-bottleneck geodesics along certain neighborhood graphs. Intuitively,

the distance (inverse affinity) between two data points cannot be assessed without

any regard to the context set forth by the distribution of other data samples. In

principle, distances between pairs should be influenced strongly by the probability

distribution of data. Stating from the postulate that Euclidean distances are canon-

ical for data points drawn from unit-uniform densities, we develop a principled path

length measure rooted in Riemannian geometry. It has been demonstrated theoret-

ically and through analytical calculations for specific one-dimensional case studies

that the proposed distance metrics satisfy desirable invariance properties. For high

dimensional cases, in order to reduce the computational complexity, the metric is

simplified.

Density geodesics provide a novel distance definition that improves on the path
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Figure A.5: Rings dataset
.

bottleneck approaches and defined as a function of data probability density. Bot-

tleneck distance does not change if one changes the distances that are not the bot-

tleneck (so graph-bottleneck completely erases the in-cluster structure), is sensitive

to noise and requires a good neighborhood graph. Density geodesics, on the other

hand, provides noise robustness and does not require a neighborhood graph. In the

implementation, the fully connected graph is replaced with a neighborhood graph

only to save computations, not to find the bottlenecks by using the graph. Experi-

mental results demonstrate that the proposed distance metric yields blocky affinity

matrices, which will yield to clear clustering solutions.

A promising prospect is to develop a semisupervised learning method based on

density geodesics. Almost all semisupervised learning algorithms assume that there

is a valley in the probability density around the class boundary, and density geodesics

find a natural use here. Another future prospect is to employ density geodesics in

a supervised scenario, where the geodesics are evaluated over the class conditional

probability density functions.



144

−10 −5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15
euclidean distance

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

200

400

600

800

1000

1200

low density separation distances

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.05

0.1

0.15

0.2

0.25

geodesic distances

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

200

400

600

800

1000

1200

10
−1

10
0

10
1

10
2

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

sigma

la
m

bd
a 2−

la
m

bd
a 3

inverse probability
euclidean
bottleneck − lds

Gaussian affinites  (sigma=0.5)

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

low density separation − sigma=0.5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

geodesics − sigma=0.5

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

400

450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure A.6: Overlapping Gaussians dataset
.



Biographical Note

Umut Ozertem was born in Izmir, Turkey, on November 29th, 1980. He received his

B.S. in Electrical and Electronics Engineering in 2003 from the Middle East Techni-

cal University, Ankara, Turkey. Between June 2003 and August 2004, he worked as

a researcher at the Multimedia Research Group in TUBITAK (Technical Research

Council of Turkey) under the supervision of Prof. A. Aydin Alatan. Since 2004, he

has been working towards his Ph.D. in the Computer Science and Electrical Engi-

neering Department at Oregon Health and Science University under the supervision

of Prof. Deniz Erdogmus. He received his M.S. in Electrical Engineering in 2006

from the Oregon Health and Science University. His current research interests in-

clude adaptive and statistical signal processing, information theoretic approaches in

machine learning algorithms, and nonparametric methods.

145


