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ABSTRACT
Visually evoked potentials have attracted great attention in the last
two decades for the purpose of brain computer interface design. Vi-
sually evoked P300 response is a major signal of interest that has
been widely studied. Steady state visual evoked potentials that oc-
cur in response to periodically flickering visual stimuli have been pri-
marily investigated as an alternative. There also exists some work on
the use of an m-sequence and its shifted versions to induce responses
that are primarily in the visual cortex but are not periodic. In this pa-
per, we study the use of multiple m-sequences for intent discrimina-
tion in the brain interface, as opposed to a single m-sequence whose
shifted versions are to be discriminated from each other. Specifically,
we used four different m-sequences of length 31. Our main goal is
to study if the bit presentation rate of the m-sequences have an im-
pact on classification accuracy and speed. In this initial study, where
we compared two basic classifier schemes using EEG data acquired
with 15Hz and 30Hz bit presentation rates, our results are mixed;
while on one subject, we got promising results indicating bit pre-
sentation rate could be increased without decrease in classification
accuracy; thus leading to a faster decision-rate in the brain interface,
on our second subject, this conclusion is not supported. Further de-
tailed experimental studies as well as signal processing methodology
design, especially for information fusion across EEG channels, will
be conducted to investigate this question further.

Index Terms— Brain computer interface, electroencephalog-
raphy, EEG, visually evoked potential, SSVEP, pseudorandom M-
sequence

1. INTRODUCTION

Brain computer interfaces (BCI) are receiving increasing attention as
a novel human computer interaction framework that could allow the
communication of a person’s intent to a computer-enabled applica-
tion in a seamless manner. In electroencephalography (EEG) based
BCI design the visually evoked P300 potential that is induced as a
response to flashing stimuli (e.g., letters or icons) have been stud-
ied extensively leading to the popular P300-Speller paradigm and its
variations [1, 2]. On a similar note, we have been studying the use
of rapid serial visual presentation (RSVP) of pictures (of objects or
letters) to induce the visual P300 by forcing a mental target matching
process [3, 4]. Berlin BCI also has been converging to a paradigm
that resembles RSVP, but using a two-level hierarchical hexagonal
decision tree approach as opposed to our right-sided binary decision
tree approach [5].

This work is supported by NSF under grants ECCS0929576,
ECCS0934506, IIS0934509, IIS0914808, and BCS1027724 and NIH grant
1R01DC009834-01. The opinions presented here are solely those of the au-
thors and do not necessarily reflect the opinions of the funding agencies.

The steady state visually evoked potentials (SSVEP) that are
induced by flickering visual stimuli that follow a periodic flicker-
ing pattern, such as a checkerboard pattern that flips colors between
black and white in each box at a preset frequency, have been the ma-
jor contender in the VEP domain [2, 6]. In this approach, among
multiple flickering stimuli, the subject focuses gaze and attention to
the one that represents the desired command or action. The periodic
flickering induces oscillatory activity in the visual cortex at matching
frequencies (harmonics) that can be measured and detected in EEG
using spectrum analysis [7, 8]. The drawback of frequency-based
discrimination is the requirement for longer waveforms for improved
frequency resolution; if two very close frequencies exist, the dis-
crimination performance degrades considerably for short-sequence
spectrum analyzers [9], as expected.

An alternative to periodic black-white flickering checkerboards
have been the use of periodic m-sequences that have been first
studied and proposed as a BCI design mechanism by Sutter two
decades ago [10, 11]. In this variation of the paradigm, the checker-
board or visual stimuli are temporally flickered according to phase-
shifted versions of a selected m-sequence; the approximate self-
orthogonality of the shifted versions of a given m-sequence allows
one to design a relatively simple BCI signal processing solution
using template matching to detect one of many phases of the m-
sequence. This work has been revived by Gao and colleagues in
the recent years [12]. Using different lagged versions of one M-
sequence allows us to have as many possible command options as
the length of the M-sequence. However, if the number of desired
selectors increases, it requires M-sequence to be much longer, which
is not desirable.

In this paper, we study the case where multiple m-sequences [13],
pseudorandom binary sequences with reasonable cross-correlation
properties, are used. The advantages of using multiple m-sequences
over shifted version of one sequence include the potential for signal
processing and detector algorithm designs that do not require the
knowledge of precise timing of stimuli - as blind multiuser detec-
tion in wireless communication works, for instance. In contrast,
if one uses the same sequence and tries to discriminate between
time-shifted versions, precise timing information is necessary for
operation. In the current study, we also assume that timing infor-
mation is available so that a template matching classifier can be
employed as Bin and colleagues do [12]. We also study simple
and suboptimal decision fusion techniques as a first attempt. Our
main goal is to investigate if we can use different bit presentation
rates without an impact on VEP classification accuracy. If we can
classify VEP corresponding to different m-sequences with the same
accuracy when a given m-sequence is presented at a faster bit rate,
then we have the opportunity to increase BCI bandwidth by simply
increasing the bit presentation rate leading to faster decisions by
the BCI signal processing algorithm and faster intent detection for



BCI-controlled applications.
BCI based visual attention detection has one advantage over eye

tracker based gaze detectors; by being able to detect the covert at-
tention, which is the mental focus change without shifting the gaze
one could design human computer interactions systems for persons
who do not have precise gaze control [6]. People with very severe
levels of motor impairment for whom intentional gaze control is a
challenge, this modality becomes a promising alternative. Accuracy
and speed, as usual, are the main concerns for applications relevant
to this group.

2. DATA ACQUISITION
As the visual stimulus, we use two inverted checkerboard patterns
with a10× 10 black-white blocks centered on the screen covering a
21cm×21cm area. The subject is seated such that the checkerboard
is approximately centered in the field-of-view and the eye to screen
distance is approximately 60cm away, leading to an approximate vi-
sual angle of20◦. The subjects are not restricted to maintain the vi-
sual or viewing angle during data acquisition. The binary sequence
that is presented on the screen was also measured and recorded using
an optical sensor synchronously with the EEG using a g.USBamp
and g.TRIGbox from G.tec (Graz, Austria). The two inverted ver-
sions of the checkerboard are arbitrarily assigned the bit labels 0 and
1 and the appropriate checkerboard was sent to the screen using Psy-
chophysics Toolbox in the first possible monitor refresh cycle. As
monitor refresh rate is set to 60Hz, our frequency selections for bit
presentation rate are guided by this limitation and we try 15Hz and
30Hz bit rates in order to ensure that visual stimulus transitions oc-
cur precisely at the intended times.

For this study, the m-sequence set consists of 4 elements, each
one with 31-bits. The sequences are selected from among all 31-
length m-sequences in order to approximately minimize the pairwise
crosscorrelations. During an experimental session, for each trial one
of the four sequences is selected randomly in an independent iden-
tically distributed fashion according to a uniform probability distri-
bution. The session consisted of 80 trials and each trial contained
12 periods of the designated m-sequence. For a given session, the
bit presentation rates were fixed at either 15Hz or 30Hz. Each trial
begins with a one second fixation period during which the subject is
instructed to focus the gaze on the+ sign at the center of the screen
in preparation for the upcoming trial. Between consecutive trials
(each of which approximately lasts 25s or 13s) the subject can rest
as much as needed and initiates the next trial with a button press at
will.

EEG signals, along with the optical sensor data, are cap-
tured from the scalp using active g.Butterfly electrodes using a
g.Gammabox and a g.USBamp by G.tec. A nonabrasive conduc-
tive gel is used to provide conductivity between the scalp and the
electrodes. Since the goal is to detect modulated P100 signals from
the visual cortex, EEG sites were selected to have a higher spatial
density around the visual cortex: O2, Oz, O1, PO4, POz, PO3, P4,
P2, Pz, P1, P3, Cp2, Cp1, C4, Cz, C3. Table 1 shows the mapping
of channel indices to their position on the scalp.

3. CLASSIFICATION METHODS
Two variations of template matching based classification is utilized
in our EEG data analysis: (i) determine and use only the best EEG
channel to make a decision between the candidate m-sequences; (ii)
use data from all 16 EEG channels in a concatenated vector and
make a single template matching decision based on this large tem-
poral feature vector. In general, one needs to identify the correlation

Table 1. Correspondance map between EEG electrode positions and
channel indices.

Channel Electrode Channel Electrode
Index Position Number Position

1 C3 9 P2
2 Cz 10 P4
3 C4 11 PO3
4 CP1 12 POz
5 CP2 13 PO4
6 P3 14 O1
7 P1 15 Oz
8 Pz 16 O2

structure between the decisions of classifiers based on each channel
and then develop a Bayesian fusion rule that is consistent with this
model - a naive Bayesian approach assuming independence would be
the first thing to be tried, but other models that use graphical mod-
els allowing spatially neighboring channels to show correlation are
also possible. These Bayesian fusion approaches are left as future
work for the moment. If done properly, fusion of information across
multiple EEG channels will lead to improved classification accuracy
since spatial diversity of the sensors will contribute novel informa-
tion. Since our main goal is to make a decision as fast as possible, in
the current study, the template matching classifiers use only and ex-
actly one-period-long EEG traces as templates and decisions can be
made in as little as one period of the m-sequences; approximately 1s
for 30Hz bit presentation rate, and approximately 2s for 15Hz rate,
in this study. Clearly, if the classifiers utilize longer templates, accu-
racy will monotonically increase at the cost of introducing longer de-
cision delays when the user intends to switch between m-sequences
(i.e. commands to the computer).

3.1. Single Channel Template-Matching

This is a correlation-coefficient-based template matching classifier,
similar to the matched filter in spirit. The template has to be learned
from calibration/training data collected from the visual cortex areas
with EEG in response to each m-sequence. Currently, the template
is taken as the sample mean of EEG responses at each given chan-
nel in response to an m-sequence period, aligning the first sample
of the template to the onset sample of the m-sequence on the screen
as measured by the optical sensors. Clearly, larger numbers of cal-
ibration sequence periods will make the template smoother and less
noisy. Under the assumption of Gaussian background and measure-
ment noise, the sample averaging procedure gives us the maximum
likelihood template, however, in future work, to improve system ro-
bustness, we must and will investigate more robust statistical model
learning techniques that will not only learn the template but also
the natural variations so that outlier signals can be detected in test
mode probabilistically and rejected; such outliers may occur due to
muscle or other artifacts. These templates are made for each EEG
channel separately. The classifier simply correlates the 4 templates
built for each sequence with the EEG signal at each channel time-
locked to the m-sequence transitions obtained from the optical sen-
sor measurement. The m-sequence template that yields the highest
correlation coefficient is selected. Specifically, the decision of chan-
nel c is Dc = arg maxi ρc

i , whereρc

i is the correlation coefficient

between thetc

i template for thei
th

m-sequence for channel c andsc

the windowed EEG signal from that channel given by

ρ
c

i = s
cT

t
c

i (1)
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Fig. 1. Probability of correct decision for individual channels for
each m-sequence using 15Hz bit presentation rate – on the left2× 2
block male subject, on the right female subject.
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Fig. 2. Probability of correct decision on test set using different
number of training samples to determine templates for Oz-channel
classifier for each m-sequence using 15Hz bit presentation rate – on
the left2 × 2 block male subject, on the right female subject.

The performance of each channel is estimated on training data with
k-fold cross-validation and the best performing channel is selected
as the only one that makes the final decisions.

3.2. Multi-channel Template Matching

This classifier performs the same operation as above but concate-
nates the signals from all channels into a large template and signal
vector. Specifically, the decision is given byD = arg maxi ρi,
where ρi =

(

sT ti

)

. Here, s = [s1, s2, . . . , s16]
T and ti =

[

t1i , t
2

i , . . . , t
16

i

]T

.

4. RESULTS
We performed experiments using two volunteer subjects, a 22 year
old male and a 27 year old female. Both subjects were healthy
with normal vision. Each subject participated in 2 separate sessions.
EEG acquisition was performed as described above using flickering
checkerboard patterns according to m-sequences that were designed
in advance. The sessions were for 15Hz and 30Hz bit presentation
rates, respectively. The data from each session is split into training
and test portions; out of the 200 trials in each session (50∗12 = 600
periods for each of the four m-sequences), the training data was al-
ways selected as the firstNtrain periods of each m-sequence appear-
ing in the trials. GivenNtrain and designated training data as de-
scribed, remaining periods of all m-sequences were used for testing
purposes to generate performance results presented in the figures.

First, we present the results for sessions using 15Hz bit presen-
tation rate. UsingNtrain = 70 for each m-sequence, the template
is formed for individual channels and test performance is evaluated.
Figure 1 shows the probability of correct decision for different chan-
nels for our subjects. As expected, channels Oz, O1, and O2 stand
out in performance, while Oz emerges as the best individual chan-
nel, being positioned right on top of the occipital lobe where the
visual cortex is located. For this best channel, Oz, we investigate
the effect of number of training samples on performance by gener-
ating the templates using an increasing number of training sample
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Fig. 3. Probability of correct decision for individual channels for
each m-sequence using 30Hz bit presentation rate – on the left2× 2
block male subject, on the right female subject.
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Fig. 4. Probability of correct decision on test set using different
number of training samples to determine templates for Oz-channel
classifier for each m-sequence using 30Hz bit presentation rate – on
the left2 × 2 block male subject, on the right female subject.

periods (from 10 to 120). Results shown in Figure 2 demonstrates
that the performance of the template-matching classifier stabilizes
after around 60 or 70 samples in both subjects for all m-sequences.
Using a sufficiently large number of samples and Oz-signals alone,
one can get well over 90% accuracy. Figures 3&4 present the same
results for the 30Hz bit presentation rate experiments. These results
indicate that for the male subject, changing the bir presentation rate
did not have a significant negative or positive impact on performance
-in fact, the accuracy of channel Oz increased slightly. On the other
hand, the 30Hz results for the female subject using Oz only is con-
siderably worse than her 15Hz experiment results. Based on the in-
vestigation of single channel accuracy for all channels, we suspect
that the O-channels (O1, Oz, O2) have probably been improperly
placed/connected and signal quality at these channels was low for
this female-30Hz session. Figures 5&6 show the probability of cor-
rect decision of the second classifier for both subjects at 15 and 30
Hz.

5. DISCUSSION AND FUTURE WORK

Our limited experimental results, assuming that the poor perfor-
mance of one subject at the session with higher bit presentation rate
is due to poor electrode placement on the occipital lobe, could be
indicative of the possibility of utilizing higher bit rates in flickering
stimuli without significant influence on BCI performance. This hy-
pothesis, must still be verified in future work using a larger set of
subjects and sessions. It has been clear that not all scalp locations
provide equally useful EEG signals for SSVEP classification; as ex-
pected, sites near the visual cortex resulted in better accuracy when
used individually.

The m-sequences used in the current experiments were relatively
short – only 31 bits long; consequently their cross-correlations could
not be made extremely small. Future work will focus on determin-
ing and designing binary pseudorandom sequences with favorable
cross-correlation properties that will enable us to design more accu-
rate classifiers. This correlation improvement is likely to come at the
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Fig. 5. Probability of correct decision on test set using different
number of training samples to determine templates for the second
classifier for each m-sequence using 15Hz bit presentation rate – on
the left2 × 2 block male subject, on the right female subject.
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Fig. 6. Probability of correct decision on test set using different
number of training samples to determine templates for the second
classifier for each m-sequence using 30Hz bit presentation rate – on
the left2 × 2 block male subject, on the right female subject.

cost of increased sequence length; however, if our hypothesis regard-
ing the increasing of bit presentation rate without any consequence
in detector performance holds in future experiments, the additional
time costs in decision making can be eliminated.

The results using even relatively poorly designed m-sequences
demonstrate that it is possible to achieve over 95% classification ac-
curacy among four classes. Better designed sequences and better
designed classifiers can only improve performance. Current study
focused on a very basic matched filter classifier that used one or all
channels for initial assessment. In future work, we will also consider
developing generative statistical signal models that will give rise to
principled and statistically optimal classifiers that are based on more
sophisticated models. For instance, an immediate future analysis that
will be performed is the use of Bayesian fusion for channel decisions
at the binary output level. Simply stacking up features from each
channel into a large feature vector performed worse than using only
the features from the best channel – this outcome is to be expected
from a general feature dimension reduction perspective. However,
besides Oz, there are other channels that carry potentially useful
novel statistical information about the class label; consequently, their
detection outcomes could be exploited to increase performance. In
future work, we will consider Bayesian fusion models that assume
conditional independence of channel-specific classifier decisions, as
well as conditional dependence of these only up to a certain spatial
distance (best radius to be determined from data statistically). These
fusion approaches are expected to improve classification accuracy to
some extent.

Training (calibration) time is a major concern in BCI system
design. If BCI systems are to become a practical and widely used
tool, then the calibration of the signal classifiers must not take an
extremely long amount of time prior to each use. In our best case
we were able to use 30 periods of each sequence to build the tem-
plates and achieve more than 90 percent accuracy in detecting the
four m-sequences. For this case, the total training time will be ap-
proximately 2.5 minutes. With more sophisticated signal models that
capture subject-to-subject and session-to-session variability in signal

statistics, it is conceivable that the training time could be reduced sig-
nificantly by exploiting information about optimal detectors found
and used in previous sessions of the same subject or even different
subjects.
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