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ABSTRACT The steady state visually evoked potentials (SSVEP) that are
Visually evoked potentials have attracted great attention in the lasbduced by flickering visual stimuli that follow a periodic flicker-
two decades for the purpose of brain computer interface design. Ving pattern, such as a checkerboard pattern that flips colors between
sually evoked P300 response is a major signal of interest that hddack and white in each box at a preset frequency, have been the ma-
been widely studied. Steady state visual evoked potentials that oger contender in the VEP domain [2, 6]. In this approach, among
curin response to periodically flickering visual stimuli have been pri-multiple flickering stimuli, the subject focuses gaze and attention to
marily investigated as an alternative. There also exists some work dhe one that represents the desired command or action. The periodic
the use of an m-sequence and its shifted versions to induce respongkskering induces oscillatory activity in the visual cortex at matching
that are primarily in the visual cortex but are not periodic. In this pa{frequencies (harmonics) that can be measured and detected in EEG
per, we study the use of multiple m-sequences for intent discriminadsing spectrum analysis [7, 8]. The drawback of frequency-based
tion in the brain interface, as opposed to a single m-sequence whoséscrimination is the requirement for longer waveforms for improved
shifted versions are to be discriminated from each other. Specificallfrequency resolution; if two very close frequencies exist, the dis-
we used four different m-sequences of length 31. Our main goal isrimination performance degrades considerably for short-sequenc
to study if the bit presentation rate of the m-sequences have an inspectrum analyzers [9], as expected.
pact on classification accuracy and speed. In this initial study, where An alternative to periodic black-white flickering checkerboards
we compared two basic classifier schemes using EEG data acquirbdve been the use of periodic m-sequences that have been first
with 15Hz and 30Hz bit presentation rates, our results are mixedstudied and proposed as a BCI design mechanism by Sutter two
while on one subject, we got promising results indicating bit pre-decades ago [10, 11]. In this variation of the paradigm, the checker-
sentation rate could be increased without decrease in classificatidooard or visual stimuli are temporally flickered according to phase-
accuracy; thus leading to a faster decision-rate in the brain interfacshifted versions of a selected m-sequence; the approximate self-
on our second subject, this conclusion is not supported. Further derthogonality of the shifted versions of a given m-sequence allows
tailed experimental studies as well as signal processing methodologne to design a relatively simple BCI signal processing solution
design, especially for information fusion across EEG channels, willusing template matching to detect one of many phases of the m-
be conducted to investigate this question further. sequence. This work has been revived by Gao and colleagues in
. . the recent years [12]. Using different lagged versions of one M-
Index Terms— Brain computer interface, electroencephalog- g :

. . sequence allows us to have as many possible command options as
raphy, EEG, visually evoked potential, SSVEP, pseudorandom M-h lenath of the M-sequence. However. if the number of desired
sequence the length >equence. ’ A

selectors increases, it requires M-sequence to be much longer, which
is not desirable.
1. INTRODUCTION In this paper, we study the case where multiple m-sequences [13],
Brain computer interfaces (BCI) are receiving increasing attention agseudo_random binary sequences with rea;onable_cross-correlanon
a novel human computer interaction framework that could allow théoropertl_es, are u_sed. The advantages_ of using multiple m-Sequences
over shifted version of one sequence include the potential for signal

communication of a person’s intent to a computer-enabled applica- cessing and detector algorithm desians that do not require the
tion in a seamless manner. In electroencephalography (EEG) bas P 9 Lector alg n desig . ) q
nowledge of precise timing of stimuli - as blind multiuser detec-

BCI design the visually evoked P300 potential that is induced as .9 .9 .
on in wireless communication works, for instance. In contrast,

response to flashing stimuli (e.g., letters or icons) have been stud- th d tries to discriminate bet
ied extensively leading to the popular P300-Speller paradigm and i one uses the same sequence and tries 1o discriminate between
me-shifted versions, precise timing information is necessary for

variations [1, 2]. On a similar note, we have been studying the us ) P
[t 2] g ying peration. In the current study, we also assume that timing infor-

of rapid serial visual presentation (RSVP) of pictures (of objects oP tion | ilabl that a t lat tchi lassifi b
letters) to induce the visual P300 by forcing a mental target matchinrg1a lon 1S avarlable so that a tempate maiching classitier can be

process [3, 4]. Berlin BCI also has been converging to a paradig mployed as Bin ar_1d_ coIIea_gues do .[12]' We a!so study simple
that resembles RSVP, but using a two-level hierarchical hexagon§‘1nOI suboptimal decision fusion techniques as a first attempt. Our

decision tree approach as opposed to our right-sided binary decisidh?" gc_>a| IS to investigate if we can use d_|fferent bit presentation
tree approach [5]. rates without an impact on VEP classification accuracy. If we can

classify VEP corresponding to different m-sequences with the same
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1R01DC009834-01. The opinions presented here are soledgthf the au-  increasing the bit presentation rate leading to faster decisions by
thors and do not necessarily reflect the opinions of the fnegencies. the BCI signal processing algorithm and faster intent detection for




BCl-controlled applications.
BCl based visual attention detection has one advantage over e

tracker based gaze detectors; by being able to detect the covert annel indices.

g ble 1. Correspondance map between EEG electrode positions and

. S - o Channel| Electrode| Channel| Electrode
tention, which is the mental focus change without shifting the gaze Index Position | Number | Position
one could design human computer interactions systems for persons 1 c3 9 P>
who do not have precise gaze control [6]. People with very severe > Cz 10 P4
levels of motor impairment for whom intentional gaze control is a 3 c4 11 PO3
challenge, this modality becomes a promising alternative. Accuracy 4 cP1 12 POz
and speed, as usual, are the main concerns for applications relevant 5 cP2 13 PO4
to this group. 6 P3 14 o1

7 P1 15 Oz
2. DATA ACQUISITION 8 Pz 16 02

As the visual stimulus, we use two inverted checkerboard patterns
with a10 x 10 black-white blocks centered on the screen covering a
21cm x 21em area. The subject is seated such that the checkerboagiructure between the decisions of classifiers based on each channel
is approximately centered in the field-of-view and the eye to screeand then develop a Bayesian fusion rule that is consistent with this
distance is approximately 60cm away, leading to an approximate vinodel - a naive Bayesian approach assuming independence would be
sual angle oR0°. The subjects are not restricted to maintain the vi-the first thing to be tried, but other models that use graphical mod-
sual or viewing angle during data acquisition. The binary sequencels allowing spatially neighboring channels to show correlation are
that is presented on the screen was also measured and recorded usifsp possible. These Bayesian fusion approaches are left as future
an optical sensor synchronously with the EEG using a g.USBampork for the moment. If done properly, fusion of information across
and g.TRIGbox from G.tec (Graz, Austria). The two inverted ver-multiple EEG channels will lead to improved classification accuracy
sions of the checkerboard are arbitrarily assigned the bit labels 0 argince spatial diversity of the sensors will contribute novel informa-
1 and the appropriate checkerboard was sent to the screen using PEgn. Since our main goal is to make a decision as fast as possible, in
chophysics Toolbox in the first possible monitor refresh cycle. Asthe current study, the template matching classifiers use only and ex-
monitor refresh rate is set to 60Hz, our frequency selections for biactly one-period-long EEG traces as templates and decisions can be
presentation rate are guided by this limitation and we try 15Hz andnade in as little as one period of the m-sequences; approximately 1s
30Hz bit rates in order to ensure that visual stimulus transitions ocfor 30Hz bit presentation rate, and approximately 2s for 15Hz rate,
cur precisely at the intended times. in this study. Clearly, if the classifiers utilize longer templates, accu-
For this study, the m-sequence set consists of 4 elements, eatiCy will monotonically increase at the cost of introducing longer de-
one with 31-bits. The sequences are selected from among all 3Tision delays when the user intends to switch between m-sequences
length m-sequences in order to approximately minimize the pairwisé-e. commands to the computer).
crosscorrelations. During an experimental session, for each teéal on
of the four sequences is selected randomly in an independent ideg:1. Single Channel Template-Matching
tically distributed fashion according to a uniform probability distri- _ . . ) »
bution. The session consisted of 80 trials and each trial containeljlis is @ correlation-coefficient-based template matching classifier,
12 periods of the designated m-sequence. For a given session, pigilar tq the. matcheq filter in spirit. The template.has to be learned
bit presentation rates were fixed at either 15Hz or 30Hz. Each triaﬂ'?m callbr_atlon/tralnlng data collected from the visual cortex areas
begins with a one second fixation period during which the subject i¥/ith EEG in response to each m-sequence. Currently, the template
instructed to focus the gaze on thesign at the center of the screen IS taken as the sample mean of EEG responses at each given chan-
in preparation for the upcoming trial. Between consecutive triald'el in response to an m-sequence period, aligning the first sample
(each of which approximately lasts 25s or 13s) the subject can re8§f the template to the onset sample of the m-sequence on the screen

as much as needed and initiates the next trial with a button press & Measured by the optical sensors. Clearly, larger numbers of cal-
will. ibration sequence periods will make the template smoother and less

EEG signals, along with the optical sensor data, are Capooisy. Under the assumption of Gaussian background and measure-

tured from the scalp using active g.Butterfly electrodes using 4"€nt noise, the sample averaging procedure gives us the maximum
g.Gammabox and a g.USBamp by G.tec. A nonabrasive condudikelinood template, however, in future work, to improve system ro-
tive gel is used to provide conductivity between the scalp and th@ustness, we must and will investigate more robust statistical model
electrodes. Since the goal is to detect modulated P100 signals frolf@™Ming techniques that will not only learn the template but also
the visual cortex, EEG sites were selected to have a higher spatig]e natural variations so that outlier signals can be detected in test
density around the visual cortex: 02, Oz, O1, PO4, POz, PO3 pAnode probabilistically and rejected; such outliers may occur due to

P2, Pz, P1, P3, Cp2, Cpl, C4, Cz, C3. Table 1 shows the mappir{q:‘sc'e or other artifacts. These templates are made for each EEG
of channel indices to their position on the scalp. channel separately. The classifier simply correlates the 4 templates

built for each sequence with the EEG signal at each channel time-
locked to the m-sequence transitions obtained from the optical sen-
3. CLASSIFICATION METHODS sor measurement. The m-sequence template that yields the highest
Two variations of template matching based classification is utilizectorrelation coefficient is selected. Specifically, the decision of chan-
in our EEG data analysis: (i) determine and use only the best EEGel c is D. = argmax; p5, wherepy is the correlation coefficient
channel to make a decision between the candidate m-sequences; (jitween the¢ template for tha™ m-sequence for channel ¢ ast
use data from all 16 EEG channels in a concatenated vector anfle windowed EEG signal from that channel given by
make a single template matching decision based on this large tem-
poral feature vector. In general, one needs to identify the correlation ps = TS (2)
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Fig. 1. Probability of correct decision for individual channels for Fig. 3. Probability of correct decision for individual channels for
each m-sequence using 15Hz bit presentation rate — on thedeft  each m-sequence using 30Hz bit presentation rate — on thexedt
block male subject, on the right female subject. block male subject, on the right female subject.

Fig. 2. Probability of correct decision on test set using differentrig 4, Probability of correct decision on test set using different
number of training samples to determine templates for Oz-channglumper of training samples to determine templates for Oz-channel
classifier for each m-sequence using 15Hz bit presentation rate — @fassifier for each m-sequence using 30Hz bit presentation rate — on
the left2 x 2 block male subject, on the right female subject. the left2 x 2 block male subject, on the right female subject.

The performan(_:e o_f each channel is estimat_ed on training data Witﬁeriods (from 10 to 120). Results shown in Figure 2 demonstrates
k-fold cross-validation and the best performing channel is selecteghat the performance of the template-matching classifier stabilizes

as the only one that makes the final decisions. after around 60 or 70 samples in both subjects for all m-sequences.
Using a sufficiently large number of samples and Oz-signals alone,
3.2. Multi-channel Template Matching one can get well over 90% accuracy. Figures 3&4 present the same

. . . results for the 30Hz bit presentation rate experiments. These results
This classifier performs the same operation as above but concatgyicate that for the male subject, changing the bir presentation rate
nates the signals from all channels into a large template and signg|y not have a significant negative or positive impact on performance
vector. Speuﬁcjglly, the decision is given iy = argmax; pi,  _in fact, the accuracy of channel Oz increased slightly. On the other
where p; = (‘; ti). Here,s = [s1,52,...,516] andti =  pang, the 30Hz results for the female subject using Oz only is con-
[ti,t7,... %] . siderably worse than her 15Hz experiment results. Based on the in-

vestigation of single channel accuracy for all channels, we suspect
that the O-channels (01, Oz, O2) have probably been improperly
4, RESULTS - .
. . . laced/connected and signal quality at these channels was low for
We performed experiments using two volunteer subjects, a 22 ye is female-30Hz session. Figures 5&6 show the probability of cor-

Ol.d male anq a 217 year Old. female: .BOth §ubjects were health}'ect decision of the second classifier for both subjects at 15 and 30
with normal vision. Each subject participated in 2 separate session

EEG acquisition was performed as described above using flickering ™

checkerboard patterns according to m-sequences that were daksigne

in advance. The sessions were for 15Hz and 30Hz bit presentation 5. DISCUSSION AND FUTURE WORK

rates, respectively. The data from each session is split into training

and test portions; out of the 200 trials in each sessior {2 = 600 Our limited experimental results, assuming that the poor perfor-

periods for each of the four m-sequences), the training data was alance of one subject at the session with higher bit presentation rate

ways selected as the firdk,..;, periods of each m-sequence appear-is due to poor electrode placement on the occipital lobe, could be

ing in the trials. GivenV;,.;», and designated training data as de- indicative of the possibility of utilizing higher bit rates in flickering

scribed, remaining periods of all m-sequences were used for testirggimuli without significant influence on BCI performance. This hy-

purposes to generate performance results presented in the figurespothesis, must still be verified in future work using a larger set of
First, we present the results for sessions using 15Hz bit presesubjects and sessions. It has been clear that not all scalp locations

tation rate. UsingV:-.in = 70 for each m-sequence, the template provide equally useful EEG signals for SSVEP classification; as ex-

is formed for individual channels and test performance is evaluatedhected, sites near the visual cortex resulted in better accuracy when

Figure 1 shows the probability of correct decision for different chan-used individually.

nels for our subjects. As expected, channels Oz, O1, and O2 stand The m-sequences used in the current experiments were relatively

out in performance, while Oz emerges as the best individual charshort — only 31 bits long; consequently their cross-correlations could

nel, being positioned right on top of the occipital lobe where thenot be made extremely small. Future work will focus on determin-

visual cortex is located. For this best channel, Oz, we investigateng and designing binary pseudorandom sequences with favorable

the effect of number of training samples on performance by geneeross-correlation properties that will enable us to design more accu-

ating the templates using an increasing number of training samplete classifiers. This correlation improvement is likely to come at the



statistics, it is conceivable that the training time could be reduced sig-
nificantly by exploiting information about optimal detectors found
and used in previous sessions of the same subject or even different
subjects.
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