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ABSTRACT

In this paper, we present a clustering technique for decoding
fast time-varying multiple-input multiple-output (MIMO)
channels. The proposed method builds upon previous work
that exploited the symmetry of the constellation and the or-
der of the data within a spectral clustering procedure. The
novelty of this work is that by adjusting the different steps
of the standard spectral clustering algorithm, it introduces
the expected shape of the clusters into the clustering pro-
cess. The main modification applies to the construction
of the weighted graph, for which it is shown that a path-
based kernel, theconnectivity kernel, can be a more appro-
priate similarity function than the Gaussian kernel. The ob-
tained spectral clustering method is capable of finding clus-
ters in sequential data. Experimental results are includedto
demonstrate the validity of the method.

1. INTRODUCTION

In the last decades, multiple-input multiple-output (MIMO)
wireless communication technology has gained consider-
able attention, since it can offer significant increases in spec-
tral efficiency compared to traditional single-input single-
output (SISO) transmissions. A number of computationally
efficient algorithms have been proposed for reliable sym-
bol detection in flat-fading MIMO systems, based on the
assumption that the MIMO channel is static and known at
the receiver side. Nevertheless, their direct applicationin
fast time-varying environments is difficult. A few adaptive
equalization algorithms have been proposed that adaptively
estimate the channel based on decision feedback [1, 2].
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An alternative approach to equalization can be based
on clustering, exploiting the fact that, for channels excited
by signals belonging to a finite alphabet, the noisy obser-
vations tend to cluster around a finite number ofchannel
states. Once these channel states have been estimated, chan-
nel equalization reduces to a classification problem. The
main drawback of these algorithms is that the number of
clusters grows exponentially asMNt , whereM is the con-
stellation size andNt is the number of transmit antennas.
Recently, methods have been proposed to reduce the num-
ber of clusters to estimate by exploiting the input constel-
lation geometries [3, 4] and to extend from single-input to
multiple-input systems [5]. However, these clustering meth-
ods consider only time-invariant environments.

In fast time-varying systems, the variations in the mix-
ing matrix provoke a movement of the cluster centers and,
consequently, the clusters adopt non-convexshapes and over-
lap each other. Conventional clustering algorithms such
as k-means and expectation-maximization (EM) learning
would fail for these non-convex clusters. In [6, 7] the au-
thors presented a clustering technique that can deal with fast
time-varying systems. By adding a temporal dimension to
the scatter plot, this method converted the overlapping clus-
ters into intertwined threads, which are then clustered using
a standard form of spectral clustering. Moreover, the geom-
etry of the constellation was taken into account to reduce
the number of clusters to retrieve.

This paper aims to improve the previously presented
technique by incorporating more information on the prob-
lem into the clustering procedure. First, the expected elon-
gated shape of the clusters is taken into account by using a
path-based similarity function, theconnectivity kernel. Sec-
ond, the order of the data is taken into account in the final
clustering stage to avoid invalid solutions. Other contribu-
tions of this paper include the design of an efficient scheme
to calculate the connectivity kernel for sequential data, and
a procedure to select its kernel scale.
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Fig. 1. Effect of different normalized Doppler spreads on the received data symbols. Top row: Scatter plots of the data
received by one receive antenna for a BPSK MIMO system with 2 transmit antennas, for different values of the normalized
Doppler frequencyfdT . Bottom row: Scatter plots to which the time index was added as an additional vertical axis. Due to
the channel changes during the transmission of the data block, curved threads appear in this plot.

2. PROBLEM STATEMENT

In a typical MIMO flat-fading system withNt transmit and
Nr receive antennas, theNr-dimensional received vector
xn at timen is expressed as

xn = Hndn + vn (1)

whereHn is the complexNr × Nt channel matrix whose
elements represent independent flat-fading SISO channels,
dn contains theN (in general, complex) symbols transmit-
ted by theNt antennas at timen, andvn represents both
spatially and temporally white complex zero-mean Gaus-
sian noise. The goal of blind symbol decoding is to estimate
the symbolsdn given only the received data pointsxn.

In MIMO systems withfast time-varyingchannels, the
channel matrix changes from symbol to symbol due to the
Doppler spread caused by the movement of the transmitter
and/or receiver. In such systems, depending on the Doppler
spread, the channel matricesHn are temporally correlated.

The top row of Fig. 1 illustrates the effect of differ-
ent Doppler spreads on the scatter plot of a received data
block in a typical binary phase-shift keying (BPSK) MIMO
system, for which the basic constellation points ared ∈
{+1,−1}. Whereas the received data in a static system
contains clearly separable clusters (Fig. 1(a) top), in a time-
varying system these will overlap (Fig. 1(b), (c) and (d) top)
and classical clustering algorithms that operate directlyon
the data will fail.

3. SPECTRAL CLUSTERING-BASED APPROACH

3.1. Exploiting the data order and geometry

In [6] the authors noted that adding the temporal dimen-
sion to the received data “untangles” the overlapping clus-
ters into intertwined threads, as can be seen in the bottom
row of Fig. 1. Based on this insight, a clustering procedure
was designed to retrieve the different threads. At the core of
this procedure lies a spectral clustering algorithm, whichis
able to retrieve non-convex clusters based on pairwise sim-
ilarities using a Gaussian kernel.

Additionally, to improve the performance of the decod-
ing algorithm in cases where clusters were not densely pop-
ulated or difficult to distinguish, some geometrical infor-
mation was incorporated into the clustering algorithm: As
can be seen in Fig. 1, the symmetry of the constellation
translates into the clusters following symmetric trajectories.
By treating symmetrical clusters as one in a first clustering
stage, an easier clustering problem was obtained in which
less but denser clusters were to be found. In a second stage,
each group of symmetrical clusters was again divided to find
the final clusters. Details can be found in [6, 7].

This technique obtained very satisfactory results. In cases
of high noise or high Doppler spread, however, it did not ex-
clude invalid solutions in which clusters were bifurcated or
two threads were clustered as one. To avoid these situations,
a restriction needs to be built into the clustering procedure to
avoid clusters that do not consist of single threads, or clus-
ters that do not approximately span the entire time range.



In the sequel, we will first give a general description of
spectral clustering and then propose some modifications to
retrieve clusters that have this specific shape.

3.2. Spectral Clustering

Consider the weighted graphG = (V , E) derived from the
data such that the vertices are the data pointsV = {xi} and
where each edge(i, j) is assigned a weight that expresses
the similarity between its two vertices. An often used simi-
larity measure is the Gaussian kernel:

κ(xi,xj) = exp

(

−
d2

i,j

σ2

)

, (2)

wheredi,j is some distance measure such as the Euclidian
distancedi,j := ‖xi − xj‖ andσ is thekernel size. The
affinity matrixK (also calledsimilarity or kernelmatrix) of
a weighted graph is the matrix that contains the kernel func-
tions Ki,j = κ(xi,xj) between all point pairs. Spectral
clustering is performed by analyzing the spectrum of this
matrix. One of the most successful spectral clustering algo-
rithms is the Ng-Jordan-Weiss (NJW) algorithm, introduced
in [8]. It can be summarized in the following three steps:

1. Affinity matrix: Obtain this matrix from a graph using
Ki,j = κ(xi,xj) andKii = 0, for i, j = 1, . . . , N .

2. Eigenvectors of the graph LaplacianL: ObtainL =
D

−1/2
KD

−1/2, whereD is a diagonal matrix with
Dii =

∑N
j=1 Kij . Form the matrixV = [v1, . . . ,vm]

containing them largest eigenvectors ofL, wherem
is the number of subsets to retrieve.

3. Eigenvector clustering: Treat the rows ofV as points
in R

m, and normalize them to unit length. Cluster
them with an algorithm such ask-means. Assign the
original pointxi to clusterj if and only if rowi of the
matrixV was assigned to clusterj.

All spectral clustering algorithms follow a similar three-step
procedure, but they differ in the details of each step [8, 9].
In the first step, a kernel function should be chosen that re-
flects the information about the problem as much as possi-
ble. For instance, if the goal is to retrieve dense clusters of
connected points, the Gaussian kernel (2) can be used. In
the second step, a “graph Laplacian” matrix is constructed
and its eigenvectors are retrieved. This step can be inter-
preted as finding a low-dimensional representation of the
data. Thanks to the properties of the graph Laplacian, the
obtained points now form compact and well-separated clus-
ters [9], which can be retrieved in the third step by a simpler
clustering procedure such ask-means.

This kernel function is very useful for clustering dense
cloud-like shapes of points. However, when the data points

i1

i2

j

Fig. 2. Path-based similarity: Due to the optimal paths gen-
erally following dense regions of data, verticesi1 andj are
considered more similar thani2 andj.

form thread-like shapes such as in Fig. 1 it would be conve-
nient to use a kernel function that adjusts better to the shape
of the data groups. In the following section a kernel function
is designed that favors such shapes.

4. OPTIMIZING THE KERNEL FUNCTION

4.1. Path-based Spectral Clustering

Path-based clustering [10, 11] is a recently developed tech-
nique for clustering groups of points that are elongated in
addition to being dense. In graph theory, a pathp in a graph
G is an alternating sequence of vertices and edges, begin-
ning and ending with vertices, in which all vertices are dis-
tinct and each edge is incident with the vertex immediately
preceding it and with the vertex immediately following it.

Let us denote byPi,j the set of all paths from vertexi
to vertexj. When dealing with elongated structures, two
points should be considered similar if there is a clear path
between them, in the sense that all of its edges are short.
For instance, in Fig. 2, the verticesi1 andj belong to the
same cluster. This is reflected in the fact that there is a path
between them that consists only of short edges. On the other
hand, the verticesi2 andj belong to different clusters, and
any path between them will contain at least one longer edge.

Based on this observation, in [10] a kernel function was
proposed that calculates the similarity between two vertices
i andj based on theweakest link of the best pathbetween
them. Theweakest linkof a pathp is considered to be its
longest edge. We will denote the length of this edge as the
“effective distance” of the path, which can be written as

d̄p
i,j = max

(k,l)∈p
dk,l. (3)

Thebest pathbetween the two vertices will be the one whose
effective distance is shortest, and we denote theeffective
distance between the two verticesas

d̄i,j = min
p∈Pi,j

d̄p
i,j . (4)



Based on this metric, the similarity between verticesi andj
can be expressed using the Gaussian kernel as

κc(xi,xj) = exp

(

−
d̄2

i,j

σ2

)

(5)

= exp

(

−
1

σ2
min

p∈Pi,j

max
(k,l)∈p

dk,l

)

.

This kernel function is called “connectivity” kernel.
Although the computation of the kernel function (5) con-

tains a min-max operation over all possible paths between
two vertices, a recursive scheme can easily be applied to
calculate the kernel function based on the result for shorter
segments, for instance by using Dijkstra’s shortest path al-
gorithm [12]. In the following an efficient algorithm is pre-
sented for sequential data.

4.2. Adaptation for Sequential Data

The application considered in this paper deals with data
symbols from communications, which are sent and received
sequentially. While the previous section described thegen-
eral path-based clustering method, the problem treated here
deals with ordered data and therefore it will benefit from
incorporating temporal information into the clustering pro-
cess. Note that most kernel methods and clustering algo-
rithms do not take into account any order in the incoming
data.

The connectivity kernel can respect the data order by
only considering paths that are “monotonic” in the tempo-
ral dimension. In other words, the paths used in kernel (5)
should either consistonly of edges(k, l) ∈ p that fulfill
l > k, or only of edges that fulfillk > l. Moreover, this re-
striction greatly reduces the total number of paths that need
to be taken into account, which is very convenient for com-
munications problems.

The following scheme describes how to efficiently cal-
culate the effective distances between all pairs of data points,
resulting in an effective distance matrix̄D. Once obtained,
the similarity between points can be obtained by calculating
(5). Let us denote byδ = j − i the “temporal separation”
between pointsxi andxj . We will fill the effective distance
matrix D̄ one diagonal at a time, in an inductive manner:

1. δ = 0: Elements on the diagonal of̄D correspond to
pairs of identical points, and thereforēdi,i = 0, ∀i.

2. δ = 1: Elements on the first upper diagonal are con-
secutive data points, for which̄di,i+1 = di,i+1, ∀i.

3. δ = l: Elements on thel-th upper diagonal can be cal-
culated based on the results obtained forδ < l. The
optimal path betweenxi andxj is either a direct con-
nection ofxi andxj , or a combination of two shorter
paths, as illustrated in Fig. 3. The effective distance

i jk

d̄i,k

d̄k,j

Fig. 3. The effective distance between verticesi andj can
be calculated by considering all combinations of two shorter
optimal paths, fromi tok and fromk to j, with k = i, . . . , j.

of the direct connection is simply its Euclidian dis-
tance, while the effective distance of a combination
of shorter paths can be calculated as the maximal ef-
fective distance of its parts. The resulting effective
distance betweenxi andxj is the minimum of the
effective distances over these paths.

4. δ < 0: Due to symmetry of the kernel,̄dj,i = d̄i,j .

4.3. A Self-Tuning Connectivity Kernel

Since the clustering procedure is very sensitive to the kernel
width σ, the algorithm proposed in [6] used a “local scal-
ing” procedure for the Gaussian kernel. Instead of using a
single globalσ for all data points, a local kernel widthσi

was assigned to each point, equal to the median of distances
to its K-th nearest neighbors [13]. The same idea can be
applied to increase the robustness of the connectivity ker-
nel (5), leading to the followinglocally scaledconnectivity
kernel:

κlc(xi,xj) = exp

(

−
d̄2

i,j

σiσj

)

. (6)

This kernel is obtained in a straightforward manner by scal-
ing each distancedi,j by the local scalesσi andσj , before
calculating the effective distancēdi,j .

5. OPTIMIZING THE EIGENVECTOR
CLUSTERING

Up till this point, the described algorithm favors elongated
groups of points by making use of the connectivity kernel in
its first step. In its second step, the eigenvectors of the graph
Laplacian are retrieved, whose rows correspond to the input
data points but allow for easier clustering. Optimally, the
clustering in the last step should retrieve thread-like clus-
ters that span as much of the time range as possible, if the
temporal dimension is taken into account again. To rule out
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Fig. 4. Performance comparison of different algorithms for
a2 × 2 BPSK system withfdT = 0.005.

invalid solutions such as bifurcated threads, which can oc-
cur by plainly applyingk-means at this point, we propose
to add the temporal dimension again to the obtained points
and use hierarchical clustering to detect the final clusters.

In agglomerative hierarchical clustering, each point is
initialized as a cluster. Subsequently, the two closest clus-
ters are joined, and this process is repeated until the desired
number of final clusters is obtained. The distance between
clusters is measured as the minimal Euclidian distance be-
tween any node of the first cluster and any node of the sec-
ond cluster, which is known as “single linkage” hierarchical
clustering. The additional constraint we add to avoid in-
valid solutions, is that if two clusters overlap in time, they
are only linked if at leastm − 1 additional clusters overlap
in the same time fraction. If this is not fulfilled the cluster
pair is not merged but skipped in this iteration, and the next
closest pair of clusters is considered.

6. TEST RESULTS AND COMPARISON

Computer simulations were carried out to illustrate the per-
formance of the proposed algorithm. The following param-
eters were assumed: A BPSK signal was used, the channels
were independent Rayleigh flat-fading and the temporal cor-
relation of the channels was based on the Clarke and Gans
Fading Model [14]. Each data block consisted of256 slots
(i.e. anNt × 256 matrix of BPSK symbols is transmitted).
Different decoding algorithms were compared:

• The adaptive GDFE method from [1], using32 pilot
symbols and a forgetting factorλ of 0.95.

• Spectral clustering (SPCL) with aK-nearest neigh-
bor (KNN) kernel, a standard Laplacian matrix, and
k-means eigenvector clustering.

• The spectral clustering algorithm from [6], which uses
a locally scaled Gaussian kernel, the Laplacian matrix
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fdT=0.01, Gaussian + k−means
fdT=0.01, connect. + hierarch.
fdT=0.001, Gaussian + k−means
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Fig. 5. Comparison of the initial [6] and the proposed algo-
rithm at different Doppler spreads, for a2×2 BPSK system.

from the NJW algorithm andk-means.

• The algorithm from [6] in which the Gaussian kernel
was replaced by a locally scaled connectivity kernel.

• The proposed spectral clustering algorithm, which uses
a locally scaled connectivity kernel, the Laplacian from
the NJW algorithm and hierarchical clustering.

For the clustering algorithms, the optimal number of neigh-
bors was determined experimentally asK = 14, and the
scaling of the temporal axis was fixed astn = 5 · fdT · n
with n = 0, . . . , 255. Once the clusters were retrieved, the
original symbols were decoded using onlyNt pilot symbols
(see [6]), placed in the middle of the frame.

In a first setup, a2×2 system with a Doppler frequency
of fdT = 0.005 was considered. Fig. 4 shows the bit error
(BER) rates for the compared algorithms. It can be observed
that the algorithm from [6] (third curve) performs poorly for
high noise levels, but reaches the same performance as the
GDFE for low noise situations. When the Gaussian kernel
is replaced by the connectivity kernel, a dramatic increasein
performance is seen, as shown by the fourth curve. An ad-
ditional improvement in performance can be achieved when
moreover the finalk-means clustering method is replaced
by the described hierarchical clustering method.

In Fig. 5 the change in performance due to different
normalized Doppler spreads is shown, for the spectral clus-
tering algorithm from [6] and the proposed algorithm.

As a final example, Fig. 6 shows the clustering result
on a data set that is contaminated by impulsive noise. The
noise pdf of this example isp(v) = 0.9p1 + 0.1p2, where
p1 andp2 are zero-mean Gaussian white noise distributions
with Eb/N0 = 15dB andEb/N0 = −15dB, respectively.
If the outliers do not lie in between the clusters (as in Fig.
6), the connectivity kernel-based clustering is not disrupted
when it retrieves4 clusters. When5 clusters are retrieved,
the outliers are grouped as a new cluster.
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Fig. 6. Clustering with impulsive noise. Top: retrieving4
clusters. Bottom: retrieving5 clusters.

7. CONCLUSIONS

We presented a clustering algorithm that is capable of de-
coding fast flat-fading time-varying MIMO channels, mark-
ing improvements over an earlier proposed clustering-based
approach.

To this end, the different steps of the spectral clustering
algorithm were analyzed and adjusted to suit this particular
problem better. Specifically, it was shown that the connec-
tivity kernel is more appropriate than the Gaussian kernel in
this case, and a hierarchical clustering procedure can avoid
some mistakes made byk-means in the final clustering step.

Results show that the proposed method improves per-
formance over previous clustering methods, and for high
Doppler spreads it outperforms the adaptive GDFE method
using less pilot symbols. Due to its use of a distance-based
similarity measure, it can also be less prone to outliers.
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