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ABSTRACT

The reassignment method is a widespread approach for obtain-
ing high resolution time-frequency representations. Nevertheless,
its performance is not always optimal and can deteriorate for low
signal-to-noise ratio (SNR) values. In order to overcome these ob-
stacles, a novel method for obtaining high resolution time-frequency
representations is proposed in this paper. The new method imple-
ments recently proposed nonparametric snakes in order to obtain
accurate locations of the signal ridges in the time-frequency domain.
The results of numerical analysis show that the proposed method is
capable of achieving significantly higher concentration of signals in
the time-frequency domain in comparison to the spectrogram and
the traditional reassignment method. Furthermore, the new scheme
also maintains good performance for low SNR values, while the
performance of the other two considered methods significantly di-
minishes. It is clear from the results that the proposed method might
be of significance in applications where accurate estimation of the
signal components is required for low SNR values.

Index Terms— Time-frequency analysis, reassignment, non-
parametric snakes.

1. INTRODUCTION

The main objectives of the various types of time-frequency represen-
tations (TFRs) and their modifications are to obtain a time-varying
spectral density function with high resolution, and to overcome any
potential interference [1]. Amongst various algorithms, the time-
frequency reassignment is a widespread approach for obtaining high
resolution representations. The reassignment method creates a mod-
ified version of a representation by moving its values away from
where they are computed to produce a better localization of the sig-
nal components [2], [3]. However, a fundamental problem exists
when the reassigned TFRs are used for the estimation of the instanta-
neous frequency. The reassignment method approaches the problem
of the enhancement of energy concentration in the time-frequency
domain by determining so called centers of gravities. Such centers
are not necessarily located at the instantaneous frequencies of the
signal components, except for chirps and impulses [3]. Hence, even
though we might improve the energy concentration by reassigning
the TFR of a signal, we often can diminish its accuracy since the
peaks in the time-frequency domain can be moved away from the
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instantaneous frequencies. In order to maintain the accuracy of the
instantaneous frequency estimation achieved with a TFR and to en-
hance its energy concentration, an idea from image processing is
proposed as an alternative tool for the reassignment of the TFRs.
The method proposed in this manuscript is based on the idea of re-
cently proposed nonparametric snakes [4]. The method uses a non-
parametric approach to detect ridges in the time-frequency domain.
The detected ridges are then used for the reassignment of a TFR.

The proposed scheme has been tested using a set of synthetic
signals and its performance is compared with the TFRs obtained by
the spectrogram and the traditional reassignment method. The re-
sults of the numerical analysis showed that the proposed method sig-
nificantly enhances the energy concentration of signals in the time-
frequency domain. These results are confirmed for both, noise-free
and noisy environments. As expected, the results deteriorate for sig-
nals in the noisy environment, however, the proposed scheme main-
tains the highest concentration amongst the considered representa-
tions.

This paper is organized as follows. In Section 2, concepts of
the time-frequency analysis along with the reassignment of time-
frequency representations are reviewed. The development of the
proposed scheme is covered in Section 3. Section 4 evaluates the
performance of the proposed scheme using test signals. Conclusions
are drawn in Section 5.

2. TIME-FREQUENCY ANALYSIS

Time-frequency analysis (TFA) is of great interest when the time
or the frequency domain descriptions of a signal alone cannot pro-
vide comprehensive information about a signal for further analysis.
Therefore, the basic goal of the TFA is to determine the energy con-
centration along the frequency axis at a given time instant, i.e., to
search for a joint time-frequency representation of the signal [5].

The TFRs can be classified according to the analysis ap-
proaches. In the first category, the signal, x(t), is represented
by time-frequency (TF) functions derived from translating, modu-
lating and scaling a basis function having a definite time and fre-
quency localization. The second category is based on Cohen’s idea
of time-frequency distributions (TFD). Short-time Fourier trans-
form (STFT), wavelets, and matching pursuit algorithms are typical
examples of signal decomposition based TFRs, while Wigner distri-
bution, Choi-Williams distribution, and spectrogram are some of the
methods commonly used for obtaining TFDs [5].

In either approach, poor energy concentration of a signal can



be achieved in the time-frequency domain for the following reasons:
The signal decomposition based TFRs can have poor concentration
due to localization of the basis functions, while TFDs usually suffer
from cross-terms and inner interferences [5]. These can be removed
by a kernel function, however, such a function deteriorates localiza-
tion of the signal in the time-frequency domain. Several approaches
have been proposed to improve the energy concentration in the time-
frequency domain (e.g. [6], [7]) with the previously mentioned reas-
signment method being one of them.

2.1. Traditional Reassignment Approach

The first step in the reassignment approach is to calculate the center
of gravity of the signal’s energy for each point on the time-frequency
plane. Mathematically, this is given by [2], [3]:

t̂(t, ω) = t−
∫ ∫

uTFR(t− u, ω − Ω)dudΩ∫ ∫
TFR(t− u, ω − Ω)dudΩ

(1)

ω̂(t, ω) = ω −
∫ ∫

ΩTFR(t− u, ω − Ω)dudΩ∫ ∫
TFR(t− u, ω − Ω)dudΩ

(2)

Given these centers of gravities, the reassigned time-frequency rep-
resentation is obtained by

RTFR(t, ω) =

∫ ∫
TFR(τ, υ)δ(t− t̂(τ, υ))δ(ω − ω̂(τ, υ))dτdυ (3)

where δ(t) is a Dirac function.
Nevertheless, this approach has certain disadvantages. Since

the centers of gravity are calculated for every point on the time-
frequency plane, it is easy to imagine that for noisy signals some
of the calculated centers are actually not part of the signal. Hence,
the main challenge is to accurately determine these centers.

3. NONPARAMETRIC SNAKES FOR REASSIGNMENT OF
TIME-FREQUENCY REPRESENTATIONS

A related problem to accurate estimation of the centers of gravities is
that of the edge-based approaches for image segmentation [4]. These
approaches detect the edges of the image and subsequently connect
them to build object contours. However, if the edges cannot be com-
puted, the application of these methods becomes limited. To resolve
this issue, so-called snakes (or active contours) have been proposed
[8], [9]. Snakes are based on the utilization of the shape priors with
the gradient of the edge map of the image. As with most parametric
methods, the usual way of seeking the desired result is to run the
algorithm several times for a set of different parameter values until a
satisfactory performance is obtained.

Image segmentation based on snakes was recently addressed us-
ing a nonparametric scheme [4]. The proposed approach translated
the problem of seeking efficient values of the snake parameters into
the problem of kernel density estimation (KDE) and derived an algo-
rithm that exploits the underlying kernel density estimate of the edge
image. Determining a suitable kernel function is the most significant
step in KDE, and there is a wide breadth of literature about how to
select the kernel function [10].

The application of nonparametric snakes to image segmentation
requires KDE for each pixel. However, in our case the energy distri-
bution Ex(t, ω) = |TFx(t, ω)|2 of a time-frequency representation
of a signal, provides exactly that. In order to simplify the notation
throughout this section, the vector s = [t ω]T denotes a location for
each point on a time-frequency plane. Hence, the energy distribution
of a signal can be rewritten as Ex(s) = Ex(t, ω).

Given some samples of an active contour denoted by ssnakej

j = 1, ..., Nsnake and the energy distribution of a signal in the time-
frequency domain, our aim becomes to find ridges that capture the
structure of a signal. A solution for such a problem can be formu-
lated through maximizing the inner product between the probability
density function of the snake psnake(s) and the energy distribution
of the signal:

max
{ssnake}

J({ssnake}) = max

∫
psnake(s)Ex(s)ds (4)

where the probability density of the snake, psnake(s), is also evalu-
ated as a KDE, using the samples of the snake

psnake(s) =
1

Nsnake

Nsnake∑
j=1

Kσ(s− ssnakej ) (5)

where Nsnake is the number of points on the snake. Therefore, the
cost function J(ssnake) is given by

J(ssnake) =
1

Nsnake

Nsnake∑
j=1

∫
Kσ(s− ssnakej )Ex(s)ds (6)

Note that this cost function is additive in terms of the samples
of the snake. Therefore, near the optimal point along the ridge of
the energy distribution, higher and lower sampling rates of the snake
would lead to an accordingly denser or sparser evaluation of the op-
timality criterion along the ridge. The energy distribution of a signal
contains all smoothness information needed by the snake, which can
be simply extracted by sampling the snake at a higher rate. In prac-
tice, utilizing an isotropic fixed-bandwidth for psnake is sufficient.

In order to achieve faster convergence than gradient-like step
based algorithms, a fixed-point approach will be preferred in opti-
mization algorithm design. To derive a fixed-point iteration for the
samples of the snake, we equate the gradient of the optimization cri-
terion by using the fact that for any fixed point of the density inner
product cost function, the gradient of the inner product with respect
to ssnake should be equal to zero. This yields the following:

∂J(ssnake)

∂s
= 0. (7)

Reorganizing the terms and solving for ssnake, the fixed-point up-
date rule can be written as

ssnakej ←
∫

sKσ(s− ssnakej )Ex(s)ds∫
Kσ(s− ssnakej )Ex(s)ds

. (8)

This iteration is convergent since it is similar to that of the mean-shift
[11]. In practice, the iteration above converges at a rate proportional
to the cube of the eigenvalue of the local Hessian in the vicinity
of a local maximum. Consequently, along a relatively level ridge,
one eigenvalue is significantly closer to zero (corresponding to the
eigenvector pointing along the ridge) than the other. Due to the elim-
ination of spurious edge maxima, the nonparametric snake does not
suffer from poor capture range. The fixed-point iterations and the
optimization criterion presented above can be utilized to increase
the number of samples in the snake in order to densely populate the
boundary once initial convergence is achieved by the original snake
samples. The idea is to initialize multiple snake samples for each
original sample around the corresponding convergence points and
have the new samples converge to the boundary utilizing the same



fixed-point iterations.
The determined snake points, ssnake, denote the points located

along the instantaneous frequency of each signal component. Hence,
these points represent the centers of gravities:

ssnake =
[
t̂(t, ω), ω̂(t, ω)

]
(9)

and can be used in the reassignment of the time-frequency represen-
tations as proposed by (3).

4. PERFORMANCE ANALYSIS

In this section, the performance of the proposed scheme is exam-
ined using a set of synthetic test signals. The goal is to examine
the performance of the scheme in comparison to the standard reas-
signment approach. To illustrate the performance, the STFT is used
as a time-frequency representation. Nevertheless, the principles pre-
sented here can be applied to other TFRs as well. As for the synthetic
signals, the sampling period used in the simulations is Ts = 1/256
seconds. The Gaussian window is used as the window function for
the calculation of STFT:

wSTFT (t) =
1

σgw
√

2π
exp

(
− t2

2σ2
gw

)
(10)

where σgw is the standard deviation of the window, which dictates
the width of window. In addition, a kernel based on the Gaussian
function is used for KDE. The bandwidth of the kernel is set to 1.5,
and the same value is used for all synthetic signals considered here.

4.1. Example 1

The first test signal is defined as:

x1(t) = cos

(
60πt+

3π

2
cos(9πt)

)
+ cos

(
238πt− 56πt

2
)

(11)

where 0 ≤ t < 1. The signal consists of a sinusoidally FM mod-
ulated component and a linear FM component and it is depicted in
Fig. 1(a). There are several trade-offs between good localization of
the sinusoidally FM component and the linear FM component. In
order to achieve good localization of the sinusoidally FM signal, the
standard deviation of the Gaussian window has to be manipulated
either by trial-and-error or a more sophisticated method such as one
presented in [12]. For our purposes, we set σgw = 1

20
and the result-

ing time-frequency representation of the signal obtained by STFT is
depicted in Fig. 1(b). Improvements can be achieved with the ap-
plication of the traditional reassignment method as depicted in Fig.
1(c).

Significant improvement in localization of the signal in time-
frequency domain can be noticed in Fig. 1(d) in comparison to the
TFR obtained by STFT. The proposed algorithm provides almost
ideal TFR representation of the signal, where the ideal TFR is a the-
oretical model of a signal in time-frequency domain as described in
[13]. In order to compare performance of the traditional reassign-
ment method and the proposed method, a measure proposed in [14]
is used. The measure is given as the ratio of the energy along the
instantaneous frequencies and the energy outside these regions, and
is defined as:

B = 10 log10

(∫ ∫
(t,ω)∈R |TFRx (t, ω)| dtdω∫ ∫
(t,ω)/∈R |TFRx (t, ω)| dtdω

)
(12)

where TFRx (t, ω) is a TFR of the signal with regionR correspond-
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Fig. 1. Time-frequency analysis of x1(t): (a) time-domain repre-
sentation of the signal; (b) the TFR of the signal obtained by STFT;
(c) the TFR of the signal obtained by the traditional reassignment
method; (d) the TFR of the signal obtained by the proposed method.

ing to the instantaneous frequency lines of the signal components.
From the definition of the measure, it can be concluded that a higher
value of B signifies a more concentrated TFR. In addition, since
the exact values of instantaneous frequencies are known, in the case
of reassigned TFRs the measure produces higher value for the rep-
resentation which reassigns the original TFR more accurately. For
the considered representations, the values of B are given in Table 1.
These results represent the analysis for noise-free and noisy environ-
ments. In order to simulate the noisy environment, the signal is con-
taminated with the additive white Gaussian noise whose variance is
calculated based on the given SNR. The results clearly indicate that
the proposed method achieves the highest concentration amongst
considered methods. The reason behind significant improvement in
the localization is the fact that the nonparametric snakes are capable
of accurately searching for ridges, which are most of the time located
at or around of the instantaneous frequencies of signal components
[5]. In comparison, the traditional reassignment method determines
the “centers of gravities”, which are not necessarily located at the
instantaneous frequencies.

TFR B(noise-free) B(SNR = 5 dB)

STFT 4.87 4.40
TF reassignment 9.20 8.35
Proposed method 10.64 9.61

Table 1. The values of the measure for the three considered repre-
sentations.

4.2. Example 2

A more complicated example, depicted in Fig. 2(a), can be defined
as:

x2(t) =

{
xo(t) + cos (60πt) for 0.332 ≤ t ≤ 0.500
xo(t) elsewhere (13)



with

xo(t) = cos (176πt+ 1.5π cos(4πt)) + cos
(
220πt− 106πt

2
)

(14)

and where x2(t) exists only on the interval 0 ≤ t < 1. For this
class of signals, similar conflicting issues occur as in the previous
example; however, here exist additional constraints, i.e., the crossing
components and a short-duration component. The TFR of the signal
obtained with STFT is depicted in Fig. 2(b), and σgw = 1

9
is used to

obtain the TFR.
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Fig. 2. Time-frequency analysis of x2(t): (a) time-domain repre-
sentation of the signal; (b) the TFR of the signal obtained by STFT;
(c) the TFR of the signal obtained by the traditional reassignment
method; (d) the TFR of the signal obtained by the proposed method.

Improvements can be noticed with the traditional reassign-
ment method depicted in Fig. 2(c). However, the best localization
amongst the considered representations is obtained with the pro-
posed reassignment method as shown in Fig. 2(d). To verify our
claims, the measure given by (12) is calculated for the three con-
sidered representations. Similarly, as in the previous example,
noise-free and noisy environments are considered. The proposed
method achieves the best concentration again as shown in Table
2. As expected, the performance for all three considered methods
deteriorates with an increased level of noise, however, the proposed
method maintains overall good performance.

TFR B(noise-free) B(SNR = 5 dB)

STFT 6.40 5.91
TF reassignment 10.19 8.95
Proposed method 11.60 11.18

Table 2. The values of the measure for the three considered repre-
sentations.

5. CONCLUSION

In this paper, a novel scheme for improving the energy concentration
of signals in the time-frequency domain has been developed. The
scheme is based on the idea of reassigning the time-frequency rep-
resentations of signals in order to achieve sharper representations.

Nevertheless, the important difference between the existing meth-
ods and the proposed approach is that here we implemented a novel
concept from image processing as a tool aiding us in the reassign-
ment of the time-frequency representations. The approach devel-
oped throughout this paper is based on the idea of nonparametric
snakes which are used to accurately determine the instantaneous fre-
quencies of signal components. In order to verify our claims, the
performance of the proposed scheme has been evaluated and com-
pared with the spectrogram and the traditional reassignment method
by using a set of synthetic test signals. The performance was exam-
ined in noise-free and noisy environments. The results have shown
that the scheme can achieve higher energy concentration of signals
in the time-frequency domain in comparison with these traditional
methods. As expected, the performance deteriorates in the noisy en-
vironment for all considered signal representations. Nevertheless,
the proposed scheme maintains the best performance.
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