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ABSTRACT 

 
Radiation therapy is one of the most effective treatments used in the treatment of about half of all people with 

cancer. A critical goal in radiation therapy is to deliver optimal radiation doses to the perceived tumor while sparing the 
surrounding healthy tissues. Radiation oncologists often manually delineate normal and diseased structures on 3D-CT 
scans, a time consuming task. We present a segmentation algorithm using non-parametric snakes and principal curves 
that can be used in an automatic or semi-supervised fashion. It provides fast segmentation that is robust with respect to 
noisy edges and does not require the user to optimize a variety of parameters, unlike many segmentation algorithms. It 
allows multiple cues to be incorporated easily for the purposes of estimating the edge probability density. These cues, 
including texture, intensity and shape priors, can be used simultaneously to delineate tumors and normal anatomy, 
thereby increasing the robustness of the algorithm. The notion of principal curves is used to interpolate between data 
points in sparse areas. We compare the results using a non-parametric snake technique with a gold standard consisting of 
manually delineated structures for tumors as well as normal organs.  
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1. Introduction 

Cancer is one of the leading causes of death in the United States and in the world. Ionizing radiation can be used to 
kill cancer cells and shrink tumors to treat the cancer or relieve suffering [1]. Recent technological advances such as 
Intensity-modulated Radiation Therapy (IMRT) [1, 2] or 3-dimensional conformal radiation therapy allow radiation 
oncologists to tailor the dose profile in order to deliver appropriately high doses of radiation to the tumor while 
minimizing the dose delivered to nearby areas, resulting in fewer side effects and reducing toxicity. Thus, a critical 
aspect of the treatment is the planning stage during which the radiation oncologist determines the area to be treated, 
nearby organs at risk and the dose profile that will be delivered. During the planning stage for many solid tumors, multi-
slice, three-dimensional computed tomography (3D CT) scans are obtained from the patient. Typically, the radiation 
oncologist manually delineates (or “contours”) the tumor and the neighboring organs on each slice of the CT volume 
using a mouse or other pointing device, a time-consuming process. 

Segmentation for medical applications is an active area of research. Since radiation oncologists routinely perform 
segmentations manually, an algorithm that can provide near real-time, robust segmentation with minimal supervision can 
have tremendous value in the clinical workflow.  Segmentation is often based on color, intensity, textures and adjacency. 
Common image processing approaches to segmentation include those based on clustering, histograms, edge detection, 
region growing, level sets, and watershed. Model based segmentation approaches integrate prior knowledge about 
anatomical structures including their shapes, typical intensities and location, with image processing. 

 
 Although there are many algorithms available for automatic contouring, segmentation continues to be a challenge for 

many medical applications. Radiation oncologists often adjust the contours on CT slices using their knowledge of 
general anatomy, prior knowledge about the particular patient and data from other sources like Positron Emission 
Tomography (PET) scans. In addition, when tumors lie on the walls of organs or are present in organs with similar 

Medical Imaging 2009: Image Processing, edited by Josien P. W. Pluim, Benoit M. Dawant,
Proc. of SPIE Vol. 7259, 72594S · © 2009 SPIE

CCC code: 1605-7422/09/$18 · doi: 10.1117/12.812712

Proc. of SPIE Vol. 7259  72594S-1



density, the edge of the object can be occluded or hard to discern. These situations can degrade the performance of 
algorithms that rely on clear boundaries or sharp differences in pixel intensity. 

 
Active contours or “snakes” [3] are a popular class of algorithms used for segmentation in medicine where the 

segmentation is defined as an energy minimization problem. Typically, the contours are subject to an internal and 
external energy and the contour minimizing the energy is defined in parametric terms. However, traditional snakes are 
sensitive to noise and can suffer from capture range issues. Their initialization must be close to boundary desired and 
their convergence can depend on the initial position. Gradient vector flow (GVF) snakes [4] solve many of these issues 
and are good at detecting shapes with boundary concavities. However, they are sensitive to the parameters of the 
algorithm and may need to be tuned for each application. They can also be quite slow as extracting the GVF field can be 
computationally expensive. Both these issues can be problematic for medical applications where the clinicians do not 
wish to tune algorithmic parameters and essentially real-time segmentation is required.  

 
Non-parametric snakes provide a fast alternative by using a kernel density estimation (KDE) based approach that does 

not require the optimization of many parameters. In this paper, we use non-parametric snakes [5, 8] for segmentation of 
multi-slice volumes in near real-time.  Our semi-supervised method incorporates the knowledge from the clinician along 
with the features of the image to provide a robust algorithm that can deal with noisy or somewhat occluded edges.  
 
2. Methodology 

In this paper, we present results on two-dimensional slices from 3D CT scans. However, the same approach can be 
used for volume segmentation in three dimensions. The overall approach starts with edge detection on the slice of 
interest. This is followed by a kernel density estimation based on the detected edge. Finally, the ridges of the edge KDE 
provide the object boundary. These ridges can be found using the fixed point algorithm [5] as well as using principal 
curves [7]. If available, initialization based on user input or from external sources is used.  

For medical images, in some cases, the intensity provides sufficient information in order to estimate the edge, in other 
cases the edge is discerned on the basis of changes in texture while in other cases, both provide useful estimates of the 
edge. In the implementation used in this paper, we use multiple cues including intensity and texture to provide a good 
edge density estimate. As described in [8], we can also incorporate user input or prior knowledge or knowledge from 
another modality to improve this density estimate.  

2.1 Edge detection: 
 

Let I be the CT image volume in 3 dimensions such that [x,y,z]T  is the location of a pixel in space and I(x,y,z) is the 
pixel intensity of the image at that location. We consider a given slice, S, chosen by the user. We want to segment the 
object of interest (tumor or organ at risk) in this slice contained in the image I(x,y) for a slice at a given z value.   
 
The edge maps can be obtained using an edge detector with thresholds selected for the anatomical location of interest. 

These edge values can be binary or continuous. 
 

The output of a binary edge detector can be stated as: 
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Many algorithms that have been developed for edge detection for applications in image processing and computer 

vision. One of the most popular of these, the Canny edge detector, has been shown to be effective for noisy data. [9] The 
Canny edge detector was found to be useful in detecting edges for the images that we used for this study. Figure 1 shows 
CT slices of a lung tumor, lung and a liver tumor with the output of a Canny edge detector (using the pixel intensity) in 
blue.  Note that the choice of thresholds for the Canny edge detector is critical and should be chosen depending on the 
organs to be segmented.  Although these thresholds can be selected in an ad-hoc manner, we created an algorithm to 
automatically “learn” these thresholds based on training data consisting of manually contoured edges for the organs.  The 
technique is briefly described in section 2.4. 
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Figure 1 Output of Canny edge detector on lung tumors, lungs and liver tumors with two choices of thresholds. 

The top row of Figure 1 contains the output of the Canny detector using default settings while the bottom row displays 
superior edge detection using the optimized thresholds.   

 
Edges can also be estimated based on changes in texture. We experimented with a variety of texture filters starting 

with simple range, entropy and standard deviation filters. Figure 2 presents the output using range and standard deviation 
filters for the images shown in Figure 1. Edge detection can be applied to these images to detect the texture based edges. 
 

      
 

    
Figure 2 Effect of range (top row) and standard deviation (bottom row) filters 
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      In recent years, more complex filter banks have been developed for texture analysis [10, 11, 12]. We evaluated the 
use of the Schmidt filter bank, a set of rotationally invariant filters of the Gabor-like filters [13].   
 

A sample image and responses to the filters can be seen in figure 3. 
 

 
Figure 3 Image containing tumor (top left) and response to 13 Schmidt filters 
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We averaged the output of convolving the 13 filters with the image as seen in Figure 4.  
 

 
Figure 4 Average of applying the13 Schmidt rotationally invariant filters to the image 

 
Finally, we performed Canny edge detection on the filtered output. As seen in figure 4, we can achieve a reasonable 
estimation of the edges using this method. 
 

                        
Figure 5 Edge estimation using intensity (left) and texture (right) using Schmidt filters 

   
2.2 Kernel density estimation 
 

As described above, edges can arise due to abrupt changes in texture or intensity or both. A weighted sum of the two 
(or more, if additional cues are used) edges can be used for the final edge density estimate. The ideal weighting between 
intensity and texture based edges can be learnt using training data. 
 
In the general case, as described in [5], the KDE of the edge map can be constructed using: 
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Here, E(si) is a weighted sum of the edges obtained from different cues including intensity, texture and prior knowledge 
including contours from adjacent slices. 
In clearly distinguishable organs like lungs, we used a fixed-width isotropic Gaussian kernel. We used the fixed-point 
algorithm as described in [5] to achieve fast convergence. Specifically: 
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This is similar to the mean shift described in [6]. Spurious maxima can be avoided by choosing the kernel size 
appropriately. However, as would be expected for a mean-shift like algorithm, the snake may not progress into low edge 
density regions along the object boundary and also into boundary concavities depending on the kernel size and the 
distance of the initialization curve from the ridges. This drawback is addressed by generating additional sample points 
using the principal surface approach [7]. 
 

The sequence of steps for this approach is demonstrated below: 
 

 
Figure 6 Liver tumor contoured by a radiation oncologist (in green), considered the gold standard 

 
Figure 7 Combined intensity and texture edge (in blue) and initialization (in red) 

 

 
Figure 8 Final result using non-parametric snakes algorithm (in white) compared to hand-drawn contour (in 

green). 
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In most cases, the edge detection found the inside edge that was 1-4 pixels inside the manually drawn contour. We used a 
morphological operator to grow the contours by n pixels, where n was determined based on the training data to maximize 
overlap. 
 
2.3 Principal curves 
 

Principal curves [7, 8] were used to add points in areas where the output of the non-parametric snakes was sparse.  
Depending on the initialization and shape of the edge maps, the output of the the non-parametric snakes occasionally 
resulted in points clustering at edges of low density regions as seen in Figure 9. Using the updated edge map consisting 
of the weighted sum of the output of the edge detector from the intensity and texture edges and the user input (if 
applicable), and applying the principal curves algorithm, we can extrapolate additional points along the ridge of the 
KDE. 

                 
Figure 9 Final result using non-parametric snakes algorithm (in white) compared to hand-drawn contour (in 
green) (left) and extrapolating using principal curves (right) 

 
For each nearest neighbor pair of points in the final output of the nonparametric snake, the midpoint s0 of the line 
segment connecting each pair is taken as an initial point. Let v0 be the major eigenvector of the local covariance of 
pedge(s) at s0 and g0 be the gradient at this point. Let m(s) be the mean-shift update direction as defined earlier. Starting 
from s0, we iterate the following: 

)()( 0000 smvvgvs TTsign←  
This iteration has been shown to converge to the ridge of the edge distribution, therefore is an interpolating sample from 
the desired boundary. The process is repeated until a satisfactory number of samples are obtained from the boundary, 
satisfying the requirement of minimum nearest neighbor distances.. This is determined considering the distribution of 
nearest neighbor distances between the samples in the nonparametric snake 
 
2.4 Learning weights 
 

When a selection of manually segmented slices is available for training, the data can be used to create thresholds for 
edge detection as well as for learning the weights of edges obtained using texture and intensity. We created a simple loss 
function based on the overlap between the manually contoured and algorithmically derived contours using the Jaccard 
overlap measure. 
 
Jaccard similarity coefficient defined as:  

BA
BA

BAJ
∪
∩

=),(  

where A=pixels in manually segmented contour and B=pixels in contour using non-parametric snakes. 
The loss function is defined as 

),(1 BAJL −=  
The thresholds for each organ and tumor for the Canny edge were the values at which L was minimized for the training 
data.  We similarly learned the relative weights of the texture and intensity edges to achieve maximum overlap with the 
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supervised samples. This was used for segmentation of other slices in that volume in a 3D-CT scan set.  As described in 
[8], we can also incorporate user input in the segmentation.  
 
3. Data  
 

After attaining the necessary approval, we obtained routinely collected 3D CT data used for treatment planning from 4 
patients, two with lung tumors and two with liver tumors. We had 100 slices manually annotated by a radiation 
oncologist. We compared the performance of our segmentation algorithms with the manually annotated contours using 
the Jaccard overlap measures.  
 
4. Results and discussions 

Overlap with manual segmentation: We achieved high overlap with the gold standard in the case of lung tumors with 
either intensity or texture or both. For liver tumors, we obtained better segmentation using both the intensity and the 
texture. In all cases, we obtained more than 85% overlap. We achieved even higher overlap if we used contours from an 
adjacent slice for the initialization. Preliminary data suggest that there are similar differences in overlap measures 
between two clinicians who contour the same dataset. Moreover, this approach allows for the easy incorporation of user 
input, either in a semi-supervised fashion or by propagating manually drawn contours from one slice to adjacent slices. 

 
Comparison to other techniques: we also performed some preliminary performance comparisons with level sets and 

active contours. Non-parametric snakes, especially when we used a fixed-width isotropic Gaussian kernel, performed 
extremely well from a speed perspective, as they achieved good overlap after just two to three iterations with typically a 
5-10x gain in speed.  
 
5. Conclusions and future work 

Non-parametric snakes provide fast segmentation that is robust to noise and allow the incorporation of multiple cues 
including intensity, texture and user input. They do not require the optimization of many parameters, unlike many other 
segmentation algorithms. Although we used a fixed, predetermined kernel width in this implementation, the kernel width 
can be optimized automatically using leave-one outcross-validation if desired.  Alternatively, variable bandwidth kernels 
can used to improve robustness to noise.[5] Using non-parametric snakes based on a kernel density estimate  combining 
intensity and texture based edges provides a robust, near real-time  segmentation algorithm. This framework allows 
external information in the form of shape priors, user input and information from adjacent slices to be incorporated 
easily. One of the limitations is that there is no constraint on the final shape of the contour. Thus, the algorithm can have 
issues in regions of sparse density. Multiple competing edges can also cause problems for the algorithms, or as there 
 

We are working on improving the robustness of the algorithm incorporating better edge features and experimentation 
with data from multiple sources. As this is a near real-time, algorithm, we are currently creating an interactive 
segmentation procedure for radiation oncologists that incorporates machine learning with image processing.  
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