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ABSTRACT 

This paper describes an approach for detecting early 
cognitive loss using medication adherence behavior.  We 
investigate the discriminative power of a comprehensive set 
of recurrent medication timing features extracted from time-
of-day and inter-dose timing statistics. We adopt 
information theoretic measures for feature ranking for initial 
dimensionality reduction and conduct exhaustive leave-one-
out cross validation for final feature selection and 
regularization. The selected feature set is subjected to a 
support vector machine for classification. The results 
demonstrate that patterns of adherence based on the data 
from relatively unobtrusive behavior monitoring can make 
reliable inference for mild cognitive loss individuals. 

Index Terms— cognitive loss detection, medication 
adherence, continuous monitoring, pattern recognition 

1. INTRODUCTION 

Medication adherence can be a complex cognitive behavior 
for elderly due to age-related declines in cognitive 
functioning [1]. Recently Hayes and her colleagues 
investigated a group of independently-living elderly and 
demonstrated that early cognitive changes contributed to 
lapse of medication adherence [2]. The goal of our research 
is to develop algorithms for detecting changes of cognitive 
decline for aging people based on their capacity to comply 
with medication regimens. Our initial results showed that 
medication adherence behavior could be a cue to detect mild 
cognitive loss individuals from cognitive health individuals 
[5]. In this study, we explore a complete set of features and 
apply an alternative classifier - support vector machine 
(SVM) to the task of discriminating between healthy 
individuals and those with early cognitive loss, on the basis 
of medication adherence behavior. The results demonstrate 
that patterns of adherence based on the data from relatively 
unobtrusive behavior monitoring can be a reliable detector 
for mild cognitive loss individuals. 

2. COHORT AND DATA 

Forty independently-living elder subjects were recruited for 
the study [2]. All had baseline Mini-Mental State 
Examination (MMSE) scores greater than 24, and Clinical 

Dementia Rating (CDR) of 0 or 0.5. Subjects were divided 
into two groups based on their memory function as assessed 
by Alzheimer’s Disease Assessment Scale-Cognitive 
(ADAS-Cog) scores. Graham’s normative ADAS-Cog data 
[4] were used to generate an age-adjusted 95% confidence 
interval for cognitively healthy individuals. 

We define the High Cognitive Performer (HCP) group 
as those subjects whose age-adjusted ADAS-Cog scores fell 
within this interval (N=19), and the Low Cognitive 
Performer (LCP) group as those subjects whose scores fell 
outside this interval (N=21).  After the data collection, 
results from two individuals were removed for this study: 
data from one HCP subject was corrupted by equipment 
failure, and one LCP subject met the clinical standard for 
mild cognitive impairment (MCI), greater cognitive loss 
than the intended target population.  This left 38 subjects, 
N=18 in the HCP group and N=20 in the LCP group. 

Subjects were instructed to take vitamin C tablets twice 
daily at agreed-upon times, one in the morning, and one in 
the evening. Their behaviors were monitored by an in-home 
device, called MedTracker, developed by Hayes et al [3]. 
The device consists of a seven-day pillbox instrumented to 
record the time of opening of the compartments. Event 
times are stored in an on-board buffer and transferred from 
the device by Bluetooth wireless every two hours. 

Subjects were monitored for approximately five weeks.  
A sample time series of events (from the HCP group) 
recorded by the MedTracker is shown in Figure 1. Dots 
mark the compartment openings, and crosses mark the 
missed doses. The two solid horizontal lines (at 
approximately 6:00am and 5:30pm) mark the planned dose 
times (explained below) for this subject. The dashed 
horizontal lines bound a window one hour before and two 
hours after the planned dose times. 

3. CLASSIFIER CONSTRUCTION 

The classification study is to assess the MedTracker as an 
indicator of cognitive health. The goal is to select the most 
discriminatory feature combinations of medication 
adherence and evaluate the efficacy of SVM classifier on 
the discrimination of the LCP individuals and the HCP 
individuals. We adopt the classification accuracy to estimate 
the quantitative efficacy.  



3.1 Data Preparation 

Three aspects of the subjects’ dose-taking behavior created 
the need for some care in the data analysis. First, although 
instructed to take one dose in the morning and one in the 
afternoon, the noon hour was not a reliable boundary 
between events for each subject due to non-adherence in the 
data. To determine an appropriate boundary between the 
two sets of events for each subject, we clustered the 
subject’s events into morning and evening groups using the 
Matlab function clusterdata. The algorithm returned a good 
partition except on two subjects with outliers. We manually 
corrected the clustering by excluding the outliers when 
doing the clustering and then restoring those outliers back to 
one or the other group based on the visual inspection of the 
data. Second, ideally two doses in the morning and in the 
afternoon were in the same day (within 24 hours), but three 
subjects had several afternoon events cross midnights. To 
include these events within 24 hours, we shifted all of the 
events two hours early for these subjects. Third, although 
each subject agreed on the planned AM and PM times for 
their doses, their actual median dose times deviated 
considerably from their plan. For analysis we define a 
surrogate planned time for the AM dose as the median time 
for all morning events in a subject (rounded to the nearest 
half-hour) due to non-adherence. Planned time for the PM 
dose is similarly defined. The median times are shown by 
solid horizontal lines in the example time series in Figure 1.  

3.2 Feature Extraction 

The goal of the feature study is to evaluate the discriminate 
power of the features on the discrimination between the 
LCP group and the HCP group. We adopt the leave-one-out 
cross validation and information theoretic measures for 
feature selection. We apply the selected feature set to the 
SVM for classification. 

3.2.1. Description of feature set 

In the initial study [5], we summarized the time series by 
four features that describe the subject’s dose behavior. We 
demonstrated that not all of the features are equally useful 
for discriminating between the two groups. In this study, we 
added features that captured the correlation statistics of 
inter-dose timing. Figure 2 shows the inter-dose timing. 
Feature1 is the percentage of the individual’s events for 
which the dose is taken close to the planned time; no more 
than one hour before or two hours after the planned (that is, 
the median AM or PM) time; Feature2 is the percentage of 
days with no less than two compartment openings; Feature3 
is the standard deviation of the time of the evening dose; 
and Feature4 is the standard deviation of the time of the 
morning dose. Features 5 and 6 are the standard deviation of 
the difference between corresponding two dose events. 
Features 7-10 are correlation features, which are the 
covariance measuring the nature of the association of two 

dose events. If they are statistically independent, the 
covariance is zero. Features 11-14 are correlation 
coefficients of the corresponding two events. 

A complete list of the full feature set with the 
associated equations is shown in Table 1. Let Ntaken denote 
the total number of the taken events as the planned time 
(defined in Section 2.3), Nmissed denote the total number of 
the missed events and the taken events not as the planned 
time,  Nprescribed denote the total number of the events as the 
prescribed (at least two doses in a day), Nindates denote the 
dates which are not out of town, Std denote the standard 
deviation and E denote the expectation operator. Below we 
will discuss how we choose the optimal subset of features to 
obtain good classification. 

3.2.2 Reason for reduced cohort 

The correlation features involved two-dose events, so we 
had to pre-process data to generate the correct features. 
First, we selected the last events when there were multi-
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Figure 1: MedTracker event time series. Dots are the morning 
events and the afternoon events. Solid lines are the median of 
morning times and the median of evening times. Dash lines are the 
leeway of compliance of the set time (one hour before the set time 
and two hour after the set time). Crosses are the missing events. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure2: An illustration of the inter-dose timing. The morning and 
evening event times for day i are denoted as AMi and PMi.  The 
difference of the AM event of day i from  the AM mean is denoted 
as ∆T1,i  and  the difference of the PM event of day i from  the PM 
mean is denoted as ∆T2,i. 
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events happened in the morning or in the afternoon. We 
selected the dates when both events (morning event and 
afternoon event) happened in the same date and the date 
after and removed the dates with missing events. Second, 
we excluded three subjects containing less than three-day 
events from the LCP group because we needed at least three 
days with both events in the morning and in the afternoon to 
calculate correlation coefficients across days. Thus we had 
35 subjects (20 HCP and 15 LCP). 

3.2.3. Feature Selection 

Due to the huge number of overall possible feature 
combination subsets, the exhaustive cross-validation 
evaluation strategy is not feasible. Consequently, we 
employ an information theoretic feature ranking and 
selection strategy [9] to identify a worthy subset of features 
and then conduct extensive leave-one-out cross-validation 
procedure [6,7] on the selected features. Specifically, we 
employ kernel density estimation and mutual information 
(KDE-MI) method to rank the features. 

Feature set {1, 2, 3, 4, 10, 12, 13} were selected as the 
top feature subset for the exhaustive search for further 
reduction. To identify the subset of features with the most 
discriminative power, feature ranking is performed on the 
14 features described in Table 1 using the mutual 
information based greedy search technique. Ranking with 
KDE-MI proposed features {1, 6, 2, 12, 8} as the top five. 
The validation results for individual feature showed that 
features {1, 2, 3, 4, 6, 10, 12, 13} are the top eight features.  
This information was combined to arrive at a final feature 
subset {1, 2, 3, 4, 10, 12, 13} for exhaustive cross-
validation evaluation (We did not select features 6 & 8 
because they contained similar information with features 10 
& 12, based on the formulas in Table 1). 

3.3 Classifier Description  

Our goal in classification is to build a classifier that uses an 
appropriate combination of the features as input, and 
accurately assign individuals to the LCP or the HCP groups.  
We adopt SVM [7,8] as the classifier. 

3.3.1 Support Vector Machine 

A radial basis (Gaussian kernel) SVM is used in this study. 
The SVM is optimized to construct a maximum-margin 
separating hyperplane by mapping input vectors to a higher 
dimensional space. The separating hyperplane is the 
hyperplane that maximizes the distance between the two 
parallel hyperplanes on each side of the boundary touching 
the closest data (support vectors) from each class. The 
assumption is that the larger the margin between these 
parallel hyperplanes the less the generalisation error will be. 
A cost parameter C in the optimality criterion controls the 
number of support vectors and the trade-off between 
learning error (margin) and model complexity (the size of 
the slack variables). A larger C corresponds to assigning a 

higher penalty to errors (when the classes are not separable 
by a hyperplane in the feature space). To find the optimal 
hyperplane, the SVM is trained and optimized by solving a 
convex quadratic programming problem. After training, the 
optimal Lagrange multiplier for each sample and weights 
are obtained. The support vectors, which are the data points 
lying at the border of the margin have non-zero optimal 
solutions for their coefficients in the final discriminant, 
while others converge to zero weights, thus leading to a 
sparse nonparametric forward discriminant function. 

The kernel size and the cost parameter C can be chosen 
by users. However, to avoid overfitting, we adopt a leave-
one-out cross-validation to adjust these regularization 
parameters, the kernel size σ and the cost parameter C. The 
leave-one-out procedure is conducted on the training 
session to select the optimal parameters and the parameters 
are then applied to the independent test data to do the 
classification. 

Table 1: A list of the complete feature set 

Feature 
Number 

Feature Name Equation 

1 As planned 
100×

+ missedtaken

taken
NN

N
 

2 As prescribed 
100×

indates

prescribed

N

N
 

3 PM_STD )( iPMstd  
4 AM_STD )( iAMstd  
5 STD of PM - AM )( ii AMPMstd −  
6 STD of PM-to-

next-AM 
)( 1 ii PMAMstd −+  

7 PM-to-next-PM 
correlation 

[ ]1,2,2 +Δ⋅Δ ii TTE  

8 PM-to-next-AM 
correlation 

[ ]1,1,2 +Δ⋅Δ ii TTE  

9 AM-to-next-AM 
correlation 

[ ]1,1,1 +Δ⋅Δ ii TTE  

10 AM-to-PM 
correlation 

[ ]ii TTE ,2,1 Δ⋅Δ  

11 PM-to-next-PM 
correlation 
coefficient 

[ ]
[ ] [ ]21,2

2
,2

1,2,2

+

+

Δ×Δ

Δ⋅Δ

ii

ii

TETE

TTE
 

12 PM-to-next-AM 
correlation 
coefficient 

[ ]
[ ] [ ]21,1

2
,2

1,1,2

+

+

Δ×Δ

Δ⋅Δ

ii

ii

TETE

TTE
 

13 AM-to-next-AM 
correlation 
coefficient 

[ ]
[ ] [ ]21,1

2
,1

1,1,1

+

+

Δ×Δ

Δ⋅Δ

ii

ii

TETE

TTE
 

14 AM-to-PM 
correlation 
coefficient 

[ ]
[ ] [ ]21,2

2
,1

,2,1

ii

ii

TETE

TTE

Δ×Δ

Δ⋅Δ
 



3.3.2 Parameter Regularization  

Due to the small number of samples, we adopted leave-one-
out cross validation (jackknife) for parameter regularization 
of the classifiers. For each of the (27-1) possible 
combinations of input features, we trained the SVM 
classifier, choosing as the optimal kernel size σ and cost 
parameter C for the SVM (from discrete sets) that gave the 
best validation performance. Validation performance is the 
average of the classification rate of 35 classifiers, each of 
which is trained on a different 34-sample training set, and 
evaluated on a one-sample validation set. The discriminative 
ability of each feature combination is measured using the 
validation accuracy achieved with the optimal parameters. 

4. GENERALIZATION PERFORMANCE  

Having selected the optimal feature set, we want to estimate 
the classifier performance on an independent test set not 
used for training or adjusting regularization. Again, the 
scarcity of samples suggests we adopt leave-one-out cross-
validation scheme. With a regularization parameter to 
choose, this is a two-loop cross validation-process                 
(O(N(N-1)) complexity in the number of samples). We 
sequentially select one subject as the test set, and use the 
remaining 34 subjects as the development set.  In the 
development set, we do another leave-one-out cross-
validation to determine the optimal kernel size σ and cost 
parameter C for the SVM. Then we train a classifier on the 
complete development set and apply it to the single-sample 
test set. We repeat this over all 35 development-test 
partitions and report the total number of misclassified test 
samples as the test set error. 

We conducted this exhaustive validation of SVM 
performance using features {1, 2, 3, 4, 10, 12, 13}. The 
feature combinations {1, 2, 3}, {1, 2, 12}, and {1, 2, 13} 
achieved the best validation results which equaled to 0.83. 
Therefore we conducted the tests on these three feature 
configurations. The test results are shown in Table 2. The 
feature set {1, 2, 3} misclassified 9 of the 35 examples 
(correct rate 0.74). The 95% confidence limit computed 
using binomial statistics assuming a Bernoulli trial model on 
this classification  rate is [0.58, 0.86]. 

5. DISCUSSION 

The results show that the viability of making reliable 
inference for mild cognitive loss on the individuals from the 
MedTracker data. It is hard to expect good performance due 
to the small number of samples and the short data streams. 
Since not all of the features are equally useful for 
discriminating between the LCP and HCP groups, selecting 
proper subset of candidate features is crucial. Future work 
will investigate the application of statistical pattern 
recognition techniques to long term medication adherence 
for the purpose of detecting emerging cognitive decline and 
identifying change points. 
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Table 2: SVM Test on 35 subjects (validation result = 0.83) 

Feature Combination Accuracy 
1+2+3 0.74 
1+2+12 0.60 
1+2+13 0.63 


