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ABSTRACT 
Ischemic stroke is the most prevalent catastrophic 
disease of the brain. Various animal models have been 
used to study the disease. The majority of the models 
are based on induction of focal ischemic cerebral 
necrosis, followed by exhaustive morphometric 
analysis of the tissues. Despite recent advances in 
machine learning and image processing, neurological 
damage evaluations are still based on tedious manual 
or semi-automatic segmentation of brain images. We 
demonstrate a method that uses active contours 
combined with a kernel annealing approach to 
automatically segment the brain organs of interest, as 
well as a simple feature that highlights the contrast 
between normal and infarct brain tissue for automated 
analysis. The automated segmentation and analysis 
solution will be useful for increasing the productivity 
of experimentation and removing investigator bias 
from the data analysis. 

 
1. INTRODUCTION 

Stroke research is often performed in small animal 
models, including rodents. The ischemic stroke is usually 
induced experimentally, and the effect or benefits of 
various interventions, including new drugs, are evaluated. 
The process requires sophisticated and reliable imaging 
and analysis of the neurological damage in the affected 
hemisphere of the brain. The results of these experiments 
help identify new molecular targets for better treatment or 
prevention of stroke. Brain image analysis in experimental 
stroke has been performed either manually or semi-
automatically by using basic image processing tools [1-3]. 
In brief, in most rodent experiments, ischemic stroke is 
induced by temporal or permanent occlusion of one of the 
middle cerebral arteries. Part of the brain that does not 
receive sufficient blood supply develops an ischemic 
infarct (necrosis) within hours to days. Once the brain is 
removed, it can be sliced into standard size segments, and 
the necrotic region, usually visible on the affected side of 
the brain, can be visualized with a special stain. The 
infarcts then can be quantified (e.g., in percentage of 
ipsilateral or contralateral area, or in volume) using 
morphometric analysis. Automatic image segmentation of 
the brain, certain organs of interest in the brain, and the 
infarct region will enable fast, accurate and reliable 
analysis of the desired statistics by removing investigator 
bias from the data analysis. 

Earlier image segmentation methods are based on 
thresholding the edge-map of the image to build the 
segment contours [4]; however, these methods are 
applicable only if the intensity values contain sufficient 
information. More recent methods include split and merge 
approaches and region-based approaches, which have the 
advantage of low computational cost, but suffer from the 
sensitivity to design parameters, which may lead to 
unstable solutions [5,6]. Nonparametric clustering based 
approaches can be employed to circumvent these 
difficulties; however, the success of this approach relies 
on the construction of features that will lead to 
perceptually relevant and important clusters [7]. A 
relatively recent proposal that improves upon the edge-
map technique is the use of active contours (snakes) [8]. 
Original snakes suffer from low capture range with 
respect to a particular initialization, and poor convergence 
towards boundary concavities [9]. Mainly due to the low 
capture range problem the use of snakes for image 
segmentation is very limited, and if it is not initialized 
close to the true boundary, the snake is likely to converge 
to a wrong solution. To provide the required good 
initialization for snakes, in some applications, rather than 
using it as the segmentation algorithm by itself, snakes are 
only used in the postprocessing of another segmentation 
algorithm as a fine-tuning step.  

Gradient vector flow formulation overcomes these 
drawbacks by introducing another class of external forces 
for active contours [9]. As long as the majority of the 
contour that defines the boundary is detected by the edge 
detection step, even coarse initializations will lead to good 
segmentation results for images with relatively constant 
foreground and background. But still, in cases where 
either the foreground or the background –or maybe both- 
has a texture with high variations, the edges resulting from 
texture might attract the active contour. This presents a 
significant challenge for the particular brain image 
segmentation problem we aim to solve. Especially, the 
neurologically damaged portion of the brain has a sharply 
varying texture. In general, we have observed that fine-
tuning the parameters of the snakes to identify the desired 
segments properly (assessed by visual inspection) is a 
daunting task. This is still true in the gradient vector field 
formulation, where an additional parameter controls the 
trade-off between robustness and suboptimality for noisy 
or highly textured images. More significantly, the interval 



of parameter values that provide the visually-almost-
optimal result may vary for each particular image 
(different slices of the same brain). 
 Our goal is to develop an automated brain image 
analysis system for rigorous neurological studies of the 
brain to assess the effects of ischemic strokes. The final 
solution is envisioned to utilize atlas-based brain-organ 
boundary initialization followed by active contour based 
organ segmentation and feature/clustering-based infarct 
classification. To this end, this paper contributes the 
following: (1) we incorporate a deterministic kernel 
annealing procedure to increase the robustness of gradient 
vector flow based active contours for brain segmentation, 
(2) we propose a simple feature that improves the contrast 
between the infarct and healthy regions, enabling accurate 
clustering based segmentation of these two types of tissue.  
 

2. PARAMETRIC SNAKE MODEL AND 
CONVOLUTION SMOOTHING 

The parametric snake model was originally proposed by 
Kass and colleagues [8] and revisited by Xu and Prince 
[9]. A two dimensional snake c(s)=[x(s),y(s)] is a closed 
contour parameterized by the parameter s varying between 
0 and 1. For a particular image, the optimal snake is the 
curve that minimizes the following energy functional: 
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In this formulation α, and β define the weights to adjust 
the tension and the rigidity of the snake, where these 
values are defined as the magnitude-squared integral of 
the first and second derivatives of the snake with respect 
to s. Hence, the first two terms in (1) define the internal 
energy function. The externally defined part of the energy 
function, Eext, is determined by the image features. A 
proper Eext takes smaller values at the boundaries of 
segments. For binary images (pixels intensities are 0 or 1), 
a suitable external energy functions is 

, where G(x,y) is a Gaussian 
function that is introduced to eliminate some local minima 
and to increase the capture range [8]. Distance potential 
forces are also introduced as an alternative way to 
improve the capture range [10], however, these do not 
address the problem of concavities. For grayscale images, 
a typical energy function is the negative magnitude of the 
spatial gradient of intensities. The smoothened energy 
functional is 
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 By manipulating the width of the kernel (window size 
for rectangular kernels, standard deviation for Gaussian 
kernels), one can control the amount of smoothing in 
order to overcome the low capture range difficulty around 
boundaries. Wider kernels will remove small fluctuations 
in Eext by blurring the force field and the boundaries, thus 
will increase the capture range increases. 
 The optimizer of the objective function in (1) should 
satisfy the following Euler equation 
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which can be rewritten as a force balance equation as 
reorganizing the forces resulting from the internal and 
external energy functions. Explicitly, 
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and the resulting balance equation is 0int =+ extFF . The 
solution to (3) is obtained by a iterating a suitable fixed 
point algorithm: 
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3. GRADIENT VECTOR FLOW 
Gradient vector flow (GVF) addresses the low capture 
range issue and solves the concavity problem at the same 
time [8,9]. A static external gradient vector field v(x,y) is 
defined. Replacing extE−∇  with v(x,y) yields 
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 Clearly, as desired, v takes its larger values at the 
boundaries, since it is built on a feature map f(x,y) that has 
larger values at the object boundaries, but v is not 
necessarily maximized exactly at the edges. Nevertheless, 
the induced suboptimality effect is weaker than kernel 
smoothing that would provide the same capture range. A 
natural f(x,y) is extE−∇  for any suitable Eext of choice. For 
any given f, v(x,y)=[u(x,y), v(x,y)] is the minimizer of 
 ( )∫∫ ∇−∇++= dydxffvuS 2222 )( vμ  (5) 

The criterion in (5) is designed to reduce problematic 
features of f while preserving its desirable qualities, with 
the parameter μ controlling the trade-off [9]. 
 The GVF formulation diminishes two major problems 
present in the original snakes, but still the technique is 
susceptible for noisy or textured images. It also suffers 
from sensitivity to parameter selections – specifically for 
the brain images we have, the intervals of parameter 
values that yield proper results are quite narrow. 
 

4. KERNEL AND THRESHOLD ANNEALING 
The method we propose is based on the GVF technique 
where the optimal vector field v is determined for a 
smoothened and thresholded Canny edge-map of the 
original image. Specifically, we let 
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where Ecanny is the binary Canny edge map of the image, T 
is the annealed edge-detection threshold, and Kσ is a 
suitable smoothing kernel.1 The kernel size is annealed 
logarithmically and the threshold is annealed linearly. The 
force field v is calculated from (5) at each annealing step. 
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 When these annealing procedures are incorporated 
into the calculation of the force fields: (i) annealing of the 
threshold helps to initially eliminate spurious edges (these 
might include some portions of the actual target 
boundary), while asymptotically all significant edges are 
recovered; (ii) annealing of the kernel size helps to 
initially avoid local minima but asymptotically approach 
the global minimum of the original energy functional as 
determined from the low-threshold edge map given by (2). 
The proposed annealing procedure is motivated by the 
well known theory of smoothing functionals in global 
optimization [11], and our previous experience with 
kernel annealing for global optimization of nonlinear 
systems [12]. Feature space annealing has been 
established as a method for seeking robust solutions in 
noisy feature spaces [13]. The algorithm is summarized in 
Table 1. 

Table 1. Summary of the proposed algorithm 
 
1. Determine the binary Canny edge map Ecanny for the image 
(or use any binary/continuous edge detector). 
2. Start annealing loop by setting a large kernel size σ and a 
large threshold T. 

i) Determine f using (6) 
ii) Determine v by minimizing (5) 
iii) Iterate the snake c using (4) and  extE∇=v
iv) Anneal σ and T, go to (i), if stopping criterion 

reached, stop. 

 
5. AUTOMATIC BRAIN IMAGE SEGMENTATION 
AND NEUROLOGICAL DAMAGE DETECTION 
 We are particularly focusing on the automated 
segmentation of brain images acquired through a 
microscope-camera system that generates high-resolution 
photographs of the brain laid on grid-paper, where the 
grids are used for pixel-length conversions to calculate 
volumes. The automation will enable a more accurate (less 
bias and variance) neurological damage assessment due to 
ischemic strokes in rodents. The main organ of interest is 
the cortex. Specifically, in this paper, we will focus on: 

(i) finding the brain boundary in the image, 
(ii) finding the cortex boundary in the brain, 
(iii) determining the infarct region  
The first two are achieved by adapting two snakes 

initialized manually to the vicinity of the desired objects; 
the brain snake is initialized as an ellipse that contains the 
brain, and the cortex snake is initialized as an ellipse 
contained in the cortex, based on visual inspection of the 
images. The third problem is solved by determining a 
discriminative feature that emphasizes the separation 
between healthy and infarct portions. Specifically, a 
feature map g(x,y) is evaluated for each pixel coordinate 
(x,y) as the root-mean-squared intensity in a square 
neighborhood centered around the pixel as follows: 
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The neighborhood size we used is L=5. Once this feature 
is extracted for each pixel, any clustering algorithm (or 
classification algorithm if labeled training data is 
available) can be utilized. The feature given in (7) has 
worked successfully in clustering the infarcts and healthy 
portions on the images available to us using simple 
thresholding. The results for brain and cortex 

segmentation as well as infarct classification are shown in 
Fig 1 for two sample slices (from front and back) from our 
image database. 

 
6. CONCLUSIONS 

Ischemic stroke is the most prevalent catastrophic disease 
of the brain. Affects of this disease on the brain is studied 
by inducing stroke in small rodents, imaging the extracted 
and sliced brain under a microscope, and manually 
analyzing the images to quantify the amount of 
neurological damage to the affected hemisphere. The 
automation of this image analysis procedure would benefit 
the basic scientific research in this important field by 
eliminating human bias and variance and increasing the 
speed of analysis, while reducing workload and 
dependency on trained analysts (who undergo months of 
supervised training to come to an acceptable level). 
 In this paper, we presented an active contour based 
segmentation approach to identify the brain and internal 
organs. The active contours are trained in an annealing 
loop in order to achieve global optimization. To classify 
the damaged portion of the brain, a simple feature is 
derived based on visual inspection and it is shown to 
achieve high classification accuracy through simple 
threshold based clustering. 
 Future work will (i) incorporate atlas-based 
initialization of active contours to segment the brain and 
the organs of interest, (ii) three-dimensional deformable 
image registration between segmented brain slices and 
internal organs to determine proper 3-D segmentation of 
the volumetric regions, (iii) investigate other useful 
features that will help discriminate neurologically 
damaged tissue from healthy tissue (iv) incorporate 
expert-labeled data to achieve supervised classification of 
these tissues. Based on our experiences with the current 
images, we are also planning to improve the image 
acquisition setup in order to facilitate the segmentation 
procedure using active contours and classification 
techniques. Modifications will include realigning the light 
source and the camera to minimize shadow effects, using 
a better quality microscope and a color camera 
combination, and blank background to eliminate the 
unnecessary challenge resulting from the grids. 
 

 



     
Slice 1 (front) 

      
 Slice 1 (back) 

     
Slice 2 (front) 

      
Slice 2 (back) 

Figure 1. The contours obtained for the brain (left), cortex (middle) and the damaged portion (right) for two brain slices each for top 
and bottom view.   
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