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ABSTRACT 
 
Under the assumptions of non-Gaussian, non-stationary, or non-
white independent sources, linear blind source separation can be 
formulated as a generalized eigenvalue decomposition problem. 
Here we provide an elegant method of doing this online, instead of 
waiting for a sufficiently large batch of data. This is done through a 
recursive generalized eigendecomposition algorithm that tracks the 
optimal solution, which is obtained using all the data observed. The 
algorithms proposed in this paper follow the well-known recursive 
least squares (RLS) algorithm in nature. 
 
 Index Terms— Independent component analysis, blind 
source separation, generalized eigendecomposition, cumulants 
 

1. INTRODUCTION 
 
Independent component analysis (ICA) is an important statistical 
tool in signal processing and machine learning, both as a solution 
to the problem of blind source separation (BSS) [1,2] and as a 
preprocessing step that complements a more comprehensive 
solution as in dimensionality reduction and feature extraction [3,4]. 
To implement these applications feasibly on contemporary digital 
signal processors (DSP), online learning algorithms are required.  

Currently, the online ICA solutions are obtained using 
algorithms designed with the stochastic gradient concept (e.g., 
Infomax [6]). The drawbacks of stochastic gradient algorithms in 
online leaning include difficulty in selecting the step size for 
optimal speed misadjustment trade off and suboptimal estimates of 
the weights given all the samples seen at any given iteration. 

Recursive least squares (RLS) is an online algorithm for 
supervised adaptive filter training, which has the desirable property 
that the estimated weights correspond to the optimal least squares 
solution that one would obtain using all the data observed so far, 
provided that initialization is done properly [7]. This benefit comes 
at a cost of additional computational requirements compared to 
LMS. Nevertheless, it would be beneficial in certain ICA 
applications to track at each step the optimal solution given all the 
data up to the step. The joint diagonalization of higher order 
statistics have been known to solve the ICA problem under the 
assumed linear mixing model and have lead to popular algorithms 
like JADE [8]. This motivates the derivation of a recursive 
generalized eigendecomposition (GED) based ICA algorithm that 
is similar to RLS in principle, but solved by the simultaneous 
diagonalization of the second and fourth order joint statistics of the 
observed mixtures. This can be done in three major ways, assuming 

the sources are non-stationary and decorrelated [9], non-white and 
decorrelated [10], or nonGaussian and independent [11]. 

In this paper we contribute recursive BSS algorithms (RBSS) 
based on recursive generalized eigendecompositions of cumulants. 
The algorithms are demonstrated on separation of instantaneous 
linear mixtures of speech through Monte Carlo simulations. 
 

2. RECURSIVE ICA ALGORITHM 
 
The square linear ICA problem can be expressed as  
 =X AS  (1) 
where X  is the n N×  observations matrix, A  is the n n×  
mixing matrix, and S  is the n N×  independent sources matrix. If 
we consider each column as a sample in time, (1) becomes 
 t t=x As . (2) 
The joint diagonalization of the covariance matrices and higher 
order cumulant matrices can be compactly formulated in the form 
of a generalized eigendecomposition problem that gives the ICA 
solution an analytical form [12]. According to this formulation, 
under the assumptions of non-Gaussian, non-stationary, or non-
white sources, the separation matrix W  is the solution to the 
following generalized eigenvalue problem, 
 = ΛX XR W Q W , (3) 

where 
X

R  is the covariance matrix and XQ  is a cumulant matrix 
for non-Gaussian and independent sources, the covariance matrix 
at a different time instant for non-stationary  and decorrelated 
sources, or the cross-correlation matrix for a certain time delay for 
non-white and decorrelated sources. Λ  is a diagonal matrix related 
to the cross statistics of the sources. Here the recursive algorithms 
for these cases are presented. 
 
2.1. Non-Gaussian and independent sources 
 
For this case, XQ  is the cumulant matrix estimated using sample 
averages. While any order of cumulants can be employed, lower 
orders are more robust to outliers and small sample sizes, so we 
focus on the fourth order cumulant matrix, which is given as 

*( )H H T HE trace E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦X X X X XQ x xxx R R xx x x R R  (4) 

where Hx  , Tx  and *x  represent Hermitian transpose, 
transpose, and complex conjugate of x , respectively. With 
independent identically distributed samples, expectations 
reduce to sample averages for covariance and cumulant 
matrices.



Then one can define recursive update rules for the estimates of the 
covariance and cumulant matrices, R  and Q . The recursive 
update rule for the covariance matrix is 
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−
= +R R x x  (5) 

and the update rule for the cumulant matrix is given by 
 * 2( )t t t t x x xtrace= − − −Q C B B R R R . (6) 

C  is [ ]H HE x xxx  and its estimate can be updated as 
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B  is [ ]TE xx  and its estimate can be updated as 
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The following recursive update of 2R  can be obtained by squaring 
(5). 
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For further computational savings we introduce the vector tv  as 

1t t t−=v R x  and we can obtain 1−R  and 1−R Q  by iterating to 

avoid matrix multiplications and inversions having 3( )O n  
computational load. These two matrices are required for the fixed 
point algorithm that solves for the generalized eigendecomposition 
which is discussed later. Employing the matrix inversion lemma 
[7], the recursion rule for 1−R  becomes 
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11 ( 1)
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t t t t
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t t
t t α

− −
−= −

− −
R R u u  (10) 

where tα  and tu  are defined as 

 1
1( 1) H

t t t t t ttα −
−= − + =x u u R x . (11) 

Here we also define the matrix D  as 
 1

t t t
−=D R Q . (12) 

A recursive update rule can also be obtained for D  through 
combination and simple manipulation of equations (6) and (10) to 
save computation. 
  
2.2. Non-stationary and decorrelated sources 
 
In this case, xQ  is the covariance matrix [ ]H

k kE x x  where k  is at 

a different time than that used to calculate xR .  For computation, 
we can estimate the expectations of the two covariance matrices by 
sample averages of the data points in non-overlapping windows, 
both with lengths close to the stationarity time of the signals.  Then 
the update rule for xQ  is  

 1

1 1 H
k k k k

k
k k−

−
= +Q Q x x     (13) 

and that for xR  is 
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1 1 H
t t t t

t
t t−

−
= +R R x x     (14) 

where 1k =  and 1t =  are the beginning times for the two non-
overlapping windows on the data. 
 

2.3. Non-white and decorrelated sources 
 
When the sources are non-white and decorrelated, xQ  in (3) can 
be taken as the symmetric cross-correlation matrix with a time 
delay, i.e., 
 [ ]H H

x t t t tE τ τ+ += +Q x x x x .    (15) 
This can be estimated online using 

 1

1 1
( )H H

t t t t t t

t
t t τ τ− + +

−
= + +Q Q x x x x .   (16) 

τ  is chosen so that autocorrelation terms in 
x

Q  are nonzero. 
 
2.4. Deflation procedure 
 
Having the update equations, the aim is to find the optimal solution 
for the eigendecomposition for the updated correlation and 
cumulant matrices in each iteration. As given by (3) we need to 
solve for the weight matrix W . We will employ the deflation 
procedure to determine each generalized eigenvector sequentially. 
Every generalized eigenvector 

d
w  that is a column of W  is a 

stationary point of the function 

 ( )
H

H
J =

w Rw
w

w Qw
.    (17) 

This fact can easily be observed by taking the derivative of the 
expression on the right of (17) with respect to w , and equating it 
to zero which will result in 

 
H

H
=

w Rw
Rw Qw

w Qw
.    (18) 

This is the equation for generalized eigendecomposition, the 
eigenvalues being the value of the objective function ( )J w  given 
in (17) evaluated at its stationary points. Thus the fixed point 
algorithm becomes 

 1
H

H

−←
w Rw

w R Qw
w Qw

.   (19) 

This fixed point optimization procedure converges to the largest 
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Figure 1. SIR (dB) for Fast-ICA, and the proposed RBSS using 
the assumptions of nonGaussianity, nonstationarity and 
nonwhiteness as described in section 2 with the condition 
number of the mixing matrix as 40. 



generalized eigenvector (the one corresponding to the largest 
eigenvalue) of R  and Q , and the deflation procedure is employed 
to manipulate the matrices such that they have the same 
generalized eigenvalue and eigenvector pairs except for the ones 
that have been determined previously [13]. The larger eigenvalues 
are replaced by zeros in each deflation step. Note that in this 
subsection the time index is implicit and omitted for notational 
convenience. With d  denoting the dimension index, the deflation 
procedure employed while iterating the dimensions is given by 

 
1 1 1

1 1 1

1

1

.

H
d d d
H
d d d

d

d d

dI − − −

− − −

−

−= −

=

⎡ ⎤
⎣ ⎦

Q w w

w Q w
Q

R R

Q
    (20) 

The deflated matrices are initialized to 1 =Q Q  and 1 =R R . 
Obtaining the new matrices, we employ the same fixed point 
iteration procedure given in (19) to find the corresponding 
eigenvector. Given (19), it is clear that iterating 1−R  and D  as 
suggested will result in computational savings. The deflation rules 
for these matrices can be deduced easily. The deflation of 1−R  is 

1 1
1d d

− −
−=R R .     (21) 

Similarly, the deflation rule for D  can be obtained by combining 
(20) and (21) resulting in 
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For each generalized eigenvector, the corresponding fixed-point 
update rule then becomes 

 
H
d d d

d d dH
d d d

←
w R w

w D w
w Q w

.    (23) 

Employing this fixed-point algorithm for each dimension and 
solving for the eigenvectors sequentially, one can update W  and 
proceed to the next time update step. The combination of these 
weight updates, matrix deflation procedures, and recursive 
covariance/cumulant updates give us the Recursive BSS (RBSS) 
algorithms for the three sets of assumptions. The algorithms are 
summarized in Table 1. In theory, these recursive algorithms are 
expected to track the batch GED solutions that one would obtain at 

any given time using all the data available up to that point. In 
practice, random initialization and numerical errors (in updates and 
fixed-point iterations) culminate in some deviation. 

 
3. EXPERIMENTS AND RESULTS 

 
We present results comparing the original GED-BSS algorithms 
[13] with the results of the proposed RBSS algorithm. For 
reference, FastICA [14] results are included in the comparisons. 
Although we initially attempted to include comparisons with the 
stochastic gradient based Infomax [6] algorithm, finding a large 
stable stepsize for each individual run proved to be challenging, 
therefore these results are omitted. The experiments include the 
separation of speech signals from instantaneous linear mixtures. 
The database consists of 10 clips of acoustic signals (5 male, 4 
female, 1 symphony). We select 9 random pairs from this set and 
run 10 Monte Carlo (MC) simulations for each pair. In each MC 
run, a mixing matrix with constant condition number is generated, 
and the RBSS algorithms are randomly initialized to small 
diagonal correlation matrices and random weight matrices. 
Original GED-BSS and Fast-ICA algorithms both run on a batch of 
data, with the batch size increasing by one sample in each iteration. 
The RBSS algorithms operate on-line updating matrices and 
weights using one new sample at a time. All RBSS algorithms and 
FastICA are allowed 5 fixed-point updates per new sample using 
their respective update rules. This means, Fast ICA implements 5 
fixed point iterations over the whole available data set at any given 
time. Comparisons are provided using the standard average signal-
to-interference ratio (SIR) measure in decibels (dB) [15]. 
 Figure 1 shows the performance of Fast ICA, original GED-
BSS and the three RBSS methods for mixture condition number of 
40. The results were very similar, as we would expect for smaller 
condition numbers.  In these cases, the convergence speed is not 
affected by the mixture condition number. The two algorithms 
using non-Gaussianity and independence assumptions, recursive 
ICA [16] and FastICA perform worse than the RBSS algorithms 
using the more suitable non-stationarity and non-whiteness 
assumptions for speech. Figure 2 shows the tracking error between 
the RBSS algorithms and their corresponding GED-BSS 
algorithms. The asymptotic tracking error could be made arbitrarily 
small by letting RBSS algorithms iterate more per sample. 
 

6. CONCLUSION 
 

Online ICA/BSS algorithms are essential for many signal 
processing and machine learning applications, where the ICA 
solution acts as a front-end preprocessor, a feature extractor, or a 
portion of a solution to a larger problem. Though stochastic 
gradient based algorithms motivated by various ICA criteria is 
used in such situations with the advantage of yielding 
computationally simple weight update rules, they do not offer an 
optimal solution at every iteration and choosing an appropriate 
step size is still an inconvenience. In this paper we presented 
recursive BSS algorithms based on the joint digitalization of 
various cross statistics based on three standard assumption sets 
regarding source signals: non-Gaussianity, non-stationarity, and 
non-whiteness. The derivation employs the use of the matrix 
inversion lemma and the update rules for the expectations 
approximated by sample averages. The resulting algorithm, of 
course, is computationally more expensive than stochastic gradient 
type algorithms per update. However, it converges to and tracks 
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Figure 2. Performance difference between the original GED-
BSS and the proposed RBSS for the three different 
assumptions of nonGaussianity, nonstationarity and 
nonwhiteness. 



the optimal solution based on its separation criterion in a small 
number of samples/iterations, even with random initialization. 
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on the 
sources 

Cross-statistics ( xQ ) 
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Recursion rules 
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( Q  is the fourth order cumulant matrix) [11, 12] 
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Deflation and fixed point eigendecomposition steps [13] 
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(fixed point iteration for each dimension, d)  

Table 1: Summary of recursive blind source separation (RBSS) algorithms. 


