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Abstract— In this paper, we employ the AdaBoost 
algorithm to the linear logistic regression model to detect 
encephalography (EEG) signatures, called evoked 
response potentials of visual recognition events in a 
single trial. In the experiments, a large amount of images 
were displayed at a very high presentation rate, named 
rapid serial visual presentation. The EEG was recorded 
using 32 electrodes during the rapid image presentation. 
Subjects were instructed to click the mouse when they 
recognize a target image. The results demonstrated that 
the boosting method improves the detection performance 
compared with the base classifier by approximately 3% 
as measured by area under the ROC curve. 

I. INTRODUCTION 
N a variety of fields, from medical diagnosis to 
intelligence analysis, effective image search through large 

volumes of imagery for important information has become a 
crucial problem for practitioners in recent years. In general, 
computer vision based systems have proven to perform 
poorly relative to human image analysts due to the problem 
of optimizing image throughput. In an attempt to raise the 
efficiency associated with the search process, an effective 
triage system may be developed to leverage human 
perceptual capability. An effective triage mechanism would 
rapidly process high volumes of imagery and identify a 
subset of images that merit careful scrutiny by an image 
analyst.  An ideal triage system might be one that leverages 
human visual processing capabilities in the role of a target 
detector, while dramatically raising the efficiency associated 
with the search process. One key issue to build an efficient 
triage system to exploit human visual processing capabilities 
is to utilize rapid serial visual presentation (RSVP) of 
images and encephalography (EEG).  

Evoked response potentials (ERP) arise from some 
morphological changes in EEG waveforms in response to 

important task-relevant stimuli [1]. Prior research 
demonstrates that ERP in EEG signals, which reflect the 
activity of underlying cognitive processes associated with 
perceptual decision making, may be used to identify targets 
within image sequences presented at very high presentation 
rates [2-4]. During an RSVP task, a continuous sequence of 
images is rapidly presented. The neurophysiological 
response to target images during RSVP is recorded and 
documented. A target image in a sequence of nontarget 
distractor images elicits a stereotypical spatiotemporal 
response in the EEG. ERP could be used in conjunction with 
RSVP of images to dramatically raise the efficiency of 
searching through high volumes of imagery.  
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The challenge of ERP detection is that the system would 
require the capability to detect ERP reliably and quickly. 
ERP are difficult to detect due to its low signal to noise 
ratio. The traditional approaches rely on a strategy of trial 
averaging [5] in which an experimental stimulus is presented 
to a subject many times and the waveforms elicited by each 
stimulus are averaged. Repeated presentation of stimuli 
compromises the efficiency of the search process. In 
domains where efficient ERP detection is critical, accurate 
detection of ERP within a single trial becomes necessary. 
Therefore more efficient signal processing and classification 
approaches are needed for single trail detection of ERP. 

There are various multivariate signal processing 
algorithms applied for EEG detection [6-8]. Linear 
techniques are commonly employed in ERP detection. The 
linear logistic regression model and other two nonlinear 
classifiers had been proved to be effective in single trial 
ERP detection for the RSVP task in our recent work [9]. 
Boosting techniques have undergone intense theoretical 
study and empirical testing. Boosting has been shown to 
give a significant improvement in performance in many 
applications, such as text and speech categorization 
[10][11]. In this work, we applied AdaBoost technique 
based on the linear logistic regression classifier on single 
trail detection of ERP in the context of a triage platform.  
The objective is to investigate efficiency of the boosting 
technique on the performance improvement for ERP 
detection. 

II. METHODS 

A. Data Collection 
1) Data Acquisition 
Subjects were instructed to perform visual target detection 

amongst distractors. Objects of interest, referred to as 
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targets, consisted of satellite photographs of ships or boats in 
the midst of a pool of satellite images around a port/coast 
scene. Both target and distractor images were drawn from a 
common high-resolution, broad-area, satellite image. All 
imagery was presented using the RSVP paradigm as shown 
in Figure 1. Images were presented in rapid succession for 
durations of 50 or 100 milliseconds per image. 

EEG data was collected over the course of little over an 
hour. Each session lasted approximately 20 minutes with a 
5-minute rest between sessions. A fixation screen, which 
lasted several seconds, was used to separate trails. Each trial 
contained a sequence of approximately 50 images. Of the 
trials, 50% contained targets while 50% did not. Each trial 
consisted of a sequence of images in which, if existed, a 
target image was positioned randomly (except at the first 
and last 10 images in the sequence). 

The data were collected using a 32 channel BioSemi 
Active Two system. All channels were referenced to a 
common mean reference. Data was sampled at 256 Hz. 
Image presentation triggers were received by the BioSemi 
system over a parallel port and recorded concurrently with 
EEG signals. A variety of signal processing components 
were implemented for reducing the impact of noise artifacts 
that could compromise ERP detection.  

2) Data Description 
EEG data was segmented into epochs (shown as a trial in 

Figure 1). In the case of target trials, each epoch consisted of 
a two second segment of EEG, one second before, and one 
second after the onset of target stimuli. For the distractor 
trials (no target trials), epochs were extracted around the 
trigger associated with the middle image of each trial block. 
Data associated with each epoch were stored in a 32*512 
matrix (number of channels times EEG samples ranging 
from 1s before to 1s after each target or distractor stimulus). 
Each session yielded 80 to 90 target epochs and 80 to 90 
distractor epochs each. These sets of datasets are referred to 
as one session (collected in one continuous session in real 
time). 

Figure 1. Experimental design.  Subjects viewed trials with 
or without targets. 50% of trial blocks contained targets. 
Fixation screen separated trial blocks. 

The pilot data we used in this work was collected from 
two subjects. The subject was instructed to indicate presence 
of targets by clicking the mouse at the end of each trial 
containing a target. There were three sessions for the each 
subject and the middle session was intended for classifier 
validation. In each session, there are one set data with 
targets and one set of data without targets. The features used 
for classification are simply the temporal EEG 
measurements from 32 channels at 512 time instances 
centered on the target stimuli. 

B. Linear Logistic Regression Classifier 
This is a state-of–the-art linear discrimination approach in 

ERP detection based on logistic regression [6-9]. The linear 
approach relies on the assumption that the EEG signals are a 
linear combination of distributed source activity and zero-
mean white Gaussian measurement noise. Consequently, the 
optimal ERP detection strategy under this assumption is to 

determine optimal linear projections of the sensor 
measurements to maximize discrimination ability.   

A linear discriminant function is defined as linear 
combinations of the components of x =[x1…xn]T, 

bT += xwy  (1)                      
where w is the weight vector, b is the bias and n is the 
number of samples [12].  The linear projections are 
optimized using the logistic regression technique that 
assumes the conditional class probability given the 
projection will follow a logistic model, 
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which is consistent with the Gaussianity assumption.  This 
likelihood is parameterized by the weight vector w and bias 
b. The parameters are adjusted by maximizing the likelihood 
of the data so that the data matches the logistic model 
distribution in (2). In order to compute the optimal 
coefficients efficiently, weighted least-squares was used as 
the objective function and batch gradient descent algorithm 
was used to optimize the parameters [13].  The objective 
function is defined as 
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where ci  is the class label corresponding to input sample xi. 
The gradient for weight updates is simply 
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The weight vector is updated as  

Jkk ∇−=+ μww 1  (5) 

where μ is a constant leaning rate. 



 
 

 

C. Boosting Algorithm: AdaBoost 
Boosting refers to a general and provably effective method 

for improving the accuracy of any given classification 
algorithm. The AdaBoost algorithm, introduced by Freund 
and Schapire has undergone intense theoretical study and 
empirical testing [10][11]. In this work, we applied 
AdaBoost based on the linear logistic regression method. 

Given a training set (x1,c1),…,(xn,cn) where xi is the input 
samples, n is sample numbers and ci ∈ {-1,+1} is the class 
label for each sample in a detection problem. The idea of 
AdaBoost is to create an ensemble of classifiers with 
identical topology sequentially, such that each classifier is 
trained emphasizing the samples incorrectly classified by the 
previous one in the sequence. This is achieved by iteratively 
training classifiers and reweighting the training samples, 
where the weights of incorrectly classified samples are 
increased in the training of the following classifier. The 
ensemble is created by a preselected T iterations/classifiers. 
 The algorithm is initialized by assigning equal 
(importance) weights D1i=1/n to each training sample. For 
t=1,…,T, the sequence of classifiers ht(x) are trained using 
the weights Dt on the training samples, the objective 
function (3) and the weighted gradient 
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Then, the empirical error probability of the current classifier 
hypothesis ht(x) is evaluated using 
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Figure 2. Prob(Detect) vs Prob(FalseAlarm) for subject #1. 
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A positive weight αt that is a monotonically decreasing 
function of the empirical error in the domain εt∈[0,1/2] is 
assigned to the current hypothesis. Specifically, the function 
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is utilized. Note that 0≥tα if 2/1≤tε , and is 
monotonically decreasing. Furthermore, to emphasize the 
samples for which the current hypothesis is unsuccessful the 
training sample importance weights are updated as follows: 
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Before proceedings to the next iteration, Dt+1 is normalized 
to become a distribution. The final hypothesis H(x) is a 
weighted linear combination of the T hypotheses: 
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D. Evaluation 
Receiver operating characteristic (ROC) analysis [14] is 

used to quantify a detection system’s performance in the 
lack of definite risk assignment for the two types of errors 
(miss and false detection). An ROC curve shows the 
relationship between false positives and true positives. In the 

ROC curve the horizontal axis has the percentage of false 
positives and vertical axis has the percentage of true 
positives for a database sample. The final performance of 
this work is assessed using the area under the ROC curve. 
The actual probability of detection error depends on the 
frequency of targets, a factor that is determined by specific 
operational details. 

III. RESULTS 
The goal of the experiments is to determine the effect of 

boosting algorithm on classification performance, as well as 
to assess the feasibility of rapid image search using the 
RSVP paradigm. The dataset was collected from two 
subjects. There were three sessions for the each subject and 
the middle session was intended for classifier validation. 
Each sample is a paired 512-point EEG measurement at 32 
channels centered at the stimulus image and the true label 
(target/distractor) for this image. The data for distractors in 
an epoch other than the selected target image index are 
discarded in this study. For subject #1, there are 166 samples 
for training and 174 samples for test.  For subject #2, there 
are 168 samples for training and 159 samples for test. The 
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Figure 3. Prob(Detect) vs Prob(FalseAlarm) for subject #2. 



 
 

 

study evaluated the session-to-session transfer of 
classification performance. The aim is to compare the 
performance between the base classifier (linear logistic 
regression) with and without the boosting algorithm.1

 In this experiment, we examine the performances of the 
base classifier with and with the AdaBoost technique across 
sessions on subject #1. We investigated training on session 
#1 and test on session #3. Figure 2 depicts the 
discrimination performance for subject #1.  It can be 
observed that the base classifier has an area under the ROC 
curve of around 0.87 while the boosting classifier achieves 
an ROC area more than 0.89. The improvement is around 
0.03. The result demonstrates that the AdaBoost performed 
better than the based method. 

We conducted the same experiment on subject #2. The 
discrimination performance for subject #2 with training on 
session #1 and test on session #3 is illustrated in Figure3. 
We can observe that the based method only has an ROC 
area of 0.83 while the boosting method obtained 0.86, which 
shows a 0.03 improvement. The results indicate that the 
AdaBoost technique does boost the ERP detection 
performance. 

From these results, it is clear that a discriminator trained 
on data from one session generalizes well to data from two 
test sessions, which were separated by over a twenty-minute 
gap. The results demonstrate that the AdaBoost algorithm is 
feasible and useful on across-session ERP detection for both 
subjects. However, the experiment results also suggest that 
more training data are needed to get even better 
performance. 

IV. CONCLUSION 
We studied the effectiveness of the AdaBoost algorithm 

based on the linear logistic regression classifier on single 
trial ERP detection in the context of RSVP target search in 
massive imagery databases. The results confirm that reliable 
visual target detection in large image databases is feasible 
with the RSVP paradigm and classification based on EEG 
measurements. The preliminary results presented here 
demonstrate that the boosting method outperformed the 
based classifier.  

The raw temporal signal-based features coupled with 
dense EEG arrays yield very high dimensional feature 
vectors that make it infeasible to expect good generalization 
given the low sample to parameter ratio. Theoretically the 
performance of boosting will improve the performance for 
given sufficient data. However, in our particular problem, 
given the low number of instances in the datasets we have 
collected, it is reasonable the boosting does not bring huge 
improvements. The future challenges for this field include 
extraction of fewer more reliable features (perhaps wavelet-
based). 

 
1 Previously, we compared various linear and nonlinear classifiers without 
boosting for this data and determined that linear logistic regression provides 
the best complexity-performance tradeoff [9]. 
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