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ABSTRACT 
 
Kernel machines are widely used in pattern recognition, 
exploratory data analysis, and statistical signal processing, 
due to their effectiveness of modeling nonlinear 
dependencies in the data. The computational burden in 
evaluating forward functions in testing is the main 
drawback for kernel machines, especially in high 
dimensional large training set situations. We present a 
separable maximum entropy approximation for kernel 
machines that reduce the computational load for forward 
function evaluation. The performance of the 
approximation is demonstrated on kernel-based 
discriminative nonlinear projections on benchmark 
datasets. 
 
 

1. INTRODUCTION 
 
Kernel methods provide a convenient and principled 
approach to training nonlinear function approximators 
using convex optimization techniques. They have been 
motivated theoretically by the existence of a nonlinear 
eigenfunction mapping that moves the nonlinear problem 
to a high dimensional Hilbert space, where the problem is 
solved using linear techniques. Overall, training and 
testing procedures are carried out using inner products in 
the high dimensional space, which translate to the original 
data space as pairwise kernel evaluations. Kernel principal 
components analysis (KPCA) [1], and kernel linear 
discriminant analysis (KLDA) [2] are widely known 
examples of kernel machines, besides the celebrated 
support vector machines (SVM). 
 Kernel machines, being nonparametric function 
approximators, suffer from high computational 
complexity in forward function evaluation in testing 
phase. Kernel machines typically require the evaluation of 
the kernel between the novel test data and all available 
training data, this is detrimental to fast computation for 
large training sets. The general form of the kernel 
machine is: 
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where the xi are the training samples and αi are the 
associated weights. For the purposes of this paper, how 
the weights are obtained is irrelevant. 

Our objective is to exploit the structure of the input 
feature space to reduce the computation and storage 
requirements of the kernel methods. The approximation 
involves two steps: (i) data clustering in the training set to 
determine compact partitions, (ii) a maximum entropy 
based separable function approximation for the portion of 
the function corresponding to each cluster. Clustering will 
be achieved by a fixed-point mode-seeking algorithm 
similar to mean shift clustering [3]. Parametric 
approximation of each mode is then achieved by a product 
of exponential functions whose parameters are optimized 
using independent component analysis for decomposition 
and maximum entropy principle for parameter fitting in 
each independent dimension. 
 

2. FIXED POINT MODE SEEKING 
 
Given the kernel function Ki(.), the data points 
{x1,x2,…,xN}, and the corresponding weights 
{α1,α2,…,αN}, we need to partition the data into compact 
clusters that contribute to each mode of the kernel 
machine given in (1). This can be achieved by initializing 
a mode seeking algorithm to each training data sample 
and letting it converge to the mode that it most contributes 
to. Note that the modes are basically the positive and 
negative bumps in the function f(x). The samples that 
converge to the same mode are put into the same cluster. 
Certain approximation methods (such as the Fast Gauss 
transform [4]) consider clustering the data without 
considering the weights, thus are ignorant to the 
importance of each sample when determining the 
approximation centers. Our approach departs from this 
common oversight. 
 A mean shift like fixed point algorithm is utilized to 
determine the mode corresponding to each training 
sample. The iterations for each particle initialized to the 
training samples is simply obtained by equating the 
gradient of the expression in (1) to zero and manipulating 
terms to obtain a fixed point update rule. For the most 
common Gaussian kernel, this update rule becomes: 
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In the context of mean shift clustering, this algorithm is 
known to behave as an EM-type update rule with linear 



convergence rate [4]. Although we do not prove the same 
here, it is inituitively expected that this algorithm exhibit 
similar convergence speed. The fundamental difference 
here is that the fixed point update in (2) is utilized to find 
both concave and convex peaks/modes of the kernel 
machine f(x). 
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Figure 1.  In (top) the one-dimensional training set xi used in this 
illustration is plotted vs. the sample index. In (bottom) a random
kernel machine is plotted for the given training data, where ‘+’ 
indicates the fixed points of the iterations in (2). 

 Figure 1 depicts an illustrative kernel machine on a 
one-dimensional dataset. This example helps illustrate the 
multi-mode structure of a typical kernel machine and how 
the algorithm in (2) can be used to identify positive and 
negative modes of the function to place the approximation 
centers. One advantage of the fixed point approach is that 
the algorithm decides whether ascent or descent direction 
is to be pursued given the particular initializing training 
sample; further no parameters need to be fine tuned or 
randomized. Therefore, the clustering procedure is 
completely deterministic and automatic. 
 Once all training samples are iterated through (2) 
until a clustering solution is achieved, the data is 
partitioned into C partitions consisting of data points 

. Consequently, the kernel machine is 

decomposed into C components corresponding to each 
partition as follows: 
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Next, we describe the parametric approximation technique 
we propose to simplify the calculation of each component. 

 
3. SEPARABLE MAXIMUM ENTROPY MODEL 

 
Throughout this section, we focus on a particular fc(x). 
The data x is assumed to be n-dimensional real vectors. 
This function will be approximated as a scaled version of 
a probability density function for an n-dimensional 
random vector x, which is a linear combination of n 
independent source random variables. The linear 
combination matrix A will be determined using 
independent component analysis and the source 
distributions will be approximated as exponential 
densities with polynomial exponents, whose coefficients 
are determined using an approximate maximum entropy 
solution. 
 
3.1. Determining Independent Component Directions 
  
It is clear that assuming a separable approximation to fc(x) 
in the canonical directions in the data space might lead to 
poor approximations, while considering a joint parametric 
model fitting approach might run into optimization 
complexities due to high dimensionality and nonlinearity 
of the problem. In most situations, the modes determined 

using the clustering step would have shapes that conform 
to the linear independence assumption underlying ICA. 
Therefore, the proposed approach is a feasible and 
reasonable midpoint solution that eliminates difficulties 
associated with high dimensionality, without being as 
naïve as the separable-in-canonical-coordinates approach. 
Note, however, that there may be situations where the 
linear independence assumption is not valid. 
 In order to apply ICA theory, we first normalize the 
component function by normalizing the coefficients: 
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Without loss of generality, we also subtract the mean of 
the data points ( c

ii
c
i xxx ∑−= β ) to obtain the zero-

mean normalized pdf counterpart of fc(x): 

 ∑
=

−=
cN

i

c
ii

c
i

c
iic Kh

1
)()( xxx β  (5) 

Due to the linear independence assumption, we can 
approximate the joint pdf in (5) as a product of marginals 
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where xAx ~=  and hd is the dth marginal of h: 
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 One could optimize A in a variety of ways, one 
obvious but not straightforward way being the direct 
minimization of the Kullback-Leibler divergence between 
(5) and (6). Here, we propose drawing a large set of 
random samples from h and employing a standard sample-
based ICA algorithm; in this paper we utilize a simple 
joint cumulant diagonalization algorithm based on 
generalized eigenvector decompositions [5]. 
 Once A is determined using ICA, the function fc(x) 
can be decomposed into product of marginals using the 
rescaled version of (6). However, the marginals still 
require O(N) kernel evaluations as shown in (7). Next, we 
show a convenient approximation for the marginals using 
the exponential family and the maximum entropy 
principle. 



 
3.2. Maximum Entropy Marginal Models 

 
For each hcd in (7), we seek a parametric approximation 
that can be fit easily to the specific function. Maximum 
entropy principle [6] motivates the use of exponential 
parametric distributions and our previous work on 
maximum entropy density estimation provides an 
analytical approximate solution for the model parameters. 
 Maximum entropy principle: The maximum entropy 
distribution satisfying equality constraints for selected 
moments is characterized by the following optimization 
problem: 
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where rk(.) are the nonlinear moments that define the 
constraints. The solution to this problem is given by [7] 
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Solving for the Lagrange multipliers involves integral 
equations or exponential functions, and is analytically 
intractable in general. However, an approximate analytical 
solution can be obtained [6]. Specifically, under the 
assumption that the true distribution is close to the 
maximum entropy distribution (which is expected to be 
the case in the specific case of compact modes of kernel 
machines), we can approximate the Lagrange multipliers 
by , where λ=[ληΘλ 1−−= 1,…,λm]T, Rk is the integral of rk 
and r′k is the derivative, and the moment matrix-vector 
pair is: 
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 The choice of rk(x)=xk is particularly interesting for at 
least two reasons: (i) the corresponding exponential 
distribution can be regarded as a truncated Taylor series 
approximation to the logarithm of the actual distribution, 
(ii) the Lagrange multipliers are calculated using moments 
up to order 2m in a manner similar to moment matching. 
For this particular choice of constraint functions, the 
Lagrange multipliers can be approximated using sample 
estimates (with samples used in determining the ICA 
solution for A): 
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Alternatively, these moments can be analytically 
computed for the particular kernel function. For the 
Gaussian kernel, for example, we have 
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The first 4 moments are 
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Substituting the moments into (7) one can obtain the first 
4 moments as 
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4. EXPERIMENTAL RESULTS 

 
 We present results on approximating discriminative 
kernel machine projections [8] on benchmark datasets.  
 Crescent dataset: This dataset consists of two 
crescent-shaped classes with a nonlinear class boundary. 
There are 150 samples in each class, which are generated 
by uniformly selecting the angle in a π-radian arc and 
perturbing the radius with Gaussian distributed random 
values. The centers of the semicircles describing the 
classes are selected such that there is a nonlinear 
separation boundary in between. This two-dimensional 
dataset and the performance comparison (ROC curves) of 
the original and approximate projection are shown in 
Figure 2. The area under the ROC curve of the original 
method is greater than that of its approximation. However, 
the approximation operates more accurately than the 
original in certain risk regimes. This might indicate an 
unintended regularization effect of the approximation 
procedure for certain datasets.  
 Wisconsin Breast Cancer Dataset & Ionosphere 
Dataset: Similar experiments were performed using the 
Wisconsin breast cancer dataset and the ionosphere 
dataset from the UCI database [ref]. The ROC curves for 
the original and approximate projections are shown in 
Figure 3.The approximation achieves performance levels 
similar to the original projection results for the Wisconsin 
breast cancer dataset, however, has severely degraded 
performance in the ionosphere dataset. Increasing the 
order of the exponential marginal approximations did not 
improve the performance of the approximation in this 
dataset. The most likely explanation to the failure of this 
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5. DISCUSSION 
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computational load in the testing phase. While parametric 
methods only need to calculate a few parameters, kernel 
machines need the evaluation of N kernel functions. This 
also means all training samples must be stored in memory. 
Currently available methods to overcome these drawbacks 
are based on sampling in the input feature space to throw 
away the less informative or some of the similar training 
samples. In this paper, we presented a downsampling 
approach that not only considers the density of samples 
but also their contribution to the function in their 
neighborhood. The function is partitioned into disjoint 
modes, which are then approximated by a linear 
combination of exponential marginal distributions. 
Experiments on benchmark datasets indicate mostly 
acceptable performance degredation, but severe 
degredation might also be possible when certain 
assumptions do not hold. Our future work will be focused 
on comparing the efficiency of the proposed algorithm 
with input feature space based approximation algorithms 
and relaxing the linearity assumption in the ICA step. 
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